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Abstract

To achieve autonomous driving, developing 3D detec-

tion fusion methods, which aim to fuse the camera and Li-

DAR information, has draw great research interest in re-

cent years. As a common practice, people rely on large-

scale datasets to fairly compare the performance of dif-

ferent methods. While these datasets have been carefully

cleaned to ideally minimize any potential noise, we ob-

serve that they cannot truly reflect the data seen on a

real autonomous vehicle, whose data tends to be noisy

due to various reasons. This hinders the ability to sim-

ply estimate the robust performance under realistic noisy

settings. To this end, we collect a series of real-world

cases with noisy data distribution, and systematically for-

mulate a robustness benchmark toolkit. It can simulate

these cases on any clean dataset, which has the camera

and LiDAR input modality. We showcase the effectiveness

of our toolkit by establishing two novel robustness bench-

marks on widely-adopted datasets, nuScenes and Waymo,

then holistically evaluate the state-of-the-art fusion meth-

ods. We discover that: i) most fusion methods, when solely

developed on these data, tend to fail inevitably when there

is a disruption to the LiDAR input; ii) the improvement

of the camera input is significantly inferior to the LiDAR

one. We publish the robust fusion dataset, benchmark, de-

tailed documents and instructions on https://anonymous-

benchmark.github.io/robust-benchmark-website.

1. Introduction

3D detection has received extensive attention as one
of the fundamental tasks in autonomous driving scenar-
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ios [11,16,20,33,38,40,41,55,57,58]. Recently, fusing the
two common modalities, input from the camera and LiDAR
sensors, has become a de-facto standard in the 3D detection
domain as each modality has complementary information
of the other [5,12,42,49,50,56,60]. Similar to other litera-
ture in the computer vision community, a common approach
to showcase the effectiveness of a proposed fusion method
is to validate it on the existing benchmark datasets [4, 46],
which are usually collected from explicitly designed, ex-
pensive data collection vehicles to minimize any potential
error from the hardware setup.

However, we discover that the data distribution of these
popular datasets can be drastically different from the real-
istic driving scenarios due to various reasons: i) there can
be uncontrollable external reasons, such as splatted dirt or
BIOS malfunctions of the on-device computer, that tem-
porarily disable the input of certain sensors; ii) the inputs
can be difficult to synchronize due to external and internal
reasons, such as the spatial misalignment due to the severe
vibration when driving on the bumpy road or temporal mis-
alignment due to clock synchronization module malfunc-
tions. Therefore, the methods that are only evaluated on the
clean datasets might not be trustworthy in realistic scenar-
ios, and hinders actual deployment on the real autonomous
driving vehicles.

To this end, we close this research gap by proposing a
novel toolkit that transforms any clean benchmark dataset,
which has the camera and LiDAR input modality, into a
robustness benchmark to simulate realistic scenarios. We
first conduct a systematic overview of potential sensor noisy
cases, both for the camera and LiDAR, based on realistic
driving data. As in Fig. 1 (a), we identify seven unique cases
under three categories, two for noisy LiDAR cases, two for
noisy camera cases, and three for ill-synchronization cases.
We then carefully study each case and construct a code
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Figure 1. Benchmarking the robustness of state-of-the-art 3D detection methods. (a) We provide an overview of all noisy fusion cases.
(b) We report the performance ratio (robust/clean) of current methods on two robustness datasets, Waymo-R and nuScenes-R, which are
generated by our toolkit.

toolkit to transform the clean data into associated realistic
data distribution of each case.

To verify the effectiveness of our approach, we apply
our toolkit to two large-scale popular benchmark datasets
for autonomous driving, nuScenes and Waymo. Note that
though these noisy cases rarely appear in realistic scenarios,
we convert all data of the given dataset to fully evaluate the
robustness of a given method in an extreme manner. And we
only investigate one failure case at a time, and do not create
a robust benchmark that has multiple malfunctions at the
same time. We then collect two single modalities and three
fusion state-of-the-art methods and benchmark them on the
generated benchmarks. In Fig. 1 (b), we observe several sur-
prising findings: i) state-of-the-art fusion methods tend to
fail inevitably when the LiDAR sensor encounters failures
due to their fusion mechanism heavily relies on the LiDAR
input; ii) fusing the camera input only brings a marginal
improvement, suggesting either the current methods fail to
sufficiently leverage the information from the camera or the
camera information did not carry the complementary infor-
mation as intuited.

In summary, our main contributions are as follows:

• We systematically study the noisy sensor data in the
realistic driving scenarios and propose a novel toolkit
that can transform any autonomous driving benchmark
datasets, that contain camera and LiDAR input, into a
robustness benchmark;

• To the best of our knowledge, we are the first to bench-
mark existing methods under the noisy settings and

find that current fusion methods have a fundamental
flaw and can fail inevitably when there is a LiDAR
malfunction.

We hope our work can shed light on developing robust fu-
sion method that can be truly deployed to the autonomous
vehicles.

2. Related Work

Here, we provide a literature review of current fusion
methods in the 3D detection and the robustness evaluation.
Fusion methods in 3D detection. LiDAR and camera are
two types of complementary sensors for 3D object detec-
tion in autonomous driving. In essence, the LiDAR sensor
provides an accurate depth and shape information of the sur-
rounding world in form of sparse point clouds [19, 35–37,
40, 41, 53, 58, 59, 67], while the camera sensor provides an
RGB-based image that contains rich semantic and texture
information [11, 15, 28, 29, 34, 38, 38, 39, 51, 52, 55, 64, 66].
Recently, fusing these modalities to leverage the comple-
mentary information becomes a de-facto standard in the 3D
detection domain. Based on the fusion mechanism location,
these methods can be divided into three categories, early,
deep, and late fusion schemes. Early fusion methods mainly
concatenate the image features to the original LiDAR point
to enhance the representation power. Specifically, these
methods rely on the LiDAR-to-world and camera-to-world
calibration matrix to project a LiDAR point on the image
plane, where it serves as a query of image features [12, 42,
49, 50, 56, 60]. Deep fusion methods extract deep features
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Figure 2. Autonomous driving perception system with camera and LiDAR sensors.

from some pre-trained neural networks for both modalities
under a unified space [1,5,6,14,17,18,21,22,24,27,31,61],
where a popular choice of such space is the bird’s eye
view (BEV) [1, 24, 27, 61]. While both early and deep
fusion mechanisms usually occur within a neural network
pipeline, the late fusion scheme usually contains two inde-
pendent perception models to generate 3D bounding box
predictions for both modalities, then fuse these predictions
using post-processing techniques [5, 32]. One benefit of
these works is their robustness against single modality in-
put failure. However, it is difficult to jointly optimize this
line of methods due to the post-processing technique being
usually non-differentiable. In addition, this pipeline has a
potential higher deployment cost as it has three independent
modules to be maintained.
Robustness of LiDAR-Camera fusion. Though there are
some works [2,9,30,44,45,47,48,63] explore the robustness
of 3D dectors from different perspectives, e.g., the challeng-
ing weather. In the domain of autonomous driving, there
lacks such a benchmark dataset for robustness analysis of
the fusion models to the best of our knowledge. There only
a few preliminary attempts to investigate this robustness is-
sue [1, 18, 26]. TransFusion [1] evaluates the robustness of
different fusion strategies under three scenarios: splitting
validation set into daytime and nighttime, randomly drop-
ping images for each frame, misaligning LiDAR and cam-
era calibration by randomly adding a translation offset to
the transformation matrix from camera to LiDAR sensor. In
stead, we also add a rotation offset to the transformation ma-
trix. Overall, TransFusion mainly explores the robustness
against camera inputs, and ignores the noisy LiDAR and
temporal misalignment cases. DeepFusion [18] examines
the model robustness by adding noise to LiDAR reflections
and camera pixels. Though the noise settings of DeepFu-
sion are straightforward and brief, the noisy cases almost
never appear in real scenes. Therefore, previous methods
don’t provide a more thorough study useful for fusion meth-
ods. By contrast, we systematically review the autonomous
driving perception system and identify three categories, in a
total of seven cases of robustness scenarios, and propose a

toolkit that can transform an existing dataset into a robust-
ness benchmark. We hope our work can help future research
to benchmark the robustness of their methods fairly, and
give researchers more insights about designing a more ro-
bust fusion framework. An ideal fusion framework should
work better than a single modality, and will not be worse
than the single modality model while the other modality
fails. We hope the deep fusion method is better than late fu-
sion methods that use complex post-processing techniques.

3. Robust Fusion Benchmark

In this section, we first provide a systematic overview
of current autonomous driving vehicle systems with Li-
DAR and camera sensors to show why the data distribution
of each case in clean datasets can differ from real-world
scenarios. These noisy data cases can be categorized into
three broad classes: noisy LiDAR, noisy camera, and ill-
synchronization cases. Then, we present a toolkit that can
transform current clean datasets into realistic scenarios.

3.1. An overview of modern autonomous driving

vehicle system

In Fig. 2, we visualize a common design of the au-
tonomous driving perception system, whose main compo-
nents include the camera and LiDAR sensors, and an on-
device computer. Specifically, the camera and LiDAR sen-
sors are physically mounted on certain fixed locations of the
vehicle and are connected to the computer via certain cables
with communication protocols. In essence, the computer
can access the data stream from the sensors and capture the
data into a point cloud or image with a certain timestamp.
As the raw data are in the sensor coordinate system, sen-
sor calibration plays a major role in performing efficient
coordinate transformation such that the perception system
can recognize objects with respect to the ego-car coordinate
system. Based on our experience, each step of the afore-
mentioned system can encounter certain failures or disrup-
tions, and yield noisy data that are drastically different from
the normal clean data. We identify three categories of cases
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Figure 3. Limited LiDAR field-of-view. (Left) We visualize the
complete LiDAR point clouds that come from the data collection
vehicle which has a complete sensor rack. (Right) In realistic sce-
narios, the LiDAR is installed in a front-facing manner, yielding a
limited FOV. Better view in color.

and briefly discuss the potential reasons and consequences
in Tab. 5 of the appendix, and provide a detailed case anal-
ysis later.

3.2. Case analysis

In this section, we analyze the collected real-world noisy
data cases of autonomous driving in detail.

3.2.1 Noisy LiDAR Data

We identify two common cases that can cause noisy LiDAR
data in practice.
Limited LiDAR field-of-view (FOV). While most compa-
nies collect the LiDAR data whose field-of-view is 360 de-
grees, certain LiDAR data might not always be available
for various reasons. For example, a certain type of vehi-
cle only installs a front-facing semi-solid LiDAR sensor on
the roof of the car instead of using a full rack, as shown in
the right part of Fig. 3. Without loss of generality, we first
convert the coordinate of LiDAR points from Euclidean (in
x, y, z) to polar coordinate system (r, ✓, z). We then can
simulate such limited FOV by keeping the points that sat-
isfy ✓ 2 (�✓0, ✓0). In practice, we set ✓0 to 0, 60, and 90
degrees to simulate commonly seen scenarios, which have
realistic meanings. We clarify that, the two settings of lim-
ited FOV have different causes: i.complete failure (no li-
dar data) is due to the temporary hardware malfunctions;
ii.reduced FOV such as [-60, 60] is due to the difference
between data collection vehicle and final production ones.
LiDAR object failure. One common scenario that peo-
ple tend to overlook is that the LiDAR can be blind to
objects under certain constraints. We show one example
from the realistic data captured on a commercialized au-
tonomous driving system in Fig. 4. We observe that the
LiDAR point clouds are drastically different from two side-
by-side cars, where the black car has nearly zero points
while the white car has a normal point distribution. We dub
this phenomenon LiDAR object failure, which is usually
caused by low reflection rate of objects due to object tex-
ture, inappropriate reflection angle or water film. Without

Figure 4. LiDAR object failure. On rainy days, the reflection
rate of some common objects (e.g., the black car) is below the
threshold of LiDAR hence causing the issue of object failure.

loss of generality, we simulate such scenarios by randomly
dropping the points within a bounding box with a probabil-
ity of 0.5. Note that we do not alter the camera input be-
cause the purpose is to benchmark the single modality input
data.

3.2.2 Noisy Camera Data

Different from the LiDAR module, the camera module
is usually installed on much lower locations of the au-
tonomous driving vehicles to cover the blind region of the
LiDAR sensor. Such blind region is due to the fact that the
LiDAR is usually installed on the roof of the car to maxi-
mize the visualization distance, while it cannot see the near-
car region due to blockage. As such, the camera can be eas-
ily affected by the surrounding environment such as tempo-
rary generic object coverage or lens occlusion of dirt. We
discuss these two scenarios in detail.
Missing camera inputs. As the camera module is usu-
ally much smaller (within one centimeter), the most com-
mon covering scenario is covering the whole camera sen-
sor. Thus, we drop the entire camera input to simulate such
covering scenarios and the situation when camera sensor is
damaged. In practice, we design two finer cases to perform
a robust benchmark, dropping one camera at a time as it’s
common that one camera is covered or damaged, and drop-
ping all other cameras except the front one as some patrol
robots or logistics robots only have one camera on the front.

Figure 5. Visualization of camera occlusion. We display the
original images from different scenarios in the nuScenes dataset
(Left), the randomly sampled dirt occlusion masks (Middle), and
the final composed images that simulating the occlusion (Right).
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Figure 6. Visualization of spatial misalignment. We provide one
visual example to showcase the spatial misalignment caused by
noisy extrinsic parameters.

Camera lens occlusion. Another commonly seen cam-
era covering problem is lens occlusion caused by non-
transparent liquid or dirt. Some works also which intro-
duces a soiling dataset [48], and [47] which uses these
data to train a GAN model to generate realistic lens occlu-
sions together with corresponding annotations. Instead, to
simulate the occlusion of camera lenses in real scenes, we
spray mud dots on a transparent film and cover the dirty film
on the camera lens to take photos on a white background.
Then, we adopt an image matting algorithm to cut out the
background part in the images and separate the masks of
mud spots. Finally, the separated masks are pasted on the
images of clean datasets to simulate the occlusion of their
camera lenses, as illustrated in the Fig. 5. In addition, we
spray mud dots of different sizes and randomly move and
rotate the film to create masks with different occlusion areas
and occlusion ranges to enhance the diversity of the mask.

3.3. Ill-synchronization

As illustrated in Fig. 2, the data stream is firstly fixed
into a data frame with a given timestamp when passed into
the on-device computer, then one needs to perform the co-
ordinate transform via the camera-to-world and LiDAR-to-
world matrix that is obtained by the calibration process.
However, this leads to two potential ill-synchronization is-
sues, spatial misalignment due to the external reasons of
calibration matrix and temporal misalignment for both Li-
DAR and camera data due to internal system reasons.
Spatial misalignment. As the physical size of a camera
module is drastically smaller than the size of a vehicle, the
relative position of car center to the camera center will in-
evitably change due to various reasons, like the vibration
during driving on the bumpy road, and since such noise
happens all the time, it cannot be avoided using online cal-
ibration. In addition, such errors can accumulate while the
mileage of a vehicle is increasing. To simulate such a sit-
uation, we add random rotation and translation noise to
the calibration of each camera independently. The range
of noise rotation angle is from 1� to 5� andthe translation
range is from 0.5 cm to 1.0 cm to accord with the noise
range in the real scene. Sensor calibration misalignment
will cause spatial misalignment between point cloud and
image, as shown in Fig. 6.

Figure 7. Visualization of temporal misalignment. The time-
stamp of two modalities might not always be aligned on realistic
vehicles. We show one concrete example of temporal misalign-
ment.

Temporal misalignment. In a realistic autonomous driving
system, failure of the system components is quite common
throughout the time. As the streaming data is first fixed
with a certain time stamp then passed into the correspond-
ing code module of deep learning model via system sockets,
the timestamp of both modality sensors might not be always
synchronized. In some rare cases, e.g., sensor connection
failure or temporary insufficient cable bandwidth, the data
frame of one modality can be stuck by over one minute de-
pending on different system implementations. To simulate
such effect, we let the frame remains the same as previ-
ous frame when the data is ill-synchronized and we dub the
phenomenon data-stuck. Initially, we apply nine levels of
severity according to the percentage of stuck frames in all
frames. Besides, we consider two ways to select the stuck
frames randomly, discrete selection and consecutive selec-
tion. In discrete selection, the discrete stuck frames are se-
lected randomly. While in consecutive selection, the con-
tinuous multiple frames are selected. And one illustration is
shown in Fig. 7, LiDAR-stuck by discrete selection on the
top of this figure and camera-stuck by consecutive selection
on the bottom.

3.4. A toolkit to transform generic autonomous

driving dataset into robustness benchmark

To remove the randomness of benchmark comparison,
we compose a toolkit that can transform an autonomous
driving dataset into a robustness benchmark 1. In essence,
we only simulate noisy data cases by altering the image and
LiDAR data, the ground-truth annotation will remain the
same as the 3D position of the object in the surrounding
worlds will not change when the sensors malfunction. To
facilitate future research, we leverage two popular large-
scale autonomous driving datasets, nuScenes and Waymo,

1See our website for more details. https://anonymous-
benchmark.github.io/robust-benchmark-website.
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Approach M
LiDAR Camera

PC mPR R Stuck FOV Object Stuck Missing Occlusion Calib

nuScenes-R (mAP / NDS)

CenterPoint [59] L 56.8 / 65.0 23.4 / 46.3 0.41 / 0.71 26.1 / 47.5 15.6 / 43.0 28.4 / 48.5 - - - -
DETR3D [54] C 34.9 / 43.4 17.6 / 31.5 0.50 / 0.73 - - - 17.3 / 32.3 14.5 / 29.9 14.3 / 29.0 24.2 / 35.0
PointAugmenting [50] LC 46.9 / 55.6 31.9 / 47.0 0.68 / 0.85 25.3 / 43.5 13.3 / 37.7 21.3 / 39.4 42.1 / 52.8 37.0 / 49.8 40.7 / 52.2 43.6 / 53.8
MVX-Net [42] LC 61.0 / 66.1 37.7 / 53.2 0.62 / 0.81 35.2 / 51.4 17.6 / 43.1 34.0 / 51.1 48.3 / 58.8 32.7 / 50.6 45.5 / 57.6 50.8 / 59.9
TransFusion [1] LC 66.9 / 70.9 50.2 / 61.8 0.75 / 0.87 33.4 / 52.3 20.3 / 45.8 34.6 / 53.6 65.9 / 70.2 64.9 / 69.7 65.5 / 70.0 66.5 / 70.7
BEVFusion [24] LC 67.9 / 71.0 51.3 / 61.9 0.76 / 0.87 34.4 / 52.2 21.1 / 45.6 39.2 / 54.6 66.2 / 70.3 65.5 / 70.3 65.3 / 69.6 67.4 / 70.7

Waymo-R(L2 mAP / L2 mAPH)

CenterPoint [59] L 66.0 / 63.4 30.6 / 29.4 0.46 / 0.46 29.5 / 28.3 30.3 / 29.1 32.1 / 30.9 - - - -
DETR3D [54] C 16.2 / 15.7 10.1 / 9.8 0.62 / 0.62 - - - 13.0 / 12.6 8.4 / 8.2 10.9 / 10.5 8.0 / 7.8
PointAugmenting [50] LC 52.5 / 50.7 39.6 / 38.3 0.75 / 0.76 24.7 / 23.9 24.3 / 23.4 26.2 / 25.3 51.7 / 50.0 50.4 / 48.6 50.3 / 48.6 49.8 / 48.1
MVX-Net [42] LC 59.7 / 54.1 44.3 / 40.1 0.74 / 0.74 27.5 / 24.9 28.8 / 25.6 28.7 / 26.0 58.2 / 52.7 55.9 / 50.5 56.4 / 51.1 54.9 / 49.6
TransFusion [1] LC 66.7 / 64.1 51.2 / 49.1 0.77 / 0.77 30.2 / 29.0 30.2 / 29.0 32.7 / 31.3 66.5 / 63.9 66.1 / 63.5 66.2 / 63.6 66.3 / 63.7
Stuck: Temporal misalignment for both modalities. FOV: Limited LiDAR FOV. Object: LiDAR object failure.
Missing: Missing camera inputs. Occlusion: Camera Lens Occlusion. Calib: Spatial misalignment of camera-to-world matrix.

Table 1. Benchmarking the robustness of state-of-the-art methods in all seven scenarios of the nuScenes-R and Waymo-R. M denotes
input modality, camera (C) and LiDAR (L).

Approach M
LiDAR Camera LiDAR Camera

PC mPR R mPR R PC mPR R mPR R

nuScenes-R (mAP / NDS) Waymo-R(L2 mAP / L2 mAPH)

CenterPoint [59] L 56.8 / 65.0 23.4 / 46.3 0.41 / 0.71 - - 66.0 / 63.4 30.6 / 29.4 0.46 / 0.46 - -
DETR3D [54] C 34.9 / 43.4 - - 17.6 / 31.5 0.50 / 0.73 16.2 / 15.7 - - 10.1 / 9.8 0.62 / 0.62
PointAugmenting [50] LC 46.9 / 55.6 20.0 / 40.2 0.43 / 0.72 40.9 / 52.2 0.87 / 0.94 52.5 / 50.7 25.1 / 24.2 0.48 / 0.48 50.6 / 48.8 0.96 / 0.96
MVX-Net [42] LC 61.0 / 66.1 28.9 / 48.5 0.47 / 0.73 44.3 / 56.7 0.73 / 0.86 59.7 / 54.1 28.3 / 25.5 0.47 / 0.47 56.4 / 51.0 0.94 / 0.94
TransFusion [1] LC 66.9 / 70.9 29.4 / 50.6 0.44 / 0.71 65.7 / 70.1 0.98 / 0.99 66.7 / 64.1 31.0 / 29.8 0.46 / 0.46 66.3 / 63.7 0.99 / 0.99
BEVFusion [24] LC 67.9 / 71.0 31.6 / 50.8 0.46 / 0.72 66.1 / 70.2 0.97 / 0.99 - - - - -

Table 2. Robustness against LiDAR and camera modals of state-of-the-art architectures. In short, the robust metric (R) is computed
by averaging the cases by the affecting modality.

and benchmark state-of-the-art methods to evaluate their ro-
bustness for the first time to the best of our knowledge. We
denote the newly created robustness benchmark nuScenes-
R and Waymo-R.
Evaluation Metrics. To intuitively show the robustness
of LiDAR-camera fusion methods, we simply use the per-
formance and the relative performance degradation on our
benchmark datasets as our evaluation metrics. Specifically,
the LiDAR-camera fusion model performance on the clean
dataset is denoted as PC and its corresponding robustness
performance against disruption type d under severity level
l on the benchmark is denoted as P d,l

R . Then, we can esti-
mate the model robustness mPR by averaging over all noise
types and severity levels. The formula can be summarized
as follows:

mPR =
1

Nd

NdX

d=1

1

Nl

NlX

l=1

P d,l
R , (1)

where Nd is the number of disruption types and Nl is the
number of severity levels. The relative mean robustness per-
formance of the model is defined as R = mPR/PC . The
higher R means the model is more robust to inferior senor

fusion conditions. In practice, we adopt the mean Aver-
age Precision (mAP) and the weighted consolidated metric
NDS as PC for nuScenes-R and L2-mAP and L2-mAPH as
PC for Waymo-R.

4. Benchmark Existing Methods

We investigate and evaluate existing popular LiDAR-
camera fusion methods with opening source code on
our benchmark, including PointAugmenting [50], MVX-
Net [42], TransFusion [1] and BEVFusion [24]. In addition,
we also evaluate a LiDAR-only method, CenterPoint [59],
and a camera-only method, DETR3D [54], for better com-
parison. It is worth noting that the metrics on waymo focus
on intersection over union (IoU). However, strictly calculat-
ing the IoU of 3D bounding boxes is quite challenging for
camera-based methods. Thus we reduce the IoU threshold
to 0.3 and report the vehicle class for DETR3D on Waymo.

4.1. Benchmark Results

The fusion robustness results are shown in Tab. 1. More-
over, to analyze the robustness of models against LiDAR
and camera disruptions, we present the mPR and R of Li-
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Approach Modality
nuScenes-R (mAP / NDS) Waymo-R(L2 mAP / L2 mAPH)

PC (�⇡/2, ⇡/2) (�⇡/3, ⇡/3) (�0, 0) PC (�⇡/2, ⇡/2) (�⇡/3, ⇡/3) (�0, 0)

CenterPoint [59] L 56.8 / 65.0 23.5 / 47.7 15.6 / 43.0 0 / 0 66.0 / 63.4 36.6 / 35.2 30.3 / 29.1 0 / 0
PointAugmenting [50] LC 46.9 / 55.6 19.5 / 41.2 13.3 / 37.7 0 / 0 52.5 / 50.7 29.4 / 28.3 24.3 / 23.4 0 / 0
MVX-Net [42] LC 61.0 / 66.1 26.0 / 47.8 17.6 / 43.1 0 / 0 59.7 / 54.1 34.5 / 30.8 28.8 / 25.6 0 / 0
TransFusion [1] LC 66.9 / 70.9 29.3 / 51.4 20.3 / 45.8 0 / 0 66.7 / 64.1 36.8 / 35.3 30.2 / 29.0 0 / 0

Table 3. Results of the limited LiDAR field-of-view case. The angle ranges in brackets mean the visible angle range. (�0, 0) means the
extreme case when all LiDAR points are missing.

Approach Modality
nuScenes-R (mAP / NDS)

PC {F} {B} {FL} {FR} {BL} {BR} Keeping F

DETR3D [54] C 34.9 / 43.4 25.8 / 39.2 23.9 / 38.0 28.9 / 39.5 29.1 / 39.8 30.0 / 40.7 29.7 / 40.2 3.3 / 20.5
PointAugmenting [50] LC 46.9 / 55.6 42.4 / 53.0 41.3 / 52.5 43.6 / 53.8 45.8 / 54.6 45.2 / 54.7 44.9 / 54.6 31.6 / 46.5
MVX-Net [42] LC 61.0 / 66.1 47.8 / 59.4 45.8 / 58.4 53.6 / 61.9 54.1 / 62.5 55.2 / 63.1 54.6 / 62.6 17.5 / 41.7
TransFusion [1] LC 66.9 / 70.9 65.3 / 70.1 66.0 / 70.4 66.2 / 70.4 66.4 / 70.5 66.3 / 70.5 66.3 / 70.5 64.4 / 69.3

Approach Modality
Waymo-R(L2 mAP / L2 mAPH)

PC {F} {B} {FL} {FR} {BL} {BR} Keeping F

DETR3D [54] C 16.2 / 15.7 9.2 / 8.8 - 13.4 / 13.0 14.2 / 13.8 14.0 / 13.6 14.4 / 14.0 7.7 / 7.5
PointAugmenting [50] LC 52.5 / 50.7 50.6 / 48.9 - 51.8 / 50.0 52.1 / 50.3 51.8 / 50.0 51.9 / 50.1 50.2 / 48.4
MVX-Net [42] LC 59.7 / 54.1 57.1 / 51.7 - 57.5 / 52.2 58.1 / 52.7 58.5 / 53.1 58.9 / 53.5 54.3 / 49.2
TransFusion [1] LC 66.7 / 64.1 66.3 / 63.7 - 66.5 / 64.0 66.4 / 63.8 66.4 / 63.8 66.5 / 63.9 65.8 / 63.2
Camera location abbr. F: front. B: back. FL: front-left. FR: front-right. BL: back-left. BR: back-right.

Table 4. Results of the missing camera inputs case. {X} denotes the location of the missing camera, while the last column indicates the
case only keeping the input from the front camera. Note that there is no back camera in the Waymo Open Dataset.

DAR and camera modal separately in Tab. 2. In general, ex-
isting methods perform poorly on our robust fusion bench-
mark as shown in Tab. 1, and there is vast room for im-
provement. Especially, for all LiDAR-camera fusion meth-
ods shown in Tab. 2, the robustness of models against noisy
LiDAR cases is worse than the one against noisy camera
cases. And among the LiDAR-camera fusion methods we
investigated, BEVFusion and TransFusion achieve the over-
all best robustness. It is worth noting that the robustness
against camera noise of them is unexpectedly outstanding,
while the robustness against LiDAR noise is even worse
than other fusion methods.

We speculate that this is mainly due to the fact that fusing
the camera input only brings a marginal improvement, sug-
gesting either the current methods fail to sufficiently lever-
age the information from the camera or the camera informa-
tion did not carry the complementary information as intu-
ited. And the fusion mechanism of most of the current pop-
ular fusion-based 3D object detection methods rely heavily
on accurate LiDAR input. Some of them [50] decorate Li-
DAR features with corresponding camera features based on
calibration matrices on input level. Others [1, 24, 42] use
deep feature-level fusion where the features are combined
after feature extraction, such as projecting point clouds onto
the BEV plane, and then using them as queries to select cor-
responding image features or using calibration matrices to
lift camera features to the same BEV plane, to obtain fused

features. Thus, if the LiDAR sensor input is missing, cur-
rent fusion methods fail to produce meaningful results.

Moreover, when comparing the performance of LiDAR-
camera fusion methods with single modality methods on
our benchmark, we find all fusion methods have greater ro-
bustness on both LiDAR and camera modality than single
modality methods. It indicates that when encountering im-
perfect modality inputs, the fusion methods somehow have
the ability to utilize other modal information to enhance the
features and predict the final outputs.

4.2. A complete analysis of each noisy data case

We analyze the robustness of existing popular methods
on each noisy case proposed in Sec. 3.2.

4.2.1 Noisy LiDAR Data

Limited LiDAR field-of-view. We investigate the situa-
tions when the LiDAR points with limited field-of-view in
angle range (�⇡/3, ⇡/3), (�⇡/2, ⇡/2) and (�0, 0). The
angle range of (�0, 0) is an extreme case when the LiDAR
sensor is completely damaged. The results are shown in
Tab. 3. For both LiDAR-only and fusion methods, their per-
formance decreases largely in three situations. Especially,
in the extreme case where all LiDAR points are missing,
current fusion methods fail to predict any objects like the
LiDAR-only method. Thus, for existing fusion methods,
the LiDAR modality is the main modality and the camera
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modality is auxiliary. An ideal fusion model should still
work as long as there is single modality input.
LiDAR object failure. The results of the LiDAR object
failure case are shown in Tab. 1. We can find that, with 50%
probability to drop all points of the objects, the performance
of both LiDAR-only and LiDAR-camera fusion methods re-
duce by half approximately. This indicates current fusion
methods fail to work when the foreground LiDAR points
are missing, even the objects appear in the images. From an-
other perspective, it shows that, for the fusion mechanisms
of current LiDAR-camera fusion methods, camera informa-
tion is not well exploited. The fusion process still largely
relies on LiDAR information. And more results of object
failure setting can be found in Appendix C.

4.2.2 Noisy Camera Data

Missing of camera inputs. In the case of missing cam-
era inputs, we consider several combinations of cameras
installed in different positions and report the comprehen-
sive results in Tab. 4, in which we can find that the missing
front camera or back camera (for nuScenes) has a greater
impact on the detection results. So we consider the case
of the missing front camera and the extreme case where
all cameras except the front camera are missing in our
benchmark. When all cameras except the front camera are
missing, the performance of PointAugmenting and Trans-
Fusion decreases no more than 50% on both nuScenes-R
and Waymo-R. This demonstrates that the robustness of
PointAugmenting and TransFusion against camera noise is
much better than the other two methods. Besides, the per-
formance degradation on Waymo-R is much smaller than
that on nuScenes-R , which indicates the robustness on the
various datasets is different.
Occlusion of camera lens. The results for the case of the
dirty camera lens are shown in Tab. 1. We observe that
among the fusion models, TransFusion is the most robust
one compared to the clean settings, while DETR3D is the
most sensitive one. Interestingly, although MVX-Net sig-
nificantly outperforms PointAugmenting in the clean set-
ting, it suffers from more severe performance degradation
against occlusions.

4.2.3 Ill-synchronization

Spatial misalignment. For spatial misalignment, the effect
of the noise rotation and translation matrix on fusion mod-
els is comparable to that of the noisy camera sensor cases,
as shown in Tab. 1. We find that the TransFusion is the
most robust one compared to the clean settings, while the
DETR3D is the most sensitive to the spatial misalignment.
Temporal misalignment. For temporal misalignment, we
explore 9 levels of severity and two ways to select the stuck
frames, discrete selection and consecutive selection. The

Figure 8. Temporal misalignment case. The solid line denotes
the discrete selection. The dash line denotes the consecutive se-
lection. Camera-stuck on the top and LiDAR-stuck on the bottom.

results are shown in Fig. 8. A trend can be observed that the
performance degradation of all methods is linear to the per-
centage of stuck frames among all frames. Thus, to reduce
the load of the benchmarks, we only consider the case where
the stuck frames are 50% of all frames as the final bench-
mark setting. Interestingly, although TransFusion performs
well against the stuck camera frame case, we can observe
that the perfromance of TransFusion decreases faster than
other fusion methods when the LiDAR-stuck frame ratio in-
creases.

5. Discussion and Conclusion

In this work, we collect a series of real-world cases
with noisy data distribution, and systematically formulate
a robustness benchmark toolkit, that simulates these cases
on any clean autonomous driving datasets. We showcase
the effectiveness of our toolkit by establishing the robust-
ness benchmark nuScenes-R and Waymo-R, then holisti-
cally benchmark the state-of-the-art fusion methods. We
further provide a simple robust training strategy in Ap-
pendix C, which finetunes the models on these robustness
scenarios, and show that it moderately improves the robust-
ness. However, there is still a large performance gap when
compared to the results of the clean settings.

We also provide some insights into developing robust fu-
sion models. In general, we believe an ideal sensor fusion
framework should be able to do the following: i) given both
modality data, it can significantly surpass the performance
of single modality methods; ii) when there is a disruption of
one modality, the performance should not be worse than the
single modality method of the other. We hope our robust
benchmark can be a tool for the community to fully exploit
this research direction to develop truly robust methods that
can be deployed on realistic vehicles.
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