
A. Robust Fusion Benchmark

We publish the robust fusion dataset, benchmark, data
format and instructions at our website https://anonymous-
benchmark.github.io/robust-benchmark-website.

Benchmark documentation. We show the
dataset documentation and intended uses in
https://anonymous-benchmark.github.io/robust-
benchmark-website/documentation.html.

Benchmark maintenance. We provide data download
links ( Google Drive & Baidu YunPan ) for users
in https://anonymous-benchmark.github.io/robust-
benchmark-website/download.html. We will maintain
the data for a long time and check the data accessibility in
a regular basis.

Benchmark and code. The codebases used in our
benchmark are open-source. See our GitHub reposi-
tory for more details in https://github.com/anonymous-
benchmark/lidar-camera-robust-benchmark.

Case Summary. In Fig. 2, we visualize a common de-
sign of the autonomous driving perception system, whose
main components include the camera and LiDAR sensor,
and an on-device computer. Based on our experience, each
step of the aforementioned system can encounter certain
failures or disruptions, and yield noisy data that are dras-
tically different from the normal clean data. We identify
three categories of cases and briefly discuss the potential
reasons and consequences in Tab. 5.

Autonomous driving datasets. Our robustness bench-
marks nuScenes-R and Waymo-R are generated from
two large-scale popular datasets for autonomous driving,
nuScenes and Waymo.

nuScenes is a large-scale autonomous-driving dataset for
3D detection, consisting of 700, 150 and 150 scenes for
training, validation, and testing, respectively. Each frame
contains one point cloud and six calibrated images that
cover 360 fields-of-view. For 3D detection, the main met-
rics are mean Average Precision (mAP) and nuScenes de-
tection score (NDS). The mAP is defined by the BEV cen-
ter distance with thresholds of 0.5m, 1m, 2m, 4m, instead of
the IoUs of bounding boxes. NDS is a consolidated metric
of mAP and other metric scores, such as average translation
error and average scale error.

Waymo Open Dataset is an another large-scale dataset
for autonomous driving, which contains 798 training, 202
validation, and 150 testing sequences. Each sequence has
about 200 frames with LiDAR points and camera images,
which are collected by five LiDAR sensors and five pinhole
cameras. The official metrics are mean Average Precision
(mAP) and mean Average Precision weighted by Heading
(mAPH). The mAP and mAPH are defined based on the 3D
IoU with the threshold of 0.7 for vehicles and 0.5 for pedes-
trians and cyclists. The measures are reported based on the
distances from objects to sensor, i.e., 0-30m, 30-50m and

>50m, respectively. Besides, two difficulty levels, LEVEL
1 (boxes with more than five LiDAR points) and LEVEL 2
(boxes with at least one LiDAR point), are considered.

Broader Impacts Statement and Limitations. This
paper studies robust LiDAR-camera fusion for 3D object
detection. Since the detection explored in this paper is
for generic objects and does not pertain to specific human
recognition, so we do not see potential privacy-related is-
sues.

This research composes a toolkit that can transform an
autonomous driving dataset into a robustness benchmark by
simulating real-world noisy data cases. However, the gen-
erated simulated data and real data still have some gaps.
To overcome the limitation, we plan to collect and provide
noisy data cases in realistic scenarios, which requires long-
term efforts as they do not often occur. And though the
main purpose of this work is to create a robustness bench-
mark, we nonetheless provide a simple method, which fine-
tunes the model on these robustness scenarios, and show
that it moderately improves the robustness of current meth-
ods. However, there is still a large performance gap when
compared to the results of the clean settings, which demon-
strates that the autonomous vehicles desire more effective
and reliable robust fusion methods or training strategies.

B. Implementation Details

In order to make the experiment results reproducible,
we further provide detailed experimental settings for each
method in this paper. The models are mostly trained and
evaluated on servers with 8 NVIDIA GeForce RTX 3090
GPUs.

B.1. Benchmark Setup

We summarized an overview of our final benchmark
setup in Tab. 6. Note that, we only investigate one failure
case at a time, and do not create a robust benchmark that
has multiple malfunctions at the same time, if more than
one setting is considered, the mean performance is calcu-
lated as Eq. (1). And we only simulate noisy data cases by
altering the image and LiDAR data, the ground-truth anno-
tation will remain the same as the 3D position of the object
in the surrounding worlds will not change when the sensors
malfunction. And note that both LiDAR and camera modal-
ity can encounter the temporal misalignment issue.

B.2. More Implementation Settings

Here we detail some implementation settings.
CenterPoint. Following the original paper [59], we im-

plement CenterPoint using VoxelNet [57, 67, 68] encoder.
For experiments on nuScenes, we set the detection range
to [�51.2m, 51.2m] for the X and Y axis, and [�5m, 3m]
for Z axis. Voxel size is set as (0.1m, 0.1m, 0.2m).
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Group Reason Consequent Case

Noisy LiDAR

Damaged LiDAR sensors Missing of corresponding point inputs

Installation limitation of LiDAR Limited LiDAR field-of-view

Low reflection rate of objects LiDAR object failure

Noisy camera Damaged camera sensors Missing of corresponding image inputs

Camera lens occlusion Lens Occlusion

Ill-synchronization

Vibration during driving Spatial misalignment

Loose physical mounting Spatial misalignment

Instability of on-device computer Temporal misalignment

Temporary insufficient cable bandwidth Temporal misalignment

Sensor connection failure Temporal misalignment

Table 5. Common reasons for noisy data cases. Based on the realistic experiences, we report various reasons that cause the noisy data
cases.

Group Noise Setting

Noisy LiDAR Limited LiDAR FOV Keep the points that satisfy ✓ 2 (�⇡/3,⇡/3)

LiDAR Object Failure Randomly drop the points within a bounding box with a probability of 0.5

Noisy camera Missing of Camera Inputs Drop front camera & only keep front camera

Occlusion of Camera Lens Paste a random mask on each image

Ill-synchronization
Spatial Misalignment Add random rotation (1� to 5�) and translation (0.5cm to 1.0cm) noise

Temporal Misalignment Stuck 50% frames (discrete selection & consecutive selection)

Table 6. An overview of the final benchmark setup.

And the model is trained for 20 epochs. The waymo
model uses a detection range of [�75.2m, 75.2m] for the
X and Y axis, and [�2m, 4m] for the Z axis. Voxel
size is kept as (0.1m, 0.1m, 0.15m). The model is
trained for 12 epochs. Codebase: https://github.com/open-
mmlab/mmdetection3d/tree/master/configs/centerpoint

DETR3D. Following the original paper [54], the model
consists of a ResNet [10] feature extractor, a FPN, and
a DETR3D detection head. We use ResNet101 with de-
formable convolutions [8] in the 3rd stage and 4th stage.
The FPN [25] takes features output by the ResNet and
produces 4 feature maps whose sizes are 1/8, 1/16, 1/32,
and 1/64 of the input image sizes. On the nuScenes
dataset, the model is trained for 12 epochs in total. On
the Waymo dataset, we made some small changes to
transfer the model, e.g, Waymo has only five camera in-
puts, and the model is trained for 24 epochs. Codebase:
https://github.com/WangYueFt/detr3d

PointAugmenting. PointAugmenting proposes a new
multi-modal data augmentation. In this paper, we only fo-
cus on the robustness of the fusion method. Thus, when
training PointAugmenting, we do not use the extra multi-
modal data augmentation mentioned in PointAugmenting.
On the nuScenes dataset, we use PointPillars [16] as the

LiDAR stream and DLA34 [62] as the image stream. We
use the pretrained DLA34 model from CenterTrack [65].
On the Waymo dataset, we use PointPillars [16] as the Li-
DAR stream and ResNet50 [10] with FPN [25] as the im-
age stream. We only use the P2 feature from FPN as the
image feature. The image feature extractor is trained for
36 epochs on Waymo of the 2D detection task. Codebase:
https://github.com/VISION-SJTU/PointAugmenting

MVX-Net. Following the original paper [42], we use
PointPillars [16] as the LiDAR stream and ResNet50 [10]
with FPN [25] as the image stream. At the fusion stage,
we project each LiDAR point to all images from differ-
ent views to acquire the corresponding image features from
the deep networks. Then, we average the features on the
channel dimension and then concatenate all features from
different views with the original LiDAR point feature be-
fore the downstream task. On the nuScenes dataset, we
set the detection region of interest to [�50m, 50m] for the
X and Y axis, and [�5m, 3m] for the Z axis. The pillar
size is kept as [0.25m, 0.25m]. The image feature extrac-
tor is trained for 36 epochs on nuImage [3]. On Waymo
dataset, we set the detection range to [�74.88m, 74.88m]
for the X and Y axis, and [�2m, 4m] for the Z axis. The
pillar size is hold as [0.32m, 0.32m]. The image fea-
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Approach Modality
nuScenes-R (mAP / NDS)

PC 10% 30% 50% 70% 90% 100%

CenterPoint [59] L 56.8 / 65.0 56.6 / 64.9 55.9 / 64.4 54.7 / 63.7 52.4 / 62.2 45.6 / 58.1 28. 4/ 48.5
PointAugmenting [50] LC 46.9 / 55.6 46.8 / 55.5 46.3 / 55.2 45.0 / 54.3 43.2 / 52.7 36.0 / 49.1 21.3 / 39.4
MVX-Net [42] LC 61.0 / 66.1 60.8 / 65.9 60.2 / 65.6 59.1 / 65.1 57.1 / 63.9 51.3 / 60.6 34.0 / 51.1
TransFusion [1] LC 66.9 / 70.9 66.7 / 70.7 66.1 / 70.4 65.0 / 69.7 62.8 / 68.4 56.1 / 64.4 34.6 / 53.6

Table 7. Results of different dropping proportion setting of the LiDAR object failure case.

Approach Modality
nuScenes-R (mAP / NDS)

PC 0.1 0.3 0.5 0.7 0.9 1.0

CenterPoint [59] L 56.8 / 65.0 50.2 / 61.4 40.4 / 56.0 28.4 / 48.5 18.3 / 41.6 8.9 / 31.9 5.0 / 23.7
PointAugmenting [50] LC 46.9 / 55.6 38.7 / 50.6 30.0 / 45.2 21.3 / 39.4 13.6 / 33.7 5.1 / 27.9 2.3 / 24.0
MVX-Net [42] LC 61.0 / 66.1 55.7 / 63.3 44.4 / 57.4 34.0 / 51.1 23.3 / 44.3 12.8 / 36.5 7.0 / 29.5
TransFusion [1] LC 66.9 / 70.9 59.9 / 67.1 46.5 / 60.0 34.6 / 53.6 21.2 / 43.6 12.9 / 36.0 7.3 / 28.3

Table 8. Results of different dropping probability setting of the LiDAR object failure case.

ture extractor is trained for 36 epochs on Waymo of the
2D detection task. Codebase: https://github.com/open-
mmlab/mmdetection3d/tree/master/configs/mvxnet

TransFusion. Following the original paper [1], we im-
plemented TransFusion. For nuScenes, we use the DLA34
[62] of the pretrained CenterNet as the 2D backbone and
keep its weights frozen during training. We set the im-
age size to 448 × 800, which performs comparably with
full resolution (896 × 1600). VoxelNet [57, 67] is cho-
sen as our 3D backbone and the voxel size is set to
(0.075m, 0.075m, 0.2m). We set the detection range to
[�54.0m, 54.0m] for the X and Y axis, and [�5m, 3m]
for Z axis. The waymo model uses a detection range of
[�75.2m, 75.2m] for the X and Y axis, and [�2m, 4m]
for the Z axis. We set the image size to 640 × 960 and
the voxel size to (0.1m, 0.1m, 0.15m). We use ResNet50
with FPN as the image stream and it is trained for 36
epochs on Waymo of the 2D detection task. Codebase:
https://github.com/XuyangBai/TransFusion/

BEVFusion. Following the implementation details in
original paper [24] 2, we conduct BEVFusion with Dual-
Swin-Tiny [23] as 2D bakbone for image-view encoder.
TransFusion-L [1] are chosen as the LiDAR stream and
3D detection head. The image size is set to 448 ⇥ 800
and the voxel size following the official settings of the Li-
DAR stream [1, 16, 59]. And the training consists of two
stages: i) First train the LiDAR stream and camera stream
with multi-view image input and LiDAR point clouds in-
put, respectively. Specifically, we train both streams fol-
lowing their LiDAR official settings in MMDetection3D
[7]; ii) Then train BEVFusion for another 9 epochs that
inherit weights from two trained streams. And no data
augmentation (i.e., flipping, rotation, or CBGS [68]) is ap-

2Since BEVFusion doesn’t provide results on Waymo and limited com-
puting resource, we only present it on Tab. 1 and Tab. 2.

plied when multi-view image input is involved. Codebase:
https://github.com/ADLab-AutoDrive/BEVFusion.

C. More Experiments

C.1. More Results of LiDAR object failure

In the case of LiDAR object failure, we choose randomly
selecting 50% boxes and dropping the points within them
because we would think dropping all objects seemed unre-
alistic. Dropping 100% points within a bounding box also
seems extreme, hence we provide additional settings that
dropping from 0% to 100% of the number of points within
a box in Tab. 7. We can observe that, the performance has a
drastic drop from 90% to 100%, while dropping 50% points
only decreases by 1-2 points in mAP.

And we also explore the dropping probability setting in
Tab. 8, in which a trend can be observed that the perfor-
mance degradation of all methods is linear to the dropping
probability. Thus, to reduce the load of the benchmarks, we
only consider 50% possibility as the final benchmark set-
ting.

C.2. Robust Finetuning

Though the main contribution of this work is to provide
a systematic overview of different aspects of the perception
system and construct a robustness benchmark, we nonethe-
less provide a simple yet effective baseline method, robust-
ness finetuning, to improve the robustness of fusion method.
We select the MVX-Net to study the effectiveness of our
method, as it has the most balanced LiDAR and camera ro-
bust performance.

Study the individual noisy case of robustness finetun-

ing. We provide a simple baseline method by treating our
toolkit as a data augmentation method to enrich the train-
ing data as the first attempt to improve the robustness of
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Approach Aug Lidar Camera

PC mPR R Stuck FOV Object Stuck Missing Calib Occlusion

nuScenes-R (mAP / NDS)

MVX-Net [42]

None 61.0 / 66.1 37.7 / 53.2 0.62 / 0.81 35.2 / 51.4 17.6 / 43.1 34.0 / 51.1 48.3 / 58.8 32.7 / 50.6 50.8 / 59.9 45.5 / 57.6
LiDAR-stuck 58.4 / 64.2 35.6 / 51.5 0.61 / 0.80 39.1 / 52.1 17.8 / 42.8 34.2 / 51.4 42.4 / 54.9 28.2 / 47.6 46.6 / 56.9 41.0 / 54.8

FOV 54.2 / 59.1 33.9 / 49.9 0.63 / 0.84 33.3 / 49.5 18.4 / 44.0 30.3 / 47.4 41.4 / 50.8 27.7 / 47.0 45.7 / 56.0 40.5 / 54.9
Object 56.8 / 60.9 36.5 / 51.4 0.63 / 0.84 39.1 / 52.1 17.8 / 42.8 33.1 / 49.9 44.3 / 53.7 29.9 / 48.5 48.2 / 57.5 42.8 / 55.1

Camera-stuck 58.6 / 64.7 37.9 / 53.2 0.65 / 0.82 31.0 / 48.9 17.2 / 42.9 32.7 / 50.0 51.3 / 60.4 35.2 / 51.8 52.0 / 60.9 45.7 / 57.6
Missing 60.9 / 66.0 40.1 / 54.4 0.66 / 0.82 34.9 / 51.1 18.3 / 43.6 34.1 / 50.8 48.7 / 59.1 45.1 / 57.1 51.1 / 60.2 48.2 / 58.9

Calib 60.0 / 65.4 38.6 / 53.6 0.64 / 0.82 33.6 / 50.3 17.8 / 43.3 33.6 / 50.7 50.0 / 59.6 34.6 / 51.3 54.9 / 62.2 45.8 / 57.6

Table 9. The study of the individual noisy case for robustness finetuning.

Approach Modality
Overall Lidar Camera

PC mPR R mPR R mPR R

nuScenes-R (mAP / NDS)

MVX-Net [42] LC 61.0 / 66.1 37.7 / 53.2 0.62 / 0.81 26.4 / 47.3 0.43 / 0.72 44.3 / 56.7 0.73 / 0.86
MVX-Net + finetune LC 59.4 / 65.0 40.9 / 54.8 0.69 / 0.84 24.6 / 46.1 0.41 / 0.71 49.1 / 59.2 0.83 / 0.91

Waymo-R(L2 mAP / L2 mAPH)

MVX-Net [42] LC 59.7 / 54.1 44.3 / 40.1 0.74 / 0.74 28.3 / 25.5 0.47 / 0.47 56.4 / 51.0 0.94 / 0.94
MVX-Net + finetune LC 59.5 / 54.0 47.7 / 43.1 0.80 / 0.80 27.8 / 25.2 0.47 / 0.47 57.6 / 52.1 0.97 / 0.96

Table 10. Robust finetuning results of MVX-Net.

performance. Specifically, we use the toolkit to transform
the training data. We first analyze the effects of each indi-
vidual transformation, as shown in Tab. 9, in which rows
represent models finetuned on different augmentations. It’s
worth noticing that the transformation of camera lens occlu-
sion case is not included during finetuning stage, since the
masks for simulating the occlusion is only available during
validation.

From Tab. 9, we can find that, most of the models achieve
the best performance on the transformation they are fine-
uned on, but the models do not generalize to other types
of noisy cases well. And it’s worth noting that the model
fineuned with missing case also achieves the best perfor-
mance on occlusion case, which is consistent with previ-
ous works [13,34], demonstrating that cameras dropout im-
proves robustness against camera input corruption. Addi-
tionally, finetuning models with noisy transformation di-
rectly degrades the performance on clean data. Moreover,
compared with MVX-Net baseline trained on clean data,
finetuning with each noisy LiDAR data decreases the aver-
age performance mPR, while finetuning with noisy camera
data improves it. We hypothesize the reason is that the noisy
LiDAR data brings wrong supervision during training and
the fusion mechanism heavily relies on the LiDAR input.

A simple baseline to improve the robustness. From the
practice in Tab. 9, we discover that transforming all data into
the noisy format will significantly decrease the performance
on the clean setting. To this end, we propose an augmenta-
tion policy with two cascaded probabilities for training: i)
the augmentation probability pa, decides whether to apply

augmentation on the original data; ii) the probability distri-
bution po, decides the probability for a certain augmentation
from all robustness cases. As for existing fusion methods
like MVX-Net, the LiDAR modality is the main modality
and the camera modality is auxiliary. Thus, the sampling
probabilities of noisy LiDAR transformations are set to be
zero and the sampling probabilities of remaining noisy cam-
era transformations, i.e., camera-stuck, missing of camera
input and noisy calibration, are set to be 1/3. And the aug-
mentation probability pa is set to 0.5.

We report the results in Tab. 10. We can observe that,
though applying such robustness training slightly deterio-
rates the performance on the clean dataset, it moderately
improves the robustness, where the mean robustness R im-
proves from 0.62 and 0.81 to 0.69 and 0.84 in terms of mAP
and NDS on nuScenes-R , and from 0.74 to 0.80 in terms
of L2 mAP and mAPH on Waymo-R. However, we can still
see a large gap between the robust benchmark and the clean
ones, evidencing there is an actual research gap in this re-
search direction.

C.3. A Simple Analysis of Late Fusion

Though the late fusion methods are not the ideal research
direction in the future due to the complex post-processing
technique. We nonetheless provide an analysis of non-deep-
learning fusion strategies, simply splices results before
non-maximum suppression(NMS) and weighted bounding
boxes fusion [43]. We consider LSS [34] with Dual-Swin-
Tiny [23] as our camera branch and PointPillars [16] as our
LiDAR branch and 3D detection head. Not surprisingly,



Approach Single-Modality Multi-Modality

Camera(C) LiDAR(L) Fusion(LC) Fusion w/o LiDAR(C) Fusion w/o Camera(L)

UVTR [17] 31.4 / 40.1 60.8 / 67.6 65.4 / 70.2 4.0 / 22.0 (-68.7%) 57.5 / 65.8 (-6.3%)
BEVFusion(MIT) [27] 33.3 / 40.2 64.7 / 69.3 68.5 / 71.5 0.4 / 9.8 (-86.3%) 62.5 / 68.1 (-4.8%)
BEVFusion(Alibaba) [24] 22.7 / 26.1 64.9 / 69.9 67.9 / 71.0 0.1 / 1.7 (-97.6%) 56.2 / 63.5 (-10.5%)
FUTR3D [6] 31.3 / 40.1 60.8 / 67.6 64.2 / 68.0 0.2 / 10.5 (-84.6%) 25.3 / 44.8 (-34.1%)

Table 11. Robustness against missing modality. Fusion w/o LiDAR represents the scenario when LiDAR modality is severely missing,
while Fusion w/o Camera means missing camera modality.

Approach Modality nuScenes (mAP / NDS)

PointPillars [16] L 32.7 / 48.9
Lift-Splat-Shoot (LSS) [34] C 23.0 / 31.2
Simply splices results before NMS LC 35.7 / 47.6
Weighted boxes fusion [43] LC 38.7 / 50.9
BEVFusion [24] LC 53.5 / 60.4

Table 12. A simple analysis of late fusion strategies.

compared to deep fusion method, simple late fusion strategy
achieved unsatisfactory fusion results as shown in Tab. 12.

C.4. Robustness Against Missing Modality

Figure 9. Robustness against missing modality. Fusion w/o Li-
DAR represents the scenario when LiDAR modality is severely
missing, while Fusion w/o Camera means missing camera modal-
ity.

From Tab. 2, we can see that the robustness of models
against noisy LiDAR cases is worse than the one against
noisy camera cases. Here we further explore the robust-
ness of more advanced fusion methods [6,17,24,27] against
more severe robust scenarios, i.e., missing modality, in
Tab. 11 and Fig. 9. And the values reflect mAP/NDS
on nuScenes dataset. As shown, most of these concur-
rent fusion methods still maintain somehow good perfor-
mance when camera modality is missing. When it comes to
severely missing LiDAR modality, all of them almost result
in failure. Moreover, when one modality is severely miss-
ing, the performances of fusion models are even worse than

that of the single modality model of the other.
The fusion mechanism of most of the current popular

fusion-based 3D object detection methods rely heavily on
accurate LiDAR input. Thus, if the LiDAR sensor input is
missing, current fusion methods fail to produce meaningful
results. And in general, we believe an ideal sensor fusion
framework should be able to do the following: i) given both
modality data, it can significantly surpass the performance
of single modality methods; ii) when there is a disruption
of one modality, the performance should not be worse than
the single modality method of the other. Currently, this ap-
proach is handled by using comprehensive post-processing
techniques of the perception system. We hope our robust
benchmark can be a tool for the community to fully exploit
this research direction to develop truly robust methods that
can be deployed on realistic vehicles.
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