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Abstract

As the saying goes, sometimes less is more – and when it
comes to neural networks, that couldn’t be more true. Enter
pruning, the art of selectively trimming away unnecessary
parts of a network to create a more streamlined, efficient
architecture. In this paper, we introduce a novel end-to-
end pipeline for model pruning via the frequency domain.
This work aims to shed light on the interoperability of in-
termediate model outputs and their significance beyond the
spatial domain. Our method, dubbed Common Frequency
Domain Pruning (CFDP) aims to extrapolate common fre-
quency characteristics defined over the feature maps to rank
the individual channels of a layer based on their level of
importance in learning the representation. By harnessing
the power of CFDP, we have achieved state-of-the-art re-
sults on CIFAR-10 with GoogLeNet reaching an accuracy
of 95.25%, that is, +0.2% from the original model. We also
outperform all benchmarks and match the original model’s
performance on ImageNet, using only 55% of the train-
able parameters and 60% of the FLOPs. In addition to
notable performances, models produced via CFDP exhibit
robustness to a variety of configurations including pruning
from untrained neural architectures, and resistance to ad-
versarial attacks. The implementation code can be found at
https://github.com/Skhaki18/CFDP.

1. Introduction
Convolutional Neural Networks (CNNs) have emerged

as a popular technology in computer vision, enabling break-
throughs in many fields including image classification [44],
segmentation [36], and detection [11]. This surge in inter-
est led to the development of modern-day architectures that
incorporate novel features including skip-connections [17],
concatenations [23], and inception modules [44] that vastly
outperform traditional models. Unfortunately, these new in-
novations have given rise to a significantly increased model
size and energy consumption thus limiting the global com-
munity’s ability to effectively leverage these powerful tools

in various domains. This poses a significant challenge to
the widescale adoption of newer CNN architectures in the
real world where applications generally enforce energy con-
straints and real-time processing. As a result, several solu-
tions were proposed to tackle this issue including quanti-
zation [5], low-rank factorization [8], knowledge distilla-
tion [21], and pruning [27].

Network pruning has emerged as a particularly promis-
ing approach over various domains [15] and can be fur-
ther divided into two categories: unstructured pruning and
structured pruning. Unstructured pruning aims to reduce
the total number of trainable parameters in a model by
masking individual elements of the weight matrix, effec-
tively obtaining a sparse representation [9, 10]. The ma-
jor drawback of this method is that in order to leverage
the acceleration and compression from sparse matrix com-
putations, dedicated hardware/libraries must be provided,
hence limiting the scope of application [14]. On the flip
side, structured pruning [25, 48, 52] doesn’t suffer from the
same deficiency as the entire filter (or equivalently chan-
nel) is being removed from the layer, thus resulting in faster
inferencing and training time as well as lower memory con-
sumption [34]. Despite the advantages of structured prun-
ing, there still exists the open problem of developing an ef-
fective saliency metric that can rank the individual chan-
nels of a layer based on their level of importance in learning
the representation. Several works have attempted to solve
this problem using either the model weights or feature maps
to determine their respective importance [15, 27, 30]. One
work in particular, FDNP [35], leveraged the frequency do-
main interpretation of the convolutional operator to develop
its own saliency metric. Despite the compression brought
about by these methods, they still suffer from either reduced
performance or additional labor costs [30].

Inspired by these works, we introduce our novel prun-
ing metric that leverages a combination of information
in the frequency and spatial domains to achieve compet-
itive performance on state-of-the-art (SOTA) benchmarks
[19, 20, 24, 27, 30, 32, 37, 46, 50] without the intensive labor
costs of iteration. These benchmarks were selected based
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on consistent choices of datasets and performance metrics.
Our method, Common Frequency Domain Pruning, dubbed
CFDP, was benchmarked for image classification on the
CIFAR-10 [26] and ImageNet [7] datasets across a variety
of architectures. Additionally, we conduct exhaustive test-
ing through ablation studies to examine the robustness of
our method. The results of our experiments demonstrate
the dominant performance of CFDP in terms of accuracy,
acceleration, and robustness across different settings. In
summary, our main contributions are threefold:

• We propose a novel pruning metric rooted in
frequency-based traditional signal processing tech-
niques to more effectively estimate the performance of
each channel in a CNN.

• Our novel pruning metric achieves state-of-the-art per-
formance across all benchmarks, including ImageNet,
with a high cross-architecture generalization and supe-
rior results over an extended range of pruning.

• Our framework for pruning offers increased robustness
including the ability to generalize well on untrained
neural networks and produce models that are more re-
sistant to adversarial attacks.

2. Related work
2.1. Model Compression

Structured Pruning.
Structured pruning aims to find a subset of a CNN archi-

tecture that contains fewer filters (herein referred to as chan-
nels) while maintaining comparable accuracy. As opposed
to unstructured pruning, structured pruning doesn’t suffer
from the problem of producing sparse matrices, which al-
lows it to effectively utilize the BLAS library. Previous
works [27, 28, 30] have explored metrics for evaluating the
importance of filters via their corresponding L1-Norm, av-
erage ranks, or sparsity respectively. Alternatively, one
work explored combining pruning into a training pipeline
with Soft Pruning [18], where pruned filters had a possi-
bility of being updated during training. Finally, another
work, named Filter Pruning Geometric Median [19], found
that the ideal filters satisfied large norm deviation and small
minimum norm.

Frequency Domain Representation. It is well-known
that there is spatial redundancy within most filters in a CNN
[35]. Consequently, recent works have started to explore
training, feature extraction, and pruning in the frequency
domain. For instance, [39] trained CNNs directly in the fre-
quency domain, which significantly accelerated the train-
ing time. Other works [13, 47] use the Discrete Cosine
Transform (DCT) on the YCbCr color space of the origi-
nal input image for feature extraction. In [47], the authors

showed that learning in the frequency domain achieved su-
perior image information preservation in the pre-processing
stage as opposed to its spatial domain counterpart. The au-
thors in [45] used the K-means algorithm to extract similar
components between filters in the frequency domain. Fi-
nally, [4] extended filter pruning to 3D CNNs to eliminate
the temporal redundancy using the DCT.

Discussion. The collection of art shows a diversified
pool of research wherein concepts from other domains are
applied in an effort of improving computer vision mod-
els. In the domain of pruning, current methods suffer from
large labor costs due to additional hyperparameter tunings
and more complex training pipelines; as a result, they tend
to exhibit inferior acceleration/performance. Our approach
leverages information from feature maps by jointly consid-
ering its spatial and frequency information, leading to better
acceleration, reduced labor costs, and more robust perfor-
mance.

3. Network Pruning via the Frequency Domain
3.1. Notations

Let’s assume a standard CNN model contains N con-
volutional layers indexed with i where i ∈ {0, .., N − 1}.
For the ith layer, we define the weight parameter by Wi ∈
RDi×Ci×Ki×Ki , where Di and Ci represent the input and
output channels of the ith convolutional layer respectively,
while Ki is the corresponding kernel size. Under the defi-
nition of filter pruning, we can extend the notation to define
two sets: Pi and Si to represent the indices of pruned and
saved output channels for layer i. Thus we have |Pi| = Ti

and |Si| = Ci − Ti where Ti is the number of channels
pruned in layer i. For formality, we can state that there are
a finite number of channels per layer, of which each chan-
nel can either be pruned or saved – analytically we have
Pi ∩ Si = ∅. For the sake of simplicity, we omit the
batch dimension in defining the feature maps. We define
the intermediate feature maps for layer i on a single image
as Fi ∈ RCi×Mi×Mi , where Mi represents the width and
height of the square feature map. To simplify the notation,
Fi,j references the intermediate feature map from the jth
channel in the ith layer. Finally, with respect to our pro-
posed methodology, we define D(·) as the discrete cosine
transform operator to convert any 2D time-domain signal
into the frequency domain. In particular, when converting a
feature map through the D(·) operator, it retains its dimen-
sional configuration but exists in a different space of anal-
ysis. We denote the frequency representation of a feature
map as F̃i ∈ RCi×Mi×Mi .

3.2. CFDP

In this work, we introduce a novel pruning metric defined
over the intermediate feature maps of a CNN. Our motiva-
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tion for defining the metric on the feature maps stems from
the idea that features maps incorporate an additional data-
centric component into the pruning algorithm making it bet-
ter tuned for the specific model and dataset, as similarly
seen in recent works [33, 51, 52].

We begin by denoting the saliency metric, a measure of
importance, as L, wherein we can formulate the pruning
optimization problem, on the basis of a single feature map
as:

min
1i,j

N−1∑
i=0

Ci−1∑
j=0

1i,j [L(Fi,j)] (1)

s.t.

Ci−1∑
j=0

1i,j = Ti (2)

where 1i,j is an indicator function that is 1 if j ∈ Pi,
else 0.

Before proceeding in resolving the optimization, we note
that several works [22,29] have shown the importance of av-
eraging saliency metrics over a large batch of images. We
can integrate this into our optimization problem by intro-
ducing the expectation value over the set of images. Specif-
ically, we arrive at the following notation:

L(Fi,j) ≡ Eb∼P (b)[L(Fi,j(b))] (3)

where the input to L is of dimension [1× 1×Mi ×Mi],
and it represents the feature map derived from image b sam-
pled from the distribution P (b) for layer i and channel j.
For easier computation, we define P (b) to be an empiri-
cally determined distribution of the data. Finally, solving
this non-convex minimization problem can be executed by
pruning all Ti filters in Pi for each layer i. In order to assign
channel j into a particular set, we use the saliency metric
L(·) on its respective feature map. Designing this saliency
metric is an open problem, and in this paper, we introduce
a novel approach to the design of this metric by incorporat-
ing traditional signal processing techniques. Specifically,
we begin with understanding feature map representations in
the frequency domain.

Analzying Feature Map Information in the Fre-
quency Domain.

As seen in recent works [51], there has been a grow-
ing trend of deriving channel-wise performance correlation
with its spatial output - the respective feature map. We ar-
gue, however, that there exists more information, by trans-
forming this map into the frequency domain.

Before analyzing the frequency transformations, we in-
vestigate some preprocessing to augment the information
concentration in our feature maps. Specifically, we incorpo-
rate an additional level of data-centric design into the pre-
processing of our frequency representation. Particularly,

since the datasets used in this paper include CIFAR10 [26],
and ImageNet [7]), we are guaranteed that the images are
derived from a subset of natural images. In particular, natu-
ral images tend to exhibit the majority of their information
in the lower frequencies of the spectrum [6]. Ultimately we
leverage this information into the design of a suitable filter
to isolate the main information from background noise in
the feature maps. Since the majority of information is in the
low-frequency range, we use a Gaussian filter, where g(·)
is the Gaussian filter operator applied element-wise on the
input.

g(x, y;σ) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
(4)

Next, we investigated the two common methods to trans-
form any N -dimensional (discrete) signal from the spatial
domain into the frequency space: Discrete Fourier Trans-
form (FFT/DFT) [2] and the Discrete Cosine Transform
(DCT) [1]. In this paper, we chose to implement our trans-
formations via the DCT for two reasons: (1) The DFT fol-
lows an assumption of signal periodicity wherein it uses a
sawtooth basis function for analysis resulting in a strong
presence of high-frequency components – however in the
cases of natural images, as are those in our datasets, period-
icity is too strict of an assumption to describe the distribu-
tion of data [40]. (2) The DFT occupies twice as much space
complexity by storing the phase (imaginary) components of
a signal which aren’t necessarily valuable for determining
the level of information in an image [40]. In particular, im-
age compaction is the process of storing the most important
information in an image, and it is predominantly run using
the DCT [3, 16, 43]. For these reasons, we have selected
the DCT for our domain transformation. We can now apply
the DCT to the task of determining a layer-wise ranking of
different channels.

In order to transform this representation into the fre-
quency domain, we subdivide the feature map into a set of
non-overlapping patches G with each patch being of size
Bs × Bs and |G| = 2·Mi

Bs
. From our experiments, we have

determined that Bs = 4 works best, refer to the ablation
on block size Section 4.4.3. If however, Mi < Bs which
may be the case in very deep networks, we simply treat the
entire feature map as one patch. For each patch p in the set
G, we define the DCT pixel-to-pixel encoding from spatial
into frequency domain: (x, y) −→ (u, v), considering the
Gaussian filter operator, as:

p̃u,v = D(px,y) (5)

=

Bs∑
x

Bs∑
y

cos(
(πu)(2x+ 1)

2Bs
)cos(

(πv)(2y + 1)

2Bs
)g(px,y)

(6)
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Given the processed frequency domain representation,
we can now introduce the main component to our saliency
metric LFq. This metric accounts for two phenomena in the
frequency domain: the magnitude of representation, and the
distribution of frequencies.

Magnitude of Representation. In the frequency do-
main, we can assign the magnitude of information con-
tained within the frequency spectrum as the spectral energy
of the DCT coefficients.

Spectrali,j =

[
Mi−1∑
w=0

Mi−1∑
h=0

[
F̃i,j,w,h

]2] 1
2

(7)

where Spectrali,j represents the spectral energy of the
jth channel in the ith layer. Thus, we are able to measure
the magnitude of representation for each channel based on
the feature map’s energy.

Distribution of Frequencies. Each sub-block in the
DCT representation, contains various frequencies, increas-
ing as we move diagonally down the block. Recognizing
that the majority of the information is in the upper triangle
(low frequencies) and that the DC component (upper left in-
dex) has the property of dominating the spectral energy, thus
it’s important to scale the energetic magnitude by how well
the information is spread over the relevant frequencies [1].
Let’s define the mean value of our frequency representation
for the ith layer and jth channel as µi,j We can calculate
this effective spread using:

Disti,j =
1

M2
i

Mi−1∑
w=0

Mi−1∑
h=0

1[F̃i,j,w,h≥µi,j] (8)

To justify the introduction of energy distributions into the
ranking metric, we empirically test its performance in Table
5. From these findings, we can conclude that although the
magnitude of representation is a core metric for information
in the domain, the distribution of frequencies can further
augment the performance.

Frequency Based Saliency Metric. Jointly considering
both magnitude and distribution, we define our frequency-
based saliency metric as:

LFq = Dist(F̃i) · Spectral(F̃i) (9)

3.3. Challenges with the Frequency only Metric

One challenge that was presented when comparing the
frequency metrics was the closeness in the ranking of the
channels. In particular, referencing Figure 1, we can see
that when sorted by LFq the overall score assignment be-
tween neighboring indices was hard to distinguish as there
are limited natural breaking points. Thus, in order to re-
inforce the rankings, but add enough disturbance to accu-
rately determine the final few channels in the saved set Si,

we introduce a regularizer to sort channels with very sim-
ilar frequency representations. In particular, we introduce
a common measure of spatial energy, dubbed LSp, derived
from the spatial representation of the feature maps. The
idea, with this regularizer, is that the majority of the chan-
nels will be selected based on the frequency domain and that
in order to distinguish the final few channels that would be
saved or pruned, the spatial domain will introduce enough
perturbation to make the correct choice. From Figure 1, it
is easy to tell that the main ranking metric is the frequency
domain, while the spatial domain has added sufficient sepa-
ration between close frequencies.

Figure 1. This figure shows the performance score for the first
layer in VGG-16-BN on CIFAR-10, using 3 methods: (1) LSp

only, (2) LFq only, and (3) LFq + λLSp (our combined metric,
where λ is introduced in Section 3.5). The channel indices have
been sorted by LF q in order to illustrate the motivation behind
incorporating spatial regularization

3.4. Space Domain Regularization

Referencing Figure 1, we can see that the scores LSp

operates on a lower scale than that of the LFq and this is
because we want the primary driver of the ranking to be de-
rived from the frequency domain, and simply use the spatial
domain for regularization. In particular, we define ranking
the metric in the spatial domain as:

Spatiali,j =

[
Mi−1∑
w=0

Mi−1∑
h=0

[Fi,j,w,h]
2

] 1
2

(10)

where Spatiali,j represents the spatial magnitude of the
feature maps in the time domain. Past works including [34]
have explored using only spatial norms for channel ranking,
however, we find this method to be inadequate as it doesn’t
accurately compare the encoded information in the feature
maps. Further, we augment our motivation with an evalua-
tion of each component of our ranking metric in the ablation
Section 4.4.1, wherein we show that it is due to the combi-
nation of our frequency metrics and a regularizer that we are
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able to truly improve the results. We can express the spatial
metric as a function of the keyword Spatial operating on
the spatial feature map.

LSp = Spatial(Fi) (11)

3.5. CFDP Ranking Metric

Finally, we conclude with the full formulation of our
ranking metric defined over the feature maps to be:

L = LFq + λLSp (12)

where λ is a hyperparameter to modulate the regularization
power of LSp We discover the value of λ = 0.03 empiri-
cally, through the ablation study in Section 4.4.2.

3.6. CFDP Framework

The CFDP framework for a single layer is visualized in
Figure 2. An initial batch of images B is sent into the net-
work, where intermediate feature maps are extracted and
converted into the inputs for both LSp and LFq. Next, the
regularizing coefficient λ is applied on the spatial loss via
the gain block and combined with the scores from the fre-
quency domain to generate the two sets Pi and Ci with
threshold Ti. This sets reconstruct the appropriate layer
layer

′

i ∈ R|Si|×Mi×Mi .

4. Experiments
4.1. Implentation Details

Datasets. We evaluate our performance on the CIFAR-
10 [26] and ImageNet [7] dastasets. CIFAR-10 is a 10-class
dataset containing 60K 32x32 color images with 50K train-
ing and 10K testing images. ImageNet contains over 1.2
million training images with 50K validation images across
1000 classes with a resolution of 224x224.

Evaluation metrics. Following the current SOTA, we
accurately benchmark our performance using three com-
mon metrics: Top-1%, Params, and FLOPs. Top-1% is
an indicator of how well our model is able to discriminate
classes on the specific dataset, while Params and FLOPs
evaluate the model size and computational footprint respec-
tively. For ImageNet, due to the difficulty of the dataset, we
include Top-5% following common SOTA benchmarks.

Configurations. For fair comparison, we adopt the same
training configurations as HRank [30], a leading SOTA
method, for each architecture. We use a newer implementa-
tion of HRank for benchmarking dubbed HRankPlus [30] as
it vastly outperforms the preceding paper. We used a learn-
ing rate of 0.01, a momentum of 0.9, and a weight decay
of 0.005, following standard configurations, as well as the
commonly scheduled learning rate decay of 0.1. CIFAR-10
pruning and training were done on an NVIDIA P5000 GPU,
while ImageNet was done on an Ampere A100 GPU.

Algorithm 1 CFDP Pruning Framework

1: Input Variables & Functions:
2: Pre-Trained Weights θ
3: Saved and Pruned Sets for the model S = {}, P = {}
4: ▷ Network Initialization Function
5: Init(weights, savedChannels, prunedChannels)
6: ▷ Training Pipeline given network
7: Train(network)
8: Output: Fine Tuned Pruned Model
9: Network←− Init(θ, {C0, ..., CN}, ∅)

10: ▷ Compute forward pass of batch B
11: FM = Network(B)
12: for i in N do
13: for f in FM do
14: ▷ Calculate Batch averaged Proxy Ranking
15: ▷ Leverage Equations 9, 11, 12
16: Li ←− 1

|B| (LFq(f) + λLSp(f))

17: end for
18: ▷ Sort Channels in layer i based on the Proxy Metric
19: Ci ←− argsort(Li)
20: S[i]←− Ci[: Ti]
21: P [i]←− Ci[Ti :]
22: end for
23: ▷ Re-initialize model using pruned and saved channel

sets
24: Network←− Init(θ, S, P )
25: Train(Network)

4.2. CIFAR10 results

VGG-16-BN. We use a variant of VGG-16-BN that was
fine-tuned on CIFAR10 with results reported in Table 1.
The table is divided into two parts: in the upper part, we in-
clude common SOTA methods, while the lower part focuses
on the comparison between our method and Hrank on the
same pruning configuration. Compared with importance-
based methods such as L1 and FPGM, CFDP is shown to
perform better in terms of accuracy (94.10% vs 93.40% vs
94.00%) and in terms of acceleration (58.1% vs 34.3% vs
35.9% for FLOPs and 2.76M vs 5.40M for Params). Given
that these two methods operate only using properties in the
spatial domain (L1-norm, L2-norm), the results suggest that
incorporating properties from both the spatial and the fre-
quency domain lead to better performance with greater ac-
celeration. Finally, CFDP achieves the best validation accu-
racy when compared with HRank under the same configu-
rations by surpassing their validation accuracy by 0.37%.

ResNet-56. Table 2 shows different pruning algorithms
on ResNet-56. Compared with L1, CFDP achieves better
Top-1 Accuracy (93.97% vs 93.06%), with an increase in
FLOPs reduction (28.0% vs 27.6%) and a decrease in the
number of parameters (0.66M vs 0.73M). Under the same

4719



Figure 2. This figure shows CFDP method computation for layeri based on feature maps Fi and the associate transformation into layer
′
i

(the pruned layer). Further information discussed in Section 3.6

Model Top-1% FLOPs (↓) Params (↓)

VGG-16-BN 93.96 313.73M(0.0%) 14.98M(0.0%)
L1 [27] 93.40 206.00M(34.3%) 5.40M(64.0%)
SSS [24] 93.02 183.13M(41.6%) 3.93M(73.8%)

Zhao et al. [50] 93.18 190.00M(39.1%) 3.92M(73.3%)
GAL-0.05 [32] 92.03 189.49M(39.6%) 3.36M(77.6%)
GAL-0.1 [32] 90.78 171.89M(45.2%) 2.67M(82.2%)

FPGM [19] 94.00 201.10M(35.9%) −
Wang et al. [46] 93.63 156.86M(50.0%) −

HRank [30] 93.73 131.17M(58.1%) 2.76M(81.6%)
CFDP 94.10 131.17M(58.1%) 2.76M(81.6%)

Table 1. Pruning results of VGG-16-BN on CIFAR-10.

Model Top-1% FLOPs (↓) Params (↓)

ResNet-56 93.26 125.49M(0.0%) 0.85M(0.0%)
L1 [27] 93.06 90.90M(27.6%) 0.73M(14.1%)

He et al. [20] 90.80 62.00M(50.6%) −
NISP [49] 93.01 81.00M(35.5%) 0.49M(42.4%)

GAL-0.6 [32] 92.98 78.30M(37.6%) 0.75M(11.8%)
GAL-0.8 [32] 90.36 49.44M(60.2%) 0.29M(65.9%)
FPGM [19] 93.49 59.44M(52.6%) −

Wang et al. [46] 93.05 62.75M(50.0%) −

HRank [30] 93.85 90.35M(28.0%) 0.66M(22.3%)
CFDP 93.97 90.35M(28.0%) 0.66M(22.3%)

Table 2. Pruning results of ResNet-56 on CIFAR-10.

configurations, we outperform Hrank with a Top-1 Accu-
racy of 93.97% vs 93.85%. This shows our algorithm’s ro-
bustness towards skip connections-based architectures.

GoogLeNet. GoogLeNet results are shown in Table
3. Our method greatly surpasses all methods in the upper
part of the table, including the original model (95.25% vs
95.05%) while benefiting from a 57.2% reduction in FLOPs
and a 53.5% reduction in the number of parameters. Com-
pared with HRank, our method still prevails, with a 95.25%
Top-1% vs 95.04%. These results show our method’s ro-
bustness to models with Inception modules.

Model Top-1% FLOPs(PR) Parameters(PR)

GoogLeNet 95.05 1.52B(0.0%) 6.15M(0.0%)
Random 94.54 0.96B(36.8%) 3.58M(41.8%)
L1 [27] 94.54 1.02B(32.9%) 3.51M(42.9%)

Hrank [30] 94.53 0.69B(54.9%) 2.74M(55.4%)
GAL-ApoZ [22] 92.11 0.76B(50.0%) 2.85M(53.7%)
GAL-0.05 [32] 93.93 0.94B(38.2%) 3.12M(49.3%)

Hrank [30] 95.04 0.65B(57.2%) 2.86M(53.5%)
CFDP 95.25 0.65B(57.2%) 2.86M(53.5%)

Table 3. Pruning results of GoogLeNet on CIFAR-10.

Model Top-1% Top-5% FLOPs Params

ResNet-50 [37] 76.15 92.87 4.09B 25.50M
He et al. [20] 72.30 90.80 2.73B −

ThiNet-50 [37] 68.42 88.30 1.10B 8.66M
SSS-26 [24] 71.82 90.79 2.33B 15.60M
SSS-32 [24] 74.18 91.91 2.82B 18.60M

GDP-0.5 [31] 69.58 90.14 1.57B −
GDP-0.6 [31] 71.19 90.71 1.88B −
GAL-0.5 [32] 71.95 90.94 2.33B 21.20M
GAL-1 [32] 69.88 89.75 1.58B 14.67M

GAL-0.5-joint [32] 71.80 90.82 1.84B 19.31M
GAL-1-joint [32] 69.31 89.12 1.11B 10.21M

FPGM [19] 75.91 92.63 2.36B −

HRank [30] 75.56 92.63 2.26B 15.09M
CFDP 76.10 92.93 2.26B 15.09M

Table 4. Pruning Results of ResNet-50 on ImageNet.

4.3. ImageNet results

ResNet-50. Table 4 includes our experimental results
for ResNet-50 on ImageNet. CFDP achieves a Top-1 Ac-
curacy of 76.10% and a Top-5 Accuracy of 92.93%, beat-
ing all methods in the upper portion of the table, with the
exception of the original ResNet-50, where the Top-1 Ac-
curacy is only 0.05% lower. Compared with HRank, CFDP
also manages to obtain a close to 1% boost in Top-1 Ac-
curacy and a 0.3% boost in Top-5 Accuracy. These results
demonstrate that combining spatial and frequency informa-
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Figure 3. This figure shows the performance trend for extended
pruning configurations on VGG-16-BN. We plot the performance
(accuracy) over various model sizes on CIFAR-10 for both CFDP
and HRank, to illustrate the superior performance and scalability.

tion allows for more than 50% compression and accelera-
tion while having comparable performance to the original
model on large-scale datasets such as ImageNet.

4.3.1 Extending the Pruning Configurations

In this experiment, we investigate the scalability of our
model, as we test an extended range of model compression
for VGG-16-BN on CIFAR-10. In Figure 3, we see that
our method scales well as we increase the number of pa-
rameters. In particular, we can see a consistently increasing
trend indicating that each additional parameter added to the
model is carefully and correctly selected by our method.
As expected this upward trend tapers off at a higher level
of parameters, where the model has achieved its maximum
learning potential given the structure of the architecture and
dataset complexity, however, it still outperforms the SOTA
and the original unpruned model. Additionally, we have
achieved an accuracy of 82.5% with only 0.5M parameters,
which is recovering 87.8% of the performance with only
3.3% of the parameters from the original model.

4.4. Ablation

In this section, we examine the motivation behind our
design choices in CFDP. In particular, we look into how
each component of our framework affects the overall perfor-
mance of our method. For consistency, we run all ablation
studies on VGG-16-BN using the CIFAR10 Dataset.

4.4.1 Components of L in CFDP

The goal of this study is to examine how each component
affects the final performance. Referencing Table 5, we can
see that LFq is a much stronger metric than the case without
considering the distribution of frequencies LFq w/o Dist.

LFq LFq w/o Dist LSp Performance

✓ 93.70
✓ 93.58

✓ 93.50
✓ ✓ 94.10

Table 5. The effect of each component in CFDP on performance

Figure 4. The effect of different λ regularization coefficients on
the novel pruning metric

We also see that the frequency methods seem to yield bet-
ter performance than the spatial metric LSp. However,
their combined performance is much stronger indicating
that both the frequency and spatial metrics must bring some
degree of unique information into the ranking allowing us
to converge with an overall better channel configuration.

4.4.2 Effect of λ regularization on performance

The goal of this ablation study is to determine the impact
of the regularizer on our framework’s performance. Refer-
encing Figure 4, we can see the performance of our method
actually decreases as we diverge from the centrally selected
value of λ = 0.03. Interestingly, it seems that this regu-
larization value is a local maximum over the spectrum of
tested values. We can see that a weak coefficient will de-
fault the performance to that of just LFq, while too strong
of a value will begin to interfere too heavily with the rank-
ings generated from the frequency domain. Empirically, we
determine the ideal λ to be 0.03.

4.4.3 Effect of Bs on performance

In this experiment, we investigate the effectiveness of dif-
ferent Bs values for patching the feature maps before ap-
plying DCT. Some studies have shown that different values
of Bs can affect the performance of DCT compression [42].
Empirically we see that a very large block size can result in
some degradation in accuracy while too small a size isn’t
able to properly correlate multiple pixels into the frequency
spectrum, thus Bs = 4 was used in all experiments as it
resulted in the best performance.
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Block Size Bs 1 2 4 8

Performance 93.68 93.63 94.10 93.53

Table 6. Measuring the effect of block size Bs on DCT conversion,
through empirical performance results

Random 0-25 25-50 50-75 75-90 ≥90

Performance 93.60 93.88 93.37 93.72 93.58 94.10

Table 7. The effect of network training on the novel pruning metric

FSGM [12] ϵ = 0 ϵ = 0.05 ϵ = 0.1 ϵ = 0.15 ϵ = 0.2 ϵ = 0.25 ϵ = 0.3

Original 93.96 61.85 55.01 50.64 46.62 41.70 36.01
CFDP 94.10 66.52 58.84 52.38 50.05 44.97 40.47

PGD [38] ϵ = 0 ϵ = 0.05 ϵ = 0.1 ϵ = 0.15 ϵ = 0.2 ϵ = 0.25 ϵ = 0.3

Original 93.96 28.39 20.07 20.08 20.08 20.08 20.07
CFDP 94.10 30.92 24.99 24.99 24.99 24.99 24.99

Table 8. Measuring the effect of the novel pruning metric on de-
fending against Adversarial Attacks

4.4.4 Effect of Network Training

In this section, we investigate the effect of pre-training on
CFDP’s ability to rank channels in a layer. The goal is
to determine if pre-training is necessary for pruning under
CFDP’s method. Referencing Table 7 we can see that our
ranking method is fairly robust to different levels of pre-
training. Particularly interesting is the fact that determining
the pruned subset of channels on an untrained model still
outperforms many of the methodologies in Table 1, while
slightly underperforming the original model by less than
0.4%. This approach shows that pre-training for network
channel selection may not be required if CFDP is employed,
due to its network initialization robustness.

4.4.5 Robustness to Adversarial Attacks

In this section, we evaluate the robustness of a model pro-
duced by our pruning framework with regard to adversar-
ial attacks. The motivation behind this ablation study is to
show that by removing several parameters from the model
through pruning, our produced models are more robust to a
potential attack on the data at inference time. To accom-
plish this, we incorporate two common types of attacks,
FSGM [12] and PGD [38] on the testing data and evaluate
the original and pruned models’ testing performance. We
can see from Table 8, that although the initial accuracies
for both the original and pruned are quite close, our pruned
model is far more robust to the adversarial attacks over the
spectrum of their strength.

4.5. Interpretable Visualizations

In this section, we visualize how the pruned structure
preserves the internal encodings and discriminative power
of the CNN. To further demonstrate the effectiveness of our
technique, we use the Grad-CAM algorithm [41] in Figure 5

Figure 5. This figure shows 3 images sampled from ImageNet [7]
with attention maps overlayed for both the Original and CFDP
pruned versions of the ResNet-50 architecture. Despite the signif-
icant pruning of the architecture by almost 50% in parameters, it
is able to create a reduced n-dimensional embedding space that re-
tains the importance of feature recognition from the original 512-
dimensional embedding space (and in some cases, improves it).

to show that the heat map produced by the pruned model is
similar to that of the original model. As we can see from the
three sets of pictures, the pruned model does an even better
job of capturing the important parts of an image than the
original pre-trained model. For instance, on the first row,
the heatmap is centered around the golf ball for the pruned
model, whereas the heatmap is mostly centered around the
hole. Given that this picture corresponds to the class of golf
balls and not of golf ball holes, the pruned model most cor-
rectly identified the vital features used for prediction.

5. Conclusion

In this paper, we introduced CFDP, a novel pruning
method, to generate layer-wise rankings of channels with
regard to the degree of information they contribute to the
final model. We provide in-depth analysis and empirical in-
vestigation into the motivation behind each component of
our saliency metric as well as its overall formulation. Fur-
ther, we achieve state-of-the-art performance on CIFAR-10
and ImageNet across a variety of architectures. Lastly, we
conduct several ablative studies testing each component of
our metric, demonstrating the robustness of our frameworks
to initializations, and the defensive capability of the result-
ing models to adversarial attacks. Overall we have shown
the true merit of our framework and metric with regard to
benchmarks standards. Through experiments on CIFAR10
we demonstrate superior performance (Top-1%), on Ima-
geNet we show superior acceleration (through Params and
FLOPs), and finally improved robustness over several abla-
tive studies. In future work, we hope to dig further into the
theoretical analysis of how the dominant frequencies are re-
lated to the scale of the feature maps, as well as expand our
experimental work to potentially multi-class datasets.
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