
Speed Is All You Need: On-Device Acceleration of Large Diffusion Models via
GPU-Aware Optimizations

Yu-Hui Chen∗, Raman Sarokin∗, Juhyun Lee, Jiuqiang Tang,
Chuo-Ling Chang, Andrei Kulik, Matthias Grundmann

Google LLC
1600 Amphitheatre Parkway Mountain View, CA 94043

yuhuic,sorokin,impjdi,jqtang,chuoling,akulik,grundman@google.com

Abstract

The rapid development and application of foundation
models have revolutionized the field of artificial intelli-
gence. Large diffusion models have gained significant at-
tention for their ability to generate photorealistic images
and support various tasks. On-device deployment of these
models provides benefits such as lower server costs, offline
functionality, and improved user privacy. However, com-
mon large diffusion models have over 1 billion parameters
and pose challenges due to restricted computational and
memory resources on devices. We present a series of im-
plementation optimizations for large diffusion models that
achieve the fastest reported inference latency to-date(under
12 seconds for Stable Diffusion 1.4 without INT8 quanti-
zation for a 512 × 512 image with 20 iterations) on GPU-
equipped mobile devices. These enhancements broaden the
applicability of generative AI and improve the overall user
experience across a wide range of devices.

1. Introduction

The success of foundation models attributed to the
advent and refinement of Generative Adversarial Net-
works (GANs) [9, 13, 18] and Variational Autoencoders
(VAEs) [14], which have emerged as the leading approaches
for creating high-quality images. Recently, diffusion-based
generative models [11,20] that rely on the process of reverse
diffusion to reconstruct images from noise have gained
prominence in the image generation realm. One such model
is Stable Diffusion [20] that has attracted people’s attention
for its ability to generate photo-realistic images and its flex-
ibility to support various tasks, including image-editing, in-
painting, text-to-image generation, etc. Its availability have
made it a frequent inference benchmark target [12, 16].

∗These authors contributed equally to this work.

A crucial consideration for incorporating large diffusion
models into any application is the choice of where the mod-
els will be executed. On-device generative AI deployment
offers advantages such as reduced server costs, improved
scalability, offline functionality, and enhanced user privacy
due to local data processing.

Nonetheless, deploying large diffusion models like Sta-
ble Diffusion 1.4, which encompasses over 1 billion pa-
rameters, to on-device presents difficulties due to restricted
computational and memory resources. In the absence of
meticulous design and implementation, running these mod-
els on-device can lead to increased latency stemming from
the iterative denoising process and excessive memory con-
sumption. Although several successful endeavors [12, 16]
have been made to deploy Stable Diffusion to on-device,
these efforts are often limited to specific devices or chipsets
and leave ample room for improving inference latency.
Overcoming this constraint will further broaden the appli-
cability of Generative AI and improve the overall user ex-
perience across a wider array of devices.

In this paper, we introduce implementation enhance-
ments for large diffusion models, achieving state-of-the-art
inference latency performance of executing Stable Diffu-
sion 1.4 on GPU-powered devices (11.5 seconds on Sam-
sung S23 Ultra to generate a 512× 512 image with 20 iter-
ations).

2. Related Work

Image generation has garnered significant research in-
terest, particularly in recent years, with the advent of
GANs [9]. GANs consist of two neural networks, a gen-
erator and a discriminator, that compete with each other to
create realistic images [13, 18]. While GANs demonstrate
the capability to generate high resolution images with good
perceptual quality [4], it suffers from the difficulty to train
effectively [2]. VAEs [14] emerged as a popular generative
model, utilizing probabilistic graphical models to generate

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4651



images through latent space representation, enabling effi-
cient synthesis but with lower sample quality than GANs.

Denoising Diffusion Probabilistic Model (DDPM) [11]
marked a significant milestone in the development of
diffusion-based generative models. DDPM demonstrated
the potential of these models to generate high-quality im-
ages through a series of iterative noise-removal steps. More
recently, Stable Diffusion [20] emerged as a prominent
diffusion-based model, attracting interest due to its capabil-
ity to generate photorealistic images. Its open accessibility
has further encouraged the community to extend and build
upon the model [22, 26].

On-device model inference acceleration has gained in-
creasing attention as it offers several advantages over tradi-
tional server-based approaches, including reduced latency,
enhanced privacy, and improved scalability. The softmax
operation, common in deep learning, has prompted opti-
mization efforts due to its complexity, leading to various ac-
celeration approaches [5, 8, 25]. Winograd Convolution [1]
was introduced to optimize convolutional computation by
reducing multiplications, resulting in faster processing and
lower power consumption, particularly on GPUs.

The Transformer architecture [23] has been quite effec-
tive and popular, triggering active research on accelerating
the attention mechanism. Reformer [15] aims to minimize
computational expense using sparse approximation, while
other works [3, 6] employ low-rank or a mixture approxi-
mation methods. In contrast, FlashAttention [7] is an exact
attention algorithm that considers hardware settings for im-
proved performance.

3. GPU-Aware Optimizations

Our primary emphasis is on the task of generating im-
ages from textual descriptions using large diffusion models.
While the following description is discussing our proposed
optimizations for the specific architecture of Stable Diffu-
sion, those optimizations will readily apply to other large
diffusion models. When performing inference with a text
prompt, the process involves guiding the reverse diffusion
process using additional conditioning based on the desired
textual description. Specifically, the main components of
Stable Diffusion include: text embedder, noise generation,
denoising neural network, and image decoder, as shown in
Figure 1.

• Text Embedder: Utilizes the CLIP model [21] to
encode the text prompt, y, resulting in a high-
dimensional embedding vector, τθ(y), that encapsu-
lates the semantics of the input prompt. This embed-
ding is employed as input to the denoising neural net-
work, furnishing conditional guidance for the reverse
diffusion process.

Figure 1. Schematic representation of the primary components in
Stable Diffusion and their interactions.

• Noise Generation: Supplies the random noise in the
latent space, z, which functions as the initiation point
for the reverse diffusion process.

• Denoising Neural Network: The network is designed
to approximate conditional distributions of the form
p(z|y), utilizing a conditional denoising autoencoder,
εθ(zt, t, τθ(y)). Each iteration t employs the UNet ar-
chitecture [21]. The cross-attention mechanism [23] is
adopted to operate on the latent space and the text em-
bedding vector, predicting a denoised version of the
input zt during the iterative procedure.

• Image Decoder: The reverse diffusion process is con-
ducted in the latent space: z = E(x) ∈ Rh×w×c,
where x ∈ RH×W×3 represents the RGB image
space. Once the process is completed, the image de-
coder D is used to reconstructs the RGB image from
the latent vector: x̂ = D(ẑ).

In this section, we introduce a set of optimization tech-
niques aimed at enhancing the performance of running the
diffusion-based model.

3.1. Specialized Kernels: Group Norm and GELU

Group normalization (GN) [24] is implemented through-
out the UNet architecture as described in [11]. This normal-
ization technique works by dividing the channels of a fea-
ture map into smaller groups and normalizing each group
independently, making GN less dependent on the batch size
and more suitable for a wide range of batch sizes and net-
work architectures. Each feature value xi is normalized by

4652



the group mean µg and variance σg of the group it belongs
to using Eq. 1.

x̂i =
1

σg
(xi − µg) (1)

Rather than executing the aforementioned operations,
which involves “reshape”, “mean”, “variance”, “normal-
ize”, sequentially, we devise a unique kernel in the form
of a GPU shader that executes all of them in a single GPU
command without any intermediate tensors.

The Gaussian Error Linear Unit (GELU) [10] serves as
the prevalent activation function in the model, containing
numerous numerical computations such as multiplications,
addition, and the Gaussian error function, as shown in Eq. 2.
We implemented a dedicated shader to consolidate these nu-
merical computations and its accompanied split and multi-
plication ops, enabling their execution in a single draw call.

GELU(x) =
x

2
[1 + erf(x/

√
2)] (2)

3.2. Enhancing Attention Module Efficiency

The text/image transformer within Stable Diffusion fa-
cilitates modeling the conditional distribution P (z|τθ(y)),
which is crucial for the text-to-image generation task.
Nonetheless, the self/cross-attention mechanism encounters
difficulties with long sequences, owing to their quadratic
time and memory complexity. In this section, we introduce
two possible optimizations designed to alleviate these com-
putational bottlenecks.

3.2.1 Partially Fused Softmax

The attention computation is adopted in the intermediate
layers of the UNet

Attention(Q,K, V ) = softmax(
QKT

√
d

)× V (3)

where Q ∈ RN×d;K,V ∈ RM×d, corresponding to the
query, key and value matrices as described in the original
paper [20] and typically N,M are much larger than d.

The softmax operation performed on the matrix A =
QKT

√
d
∈ RN×M can be partitioned into two steps: 1) reduc-

tion operations; 2) element-wise operations. The reduction
operations refer to the calculation of the maximum values
of each row in A and its modified exponential sum S, as
in Eq.4. Subsequently, the element-wise operation is em-
ployed to normalize the values in A utilizing the vectors L
and S.

L = [max
j
aij ], S = [

∑
j

exp (aij −max
k

aik)] ∈ RN (4)

Figure 2. Our optimized softmax implementation within the atten-
tion block. The upper diagram depicts the original implementation
applying softmax directly to the matrix QKT

√
d

; the lower diagram
demonstrates the modified modules (highlighted in red).

In order to avoid executing the whole softmax computa-
tion on the large matrix A, we implemented a GPU shader
for the reduction operations to compute the L and S vec-
tors, resulting in a tensor of size N × 2. The element-wise
softmax computation is then fused with the following ma-
trix multiplication involving matrix V . This approach sub-
stantially reduces the memory footprint of the intermediate
tensors and overall latency (Figure 2).

It is crucial to highlight that the parallelism of the com-
putation mapping from A to L, S is limited, as the number
of elements in the resulting tensors is considerably smaller
than those in the input tensor A. To enhance parallelism
and further decrease latency, we partition the reduction op-
erations into multiple stages by grouping the elements in A
into blocks. The calculations are performed on each block,
which are then reduced to the final result. By employing
meticulously designed threading and memory cache man-
agement, this multi-stage implementation can be finished
with a single GPU command and leads to additional latency
reduction.

3.2.2 FlashAttention

There are many approximate attention methods [3,6,15] that
attempt to improve the attention module latency by sacri-
ficing model quality for reduced computational complex-
ity. In contrast, FlashAttention [7] is an IO-aware, exact
attention algorithm that utilizes tiling to minimize memory
reads/writes between GPU high bandwidth memory (HBM)
and on-chip SRAM. This approach results in fewer HBM
accesses than standard attention, making it optimal for a
range of SRAM sizes and improving overall efficiency.

Although FlashAttention seeks to enhance latency and
reduce global memory read/write, its kernel is highly
register-intensive. Consequently, we selectively employ this
technique for attention matrices with dimension d = 40 on
Adreno and Apple GPUs. In other cases, the partially fused
softmax described in the previous section is utilized.

4653



Samsung S23 Ultra iPhone 14 Pro Max
Latency Tensor Weight Latency Tensor Weight

Baseline 1098 105 1640 1554 105 1640
+Opt. Softmax 908 105 1640 1475 105 1640
+S-GN/GELU 755 85 1640 1382 85 1640

+FlashAttn. 660 80 1639 1309 80 1639
+Winograd(All) 525 84 2093 1043 84 2093

Table 1. Benchmark results for different devices with each optimization enabled. The numbers in the “Latency” column are in milliseconds
and the numbers in the “Tensor” and “Weight” columns are in megabytes, representing the memory usage at runtime for intermediate
tensors and at initialization time for model weights/biases. See text for details.

3.3. Winograd Convolution

Winograd convolution transforms the convolution oper-
ation into a series of matrix multiplications. The key in-
sight is that by carefully choosing the transformation ma-
trices, many of the required multiplications can be reduced,
leading to a more efficient computation. However, it also
introduces increased memory consumption and numerical
errors, particularly when using larger tile sizes.

The backbone of Stable Diffusion relies heavily on 3×3
convolution layers, especially in the image decoder, where
they comprise over 90% of the layers. As a result, we delved
into an analysis, as depicted in Tab. 2, to explore the poten-
tial benefits of employing Winograd with varying tile sizes
on the 3 × 3 kernel convolutions. Our findings led us to
select a 4 × 4 tile size, as it provides an optimal balance
between computational efficiency and memory utilization.
Additionally, we strategically applied Winograd based on
heuristic rules, only where it would produce profitable re-
sults, to further maximize its efficacy.

Tile size Flops Saving Tensor Weight

2× 2 2.25x 4x 1.77x
4× 4 4x 2.25x 4x
6× 6 5.06x 1.8x 7.12x
8× 8 5.76x 1.56x 11.12x

Table 2. The impact of employing Winograd convolution with
varying tile sizes in comparison with the standard 3×3 convolution
implementation. “Flops Saving” indicates the factor by which the
algorithm reduces the number of flops. The columns “Tensor” and
“Weight” represent the multiple by which the memory for hosting
intermediate tensors and model weights increases, respectively.

4. Experiment
To evaluate the improvement, we carried out a set of

benchmarks on various devices, as displayed in Tab. 1. We
chose the following target devices (and their GPU chip):
Samsung S23 Ultra (Adreno 740), and iPhone 14 Pro Max
(A16). As the denoising neural network, UNet, is the

most computationally demanding component, we provide
the latency figures for executing UNet for a single itera-
tion with 512 × 512 image resolution, measured in mil-
liseconds. Additionally, we document the memory usage
generated during runtime for the intermediate tensors in the
“Tensor” column and the memory allocated for holding the
model weights in the “Weight” column, both quantified in
megabytes. Note that the memory manager [17] optimizes
the memory footprint by reusing the buffers for intermedi-
ate tensors.

The table’s first row displays the result that follows the
implementation in the public Github repository [19] us-
ing our internal OpenCL kernels without any optimiza-
tions. Rows 2 through 5 sequentially enable each optimiza-
tion individually: “Opt. Softmax” refers to the partially
fused softmax and optimized softmax reduction step (sub-
section 3.2; “S-GN/GELU” relates to the specialized ker-
nels for Group Normalization and GELU (subsection 3.1;
“FlashAttn.” pertains the FlashAttention implementation
(subsection 3.2); “Winograd(All)” employs the Winograd
convolution (subsection 3.3). Note that each row includes
all optimizations of its preceding rows, making the last row
our final optimization numbers.

It is evident that latency decreases incrementally as each
optimization is activated. Notable overall latency reduc-
tions in comparison to the baseline are observed on both de-
vices: Samsung S23 Ultra (−52.2%); iPhone 14 Pro Max
(−32.9%). Additionally, we assessed the end-to-end la-
tency (from text input to decoded image output) on the Sam-
sung S23 Ultra for 20 denoising iterations steps to generate
a 512 × 512 pixel image, achieving a state-of-the-art result
under 12 seconds.

5. Conclusion

In this paper, we presented a set of optimizations that
collectively attain groundbreaking latency figures for exe-
cuting large diffusion models on various devices. These im-
provements expand the model’s versatility and enhance the
overall user experience across an extensive array of devices.

4654



References
[1] Syed Asad Alam, Andrew Anderson, Barbara Barabasz, and

David Gregg. Winograd convolution for deep neural net-
works: Efficient point selection. CoRR, abs/2201.10369,
2022. 2

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou.
Wasserstein gan, 2017. 1

[3] Iz Beltagy, Matthew E. Peters, and Arman Cohan.
Longformer: The long-document transformer. CoRR,
abs/2004.05150, 2020. 2, 3

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis,
2019. 1

[5] Gian Carlo Cardarilli, Luca Di Nunzio, Rocco Fazzolari,
Daniele Giardino, Alberto Nannarelli, Marco Re, and Ser-
gio Spanò. A pseudo-softmax function for hardware-based
high speed image classification. Sci. Rep., 11(1):15307, July
2021. 2

[6] Krzysztof Choromanski, Valerii Likhosherstov, David Do-
han, Xingyou Song, Andreea Gane, Tamás Sarlós, Peter
Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Belanger, Lucy J. Colwell, and Adrian Weller. Re-
thinking attention with performers. CoRR, abs/2009.14794,
2020. 2, 3

[7] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. Flashattention: Fast and memory-efficient
exact attention with io-awareness, 2022. 2, 3

[8] Xue Geng, Jie Lin, Bin Zhao, Anmin Kong, Mohamed
M. Sabry Aly, and Vijay Chandrasekhar. Hardware-aware
softmax approximation for deep neural networks. In Com-
puter Vision – ACCV 2018: 14th Asian Conference on Com-
puter Vision, Perth, Australia, December 2–6, 2018, Revised
Selected Papers, Part IV, page 107–122, Berlin, Heidelberg,
2018. Springer-Verlag. 2

[9] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks, 2014. 1

[10] Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities
and stochastic regularizers with gaussian error linear units.
CoRR, abs/1606.08415, 2016. 3

[11] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. CoRR, abs/2006.11239, 2020. 1,
2

[12] Jilei Hou and Ziad Asghar. World’s first on-device demon-
stration of stable diffusion on an android phone, 2023. 1

[13] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
CoRR, abs/1812.04948, 2018. 1

[14] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes, 2022. 1

[15] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Re-
former: The efficient transformer. CoRR, abs/2001.04451,
2020. 2, 3

[16] Atila Orhon, Michael Siracusa, and Aseem Wadhwa. Stable
diffusion with core ml on apple silicon, 2022. 1

[17] Yury Pisarchyk and Juhyun Lee. Efficient memory manage-
ment for deep neural net inference. CoRR, abs/2001.03288,
2020. 4

[18] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-
vised representation learning with deep convolutional gen-
erative adversarial networks. In Yoshua Bengio and Yann
LeCun, editors, 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, 2016. 1

[19] Robin Rombach. Github: Compvis/stable-diffusion, 2022. 4
[20] Robin Rombach, Andreas Blattmann, Dominik Lorenz,

Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. CoRR, abs/2112.10752,
2021. 1, 2, 3

[21] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
Net: Convolutional networks for biomedical image segmen-
tation. In Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2015, pages 234–241. Springer In-
ternational Publishing, 2015. 2

[22] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven
generation, 2023. 2

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and
Illia Polosukhin. Attention is all you need. CoRR,
abs/1706.03762, 2017. 2

[24] Yuxin Wu and Kaiming He. Group normalization. CoRR,
abs/1803.08494, 2018. 2

[25] Bo Yuan. Efficient hardware architecture of softmax layer
in deep neural network. In 2016 29th IEEE International
System-on-Chip Conference (SOCC), pages 323–326, 2016.
2

[26] Lvmin Zhang and Maneesh Agrawala. Adding conditional
control to text-to-image diffusion models, 2023. 2

4655


