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Abstract

In recent years, the lottery tickets hypothesis has gained
widespread popularity as a means of network compression.
However, the practical application of lottery tickets for hard-
ware acceleration is difficult due to their element-wise un-
structured sparsity nature. In this paper, we argue that
network pruning can be seen as a special case of network
quantization, and relax the hard network pruning with mixed-
precision quantization in an unstructured manner, which
makes it possible for real hardware acceleration. We suc-
cessfully validate the wide existence of quantized lottery tick-
ets, namely MPQ-tickets, that can match or even surpass the
performance of corresponding full-precision dense networks
on various representative benchmarks. Also, we demonstrate
that MPQ-tickets have much higher flexibility than vanilla
lottery tickets, and largely benefit from pruning when com-
pared to QNNs. Moreover, the MPQ-tickets achieve up to
8× hardware acceleration of inference speed and 14× less
memory consumption than full-precision models.

1. Introduction
In recent years, neural network efficiency gradually be-

comes an important topic due to growing model size, espe-
cially for large-scale pre-training models, and researchers
seek for effective ways to compress neural networks while
preserving model performance. Among different neural net-
work compression methods, quantization and pruning are
two popular choices, both are easy to implement and achieve
good trade-off in performance and compression. However,
few works have investigated unifying quantizaiton and prun-
ing, one of which [12] firstly proposed that pruning can be

treated as 0-bit quantization. While providing such a novel
perspective, they didn’t further explore how to combine the
advantages of quantization and pruning. As we know, the
main advantage of quantization is hardware acceleration,
however, the performance might drop when networks are
quantized to low bitwidth, such as 1-bit or 2-bit. Meanwhile,
some competitive unstructured pruning methods, such as
Iterative Magnitude Pruning (IMP) in Lottery Ticket Hy-
pothesis(LTH) [6], can better preserve or even surpass the
performance of original dense models, even with very high
sparsity. However, unstructured pruning is known to have an
inability for real-hardware acceleration.

Based on this point, we take a step further and argue that
quantization can be seen as soft pruning compared to hard
pruning that aggressively turns 32-bit weight to 0-bit, and by
gradually decreasing the quantizing precisions of the weights,
the pruning process enjoys a smooth transition, where even-
tually parts of the weights are pruned completely and parts
of the weight remains low-precision quantization. Note that
this is different from prior works on mixed-precision quanti-
zation [2, 9, 13, 15–18] where the bitwidth of the weights is
decided either by learning or searching, instead, we mono-
tonically decrease the bitwidth of weights towards being
completely pruned, which is why we call this process as
soft pruning. Besides, to utilize the advantage of unstruc-
tured pruning which prune each weight element separately,
we first explore element-wise mixed-precision quantization,
which is also different from previous works that only con-
sidered layer-wise mixed-precision. The output networks
produced by soft pruning can enjoy customized hardware ac-
celeration of mixed-precision quantization, and also has the
advantage of unstructured pruning that can match or surpass
the performance of original dense networks.
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Subsequently, a core problem is how to gradually de-
crease the bitwidth of the weights such that we can find
mixed-precision quantized subnetworks that have good per-
formance and compression trade-off. In this paper, we in-
troduce the softened version of IMP from LTH [6], namely
the Iterative Magnitude Quantization (IMQ), by iteratively
choosing a certain portion of weights with the least full-
precision magnitude and halving their bitwidth. Using IMQ,
we empirically demonstrate that winning lottery tickets can
also be found, namely the Mixed-Precision Quantization
Tickets (MPQ-tickets), that can surpass the performance of
original lottery tickets and other competitive baselines and
realize 5.79-8.63 hardware acceleration compared to full-
precision models and original lottery tickets that are hard to
be accelerated.

Specifically, our contributions are as follows:

• We propose a novel kind of lottery ticket named MPQ-
tickets, by relaxing the hard pruning in vanilla lottery
tickets with soft pruning, i.e. iterative quantization. We
demonstrate the wide existence of MPQ-tickets under
various settings.

• We compare MPQ-tickets with several strong baselines,
including vanilla lottery tickets and QNNs, and demon-
strate that MPQ-tickets outperform these baselines in
terms of performance and compression trade-off. We
analyze and empirically validate that MPQ-tickets have
much higher flexibility than vanilla lottery tickets, and
largely benefit from pruning when compared to QNNs.

• We implement hardware support for MPQ-tickets, by
building the global buffer to store the operands element-
wise quantized and configure a single DSP slices on-
chip to be a multiple channel multiplier for processing
multiple data simultaneously. We demonstrate that the
inference speed and memory consumption can be re-
duced by 8.67× and 14.57×with accuracy performance
comparable to full-precision models.

2. Related Work
2.1. Network Quantization

Network quantization compresses the original network
by reducing the number of bits required to represent each
weight. DoReFa-Net [19] is a representative quantization
method with bit convolution kernels and STE gradient back-
propagations. As previous works typically clip the acti-
vations to a constant interval and then perform quantiza-
tion, [3] proposed PACT for activation quantization that
learns adaptive clip thresholds which better preserves the
network expressiveness. DoReFa-Net and PACT are adopted
as weight-quantization and activation-quantization methods
in our work, respectively, but note that our proposed method
is quantization method-agnostic.

2.2. Joint Pruning and Quantization

Several works have explored combining the two effec-
tive model compression techniques of pruning and quanti-
zation. [10] proposed parallel pruning-quantizatin with full
precision fine-tuning, [14] further proposed a differentiable
loss to jointly optimize pruning and quantization. However,
these two works didn’t exploit connections between prun-
ing and quantization. [12] firstly provided the viewpoint
that pruning can be seen as 0-bit quantization, and decided
weight precisions by learning. Notably, this work produces
the final quantizing precisions by learning, while our work
decreases quantizing precisions monotonically towards 0-bit
quantization, i.e. hard pruning.

2.3. Mixed Precision Quantization

To better leverage the trade-off between performance and
compression of QNNs, lots of prior works explored mixed-
precision quantization techniques which can improve this
trade-off. Many of these works mainly focus on the strate-
gies to find best quantizing precision for each layer, such as
Neural Architecture Search (NAS)-based [16, 18], Attribu-
tion Rank Preservation-based [15], constrained optimization-
based [2, 9], bit-level sparsity regularizer-based [17], and
hardware feedback-awared searching-based [13] methods.
However, previous works only considered layer-wise mixed
quantization, i.e. the quantizing precision is different among
different layers but the same inside each layer, whereas our
work for the first time investigates element-wise mixed pre-
cision, i.e. each weight element has its own quantizing
precision.

2.4. Quantized Neural Network Accelerator

Various platforms are adopted to implement the quantized
neural network, including GPU, FPGA, and ASIC. Current
GPU supports the operand quantized with 1-bit, 4-bit, 8-
bit and 16-bit [4]. However, the limited precision prohibits
the performance potential for the mixed precision network.
FPGA has rich DSP and LUT resources to support the mixed
precision network, due to the reconfigurability. [11] utilizes
the LUT resource to build bit-serial computation units, sup-
porting various precision from layer to layer. [7] and [1]
have the ability to compute operands with different precision
intra a layer. On ASCI design, [8] and [5] reduce statically
ineffectual bits from activation data to improve the latency.

3. Methodology

3.1. Preliminaries and Notations

Lottery Ticket Hypothesis(LTH) For a network f(x; θ)
with input samples x and model parameters θ, a sparse
sub-network is a network f(x; θ ⊙mb) with a binary mask
mb ∈ {0, 1}|θ|, where ⊙ is the element-wise product. In
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Figure 1. The flow diagrams and comparison of IMP and our proposed IMQ. The colored lines are weight connections with globally least
magnitude that are chosen to be pruned or quantized. (Left) the IMP flow: the network is iteratively trained and hard-pruned using least
weight magnitude criterion with weight-rewinding. (Right) the IMQ flow: the network is iteratively trained and quantized with decreasing
bitwidth using least weight magnitude criterion with weight-rewinding. Note that the weight magnitudes are ranked in full-precision at
each iteration and we preserve the quantization results with masks. Also note that although we demonstrate the example using MLP, in
experiments we only quantize or prune weights of convolutional layers.

order to find sparse sub-networks that can match the per-
formance of their dense counterparts, [6] proposed the Iter-
ative Magnitude Pruning(IMP) algorithm : Start from a
dense initialization W0, train the network until convergence
to weight Wt. Then we determine the ρ percent smallest
magnitude weights in |Wt| and create a binary mask m0 that
prunes these. Then retrain the pruned network from the same
initialization weight W0 ⊙m0 to convergence. Iterating this
procedure will produce subnetworks with different sparsity
which can usually match the performance of original dense
networks, a.k.a. the winning tickets.

DoReFa-Net The core quantization function and corre-
sponding backward Straight-Through Estimator (STE) in
DoReFa-Net are defined as follows:

Forward :r0 =
1

2k − 1
round((2k − 1)ri) (1)

Backward :
∂c

∂ri
=

∂c

∂ro
(2)

where ri ∈ [0, 1] is a input real number, ro ∈ [0, 1] is the
quantized k-bit number output and c is the objective loss
function. Following [19], we call this operation quantizek
where k indicates the bitwidth after quantization. Then the
weights in DoReFa-Net are quantized as follows:

Forward :r0 = 2× quantizek(
tanh(ri)

2max(| tanh(ri)|)
+

1

2
)− 1

(3)

Backward :
∂c

∂ri
=

∂ro
∂ri

∂c

∂ro
(4)

where ri is the original full-precision weight and ro is the
quantized weight. With equation 3, the weights are quantized
to [-1,1].

PACT PACT is an effective activation quantization scheme
in which the activation function has a learnable clipping
threshold. The PACT activation is defined as follows:

y = PACT (x) = 0.5(|x|−|x−α|+α) =


0, x ∈ (−∞, 0)
x, x ∈ [0, α)
α, x ∈ [α,+∞)

(5)
where α is a learnable scalar for each layer of the neural
network. The clipped activation is then quantized using the
method similar to the quantizek function in DoReFa-Net:

yq = round(y · 2
k − 1

α
) · α

2k − 1
(6)

Where yq is the quantized activation. STE is adpoted for
gradient-based training of α. See [3] for more details.

3.2. MPQ-tickets: The Mixed-precision Lottery
Tickets

LTH has proved its wide existence through rich experi-
ments. However, it has two drawbacks: (1) Subnetworks
obtained by unstructured pruning cannot be accelerated on
hard-ware level. (2) We argue that the aggresive hard pruning
in LTH will hurt the final performance.

To address these 2 problems, we propose MPQ-ticket——
by relaxing the hard binary mask in original lottery tick-
ets to quantized mask of different bitwidth, and use the
mask to quantize weight by extending layerwise quantiza-
tion technique in DoreFa-Net to element-wise. The overall
flow diagram is shown in Figure 1. For intuitive understand-
ing, consider pruning as a special case of quantization from
32-bit to 0-bit. To mitigate such big bitwidth gap, we ex-
tend the original two stage (32-bit and 0-bit) to fine-grained
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hierarchy(32-bit, 16-bit, 8-bit, 4-bit, 2-bit, 1-bit, 0-bit). How-
ever, we find that involving 2-bit and 1-bit quantization can
significantly reduce the network performance, which phe-
nomenon is in consistency with previous empirical results
of QNNs [3, 19] showing dropped performance at 1-bit or
2-bit quantizations. We thus remove 2-bit and 1-bit, and
our resulting quantization hierarchy is (32-bit, 16-bit, 8-bit,
4-bit, 0-bit).

The process of finding MPQ-tickets resembles that of
LTH such as the usage of iterative magnitude pruning (IMP)
and weight rewinding during iterative training, but except for
the obtained mask and the pruning operation with the mask
which serves our quantization purpose. We call the adapted
version of IMP as Iterative Magnitude Quanztization (IMQ),
and next introduce IMQ, weight rewinding and quantization
mask in our method respectively:

Iterative Magnitude Quantization At each iteration, the
network is firstly trained to convergence, and then we choose
a portion of weights with least magnitude and not equal to 0,
and update the bidwidth mask obtained from last iteration to
halve the bitwidth of these weights. For example, if a weight
is quantized only once, then it is quantized from 32-bit float-
point to 16-bit fixed-point, and the corresponding bitwidth
mask value will be 16; if a weight is quantized for 3 times
iteratively, then its bitwidth mask value will be 4.

Weight Rewinding Before the training of each iteration,
we firstly rewind the network weights to the initial weights of
1st iteration, then perform quantization on the initial weights
according to the bidwidth mask obtained from last iteration
and start training.

Quantization Mask At 1st iteration, we initialize the mask
with full precision: mq = {32}|θ|, and gradually update it to
mq ∈ {0, 4, 8, 16, 32}|θ| through IMQ which indicates the
current bitwidth of each weight. The network after quanti-
zation can be denoted as f(x; θ ⋆ mq) where ⋆ is the quan-

tization operation. In this paper, we adapt the weight quan-
tization operation in DoReFa-Net and extend its layer-wise
quantization to element-wise quantization. Specifically, for
k-bit(k > 1) weight, we use quantizek as mentioned above
as the quantization function; for 0-bit weight, the result is
similar to one in IMP. The above quantization function Q
can be formally presented as follows:

Q(wi,mi) =

{
0 mi = 0

quantizemi(wi) mi ∈ 4, 8, 16, 32
(7)

where wi is the 32-bit float-point weight element, mi is
the corresponding bitwidth mask element. For activation
quantization, we use PACT [3] which is able to match the
performance of full-precision models when quantized to no
less than 4-bit. Note that different from element-wise weight
quantization, we uniformly quantize activation to a fixed
bitwidth.

The main performance advantage of MPQ-tickets is
twofold: firstly, compared to vanilla lottery tickets, MPQ-
tickets relax the hard pruning with soft pruning such that it
introduces exponentially more soft pruning states, among
which lottery tickets with better performance can be found;
secondly, compared to vanilla QNNs and other mixed-
precision networks that don’t necessarily guarantee the
monotonic decrease of average bitwidth from prior works,
MPQ-tickets largely benefits from pruning that monotoni-
cally remove redundant weights. Besides, MPQ-tickets have
the compression advantage over vanilla lottery tickets in
that they can achieve real hardware acceleration with our
customized hardware support.

We elaborate the IMQ algorithm of finding MPQ-tickets
in the Appendix.

3.3. FPGA Based Accelerator Design

Due to the reconfigurability, we choose FPGA as the
platform to implement various neural network with element-
wise quantization. Basic DSP slices on FPGA can process
the digital multiplication and accumulation in a high speed to

S [2] [1] [0]
W1W1

Port A

W2W2
Port D S [2] [1] [0]

+

[3] [2] [1] [0] [3] [2] [1] [0]
A2A2 A1A1

Port B
××

S [7] [6] [5] [4] [3] [2] [1] [0] S [7] [6] [5] [4] [3] [2] [1] [0] S [7] [6] [5] [4] [3] [2] [1] [0] S [7] [6] [5] [4] [3] [2] [1] [0]
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X

Port A
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Port B
18bits

Port P
48bits

Figure 2. Four channels for 4-bit multiplication in a DSP slice.
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Figure 3. The existence of MPQ-tickets at varying settings. PACT-k denotes the PACT activation are quantized to k-bit. (a) IMQ results on
CIFAR10 dataset when PACT are quantized to 4,8,32 bits. (b) IMQ results on CIFAR100 dataset when PACT are quantized to 4,8,32 bits.

Algorithm 1 IMQ algorithm for find MPQ-tickets
t

1: Input: Model f(x; θ0), mq = {32}|θ|, iteration Niter,
quantize ratio ρ.

2: Output: mask mq ∈ {0, 4, 8, 16, 32}|θ|, MPQ-tickets
f(x; θ∗ ⋆ mq).

3: Dbest ← D1

4: for k = 0 to Niter − 1 do
5: Rewind network parameters θ to θ0
6: Quantize network with current mq: f = f(x; θ0⋆mq)

7: Train f = f(x; θ0 ⋆ mq) to converge, get network
parameter

8: Find least magnitude parameter subset θ′ where |θ′| =
ρ|θ|.

9: Update mq by halving the corresponding value w.r.t.
θ′.

10: mk
q = mq

11: end for
12: Get MPQ-tickets from f(x; θ∗k ⋆ mk

q ) where the test set
accuracy is bigger than f(x; θ∗0 ⋆ m

0
q)

13: return Dbest

enhance the speed of inference. To exploit the ability of DSP,
when the operands are quantized with low bits (8-bit, 4-bit,
2-bit and 1-bit), multi low-bit data are combined to a single
high-bit data and sent to the DSP slices in a cycle. Taking the
basic DSP48E1 slice as an example, it integrates a pre-adder
and a 25 × 18 multiplier. As shown in Figure 2, a DSP slice
is configured to a four-channel multiplier for 4-bit operands.
In similar way, a DSP slice can configured to process multi
low-bit operands simultaneously, with the mask to denote

the operand bit width. The element-wise quantized neural
network reduces data size to address the bottleneck of data
access. However, the buffers on FPGA are not well-utilized,
which increase the data access and waste the resource on
chip. We build the global buffer of 32-bit width to store the
mixed precision data, with the mask indicating the bit-with
of each data. The computation flow on the accelerator is as
follows: first, the quantized the data is fetched from DDR
off chip to store the global buffers on chip, with the mask
denoting the bit width, then, multi data are combined and
processed in one cycle to accelerate the computation, at last,
the result stored in the buffer is sent to the DDR again.

4. Experiments
In this section, we validate the existence of our proposed

MPQ-tickets and evaluate the performance and compression
trade-off with experiments. Specifically, we try to answer 3
major questions: (1). Do MPQ-tickets widely exist just like
vanilla lottery tickets? (2) How can MPQ-tickets outperform
vanilla lottery tickets, vanilla QNNs, and other baselines
in terms of performance and compression trade-off? (3)
How does our customized hardware support accelerate the
inference speed of MPQ-tickets?

Experiment setup. We benchmark all experiments us-
ing ResNet20s on two classical datasets, CIFAR10 and CI-
FAR100. We train the networks using IMP, IMQ and vanilla
quantizations (denoted as QNN or QNN-k for k-bit weight
quantization), and compare their performance. For sanity
check, we also compare Iterative Random Pruning and It-
erative Random Quantization by replacing the least weight
magnitude criterion with random choosing, and we denote
them as IRP and IRQ, respectively. For IMQ and IRQ that
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use PACT for activation quantization, we use PACT-k prefix
to denote the activations are quantized to k-bit, and mainly
explore the setting when k=32,8,4. For IMP and IRP, we use
32-bit full precision and set the pruning rate at each iteration
as 0.2, and repeat for 16 iterations. For IMQ and IRP, we
set the quantization rate as 0.3, and repeat for 25 iterations.
For evaluation criterion, we mainly evaluate the performance
and compression trade-off using test accuracy v.s. average
bitwidth trade-off. For hardware acceleration evaluation,
we simply evaluate the inference speed of our compressed
models.

Next, we present our experiment results that answers the
3 questions we propose in the start of this section.

Table 1. The performance comparison of different instances of
ResNet20s on CIFAR-10 dataset. The PACT model performance
is from the orignal paper [3]. For LTH and random MPQ-tickets,
we simply report the best results.(PACT-k, q-bit) denotes the best
performing lottery ticket with average weight bitwidth below q-bit
and activation quantized to k-bit using PACT.

Model Accuracy

Full Precision 91.81
LTH 92.04

PACT(5-bit) [3] 91.7
PACT(4-bit) [3] 91.3
QNN (PACT-32, 8-bit) 91.75
QNN (PACT-32, 4-bit) 91.58

QNN-ticket (PACT-32, 4-bit) 91.87
QNN-ticket (PACT-32, 2-bit) 91.65

Random MPQ-ticket 91.84
MPQ-ticket (PACT-32, 8-bit) 92.37
MPQ-ticket (PACT-32, 4-bit) 92.15
MPQ-ticket (PACT-32, 2-bit) 91.64
MPQ-ticket (PACT-8, 8-bit) 92.37
MPQ-ticket (PACT-8, 4-bit) 92.09
MPQ-ticket (PACT-8, 2-bit) 91.53
MPQ-ticket (PACT-4, 8-bit) 92.15
MPQ-ticket (PACT-4, 4-bit) 91.89
MPQ-ticket (PACT-4, 2-bit) 91.58

4.1. The Existence of MPQ-Tickets

We first validate the existence of MPQ-tickets. To achieve
this, we train ResNet20s with IMQ and varying PACT-k
(which would influence hardware acceleration) on CIFAR10
and CIFAR100 datasets, and the test results are shown in
Figure 3. We observe that under various setting, the subnet-
works produced by IMQ can match the performance of 32-bit
dense models when average bitwidth is greater than around
4 bit, and then start to decrease when average bitwidth con-
tinues to decrease. We therefore successfully validate the
wide existence of MPQ-tickets. We also note that the subnet-
work accuracies produced by PACT-8 IMQ is comparable to

those by PACT-32 IMQ on both dataset, which is favorable
because PACT-8 subnetworks have significantly faster infer-
ence speed than PACT-32 subnetworks at the same average
weight bitwidth, as we will show in the following subsection.
The subnetwork accuracies produced by PACT-4 IMQ are
slightly lower, but their inference speed would be further
improved which provide trade-off choices in practice.

4.2. How does the performance and compression
trade-off of MPQ-tickets outperform other
baselines?

To evaluate the performance and compression trade-off,
we compare MPQ-tickets produced by PACT-8 IMQ with
various baselines, namely the PACT-8 IRQ, IMP, IRP, QNN,
QNN-8 IMP, and the testing curves are shown in Figure
8. Overall speaking, our proposed MPQ-tickets found by
IMQ consistently outperform other baselines when average
bitwidth is greater than 3-bit, despite the initial performance
is worse than some baselines.

Comparison with vanilla lottery tickets By comparing
the curves of IMP and PACT-8 IMQ from Figure 8, we vali-
date the effectiveness of MPQ-tickets compared to vanilla
lottery tickets. As we discussed in Section 1 and 3, the
soft pruning manner of MPQ-tickets is more flexible than
hard pruning of vanilla lottery tickets in that soft pruning
can find exponentially more intermediate pruning states than
hard pruning, and thus has higher possibility to find lottery
tickets with better performance. What’s more, due to the
unstructured pruning nature of vanilla lottery tickets, they
are technically hard to be accelerated on hardware, whereas
MPQ-tickets are able to be significantly accelerated as we
will show in next subsection. We therefore conclude the ad-
vantages of MPQ-tickets compared to vanilla lottery tickets.

Comparison with vanilla QNNs We compare vanilla
QNNs with the same weight and activation quantization
methods (i.e. DoReFat-Net and PACT) as adpoted in MPQ-
tickets. The differences are that vanilla QNNs quantize
weights uniformly to a fixed precision and are trained only
once, while MPQ-tickets quantize weights with element-
wise precision and are trained iteratively. We keep all other
hyperparameters the same, and by comparing the testing
curves of QNN and PACT-8 IMQ in Figure 8, we observe
that MPQ-tickets consistently outperform vanilla QNNs at
the same average bitwidth. We therefore validates the effec-
tiveness of MPQ-tickets over vanilla QNNs. The reasons of
this effectiveness are twofold: firstly, MPQ-tickets enjoy the
advantages of pruning which can remove redundant weight
connections; secondly, due to mixed-precision nature, MPQ-
tickets are more flexible than vanilla QNNs in allocating
bitwidth than vanilla QNNs.
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Figure 4. The FPGA platform memory consumption and speed-up of ResNet20s with various average bit-width. (a) The memory
consumption ResNet20s on FPGA with various average bit. (b) when the activation is quantized with 32-bit, the optimal speed-up is 2.69×.
(c) when the activation is quantized with 8-bit, the optimal speed-up is 5.79×. (d) when the activation is quantized with 4-bit, the optimal
speed-up is 8.63×.

Other Comparisons One might note that since the per-
formance of vanilla QNNs at 8-bit or 4-bit quantization is
comparable to full-precision counterparts, it’s hopeful to per-
form IMP over QNNs to obtain lottery tickets of QNNs that
have much lower average bitwidth. Consequently, how do
IMP over QNNs compare with MPQ-tickets? We perform
an experiment of IMP over an 8-bit QNN, denoted as QNN-8
IMP. As we see from the results of Figure 8, MPQ-tickets can
still outperform QNN-8 IMP at around 3-8 average bitwidth,
we believe this is due to the mixed-precision nature of MPQ-
tickets that can flexibly allocate more bitwidth to important
weights and less to redundant weights.

We notice that the initial performance of IMQ at 1st iter-
ation is lower than the full-precision counterpart of IMP at
1st iteration. We conjecture this is because the activation is
clipped in PACT, and thus limiting the expressiveness of the
network. To validate it, we conduct an experiment to replace
ReLU activation with PACT, but remove the quantization
part of PACT (i.e. only remain the parameterized clipping),
and then run full-precision IMP training. We denote this
experiment as PACT-full IMP, and compare the results in
Figure 5. We observe significant performance degradation
of PACT-full IMP compared to IMP, which validates our
conjecture. However, under such circumstance, MPQ-tickets
still outperform other baselines. We believe that with bet-

ter activation quantization techniques, the performance of
MPQ-tickets can be further boosted, which is orthogonal to
our contributions.

As we mentioned in Section 3, we empirically find that
IMQ with 1-bit and 2-bit included in quantization hierarchy
performs badly compared to 1-bit and 2-bit excluded, as
shown in Figure 6. This is in fact a common phenomenon in
prior QNN works, where the performance starts to degrade
when the bitwidth is lower than 4-bit. We believe this is
because the round function at 1-bit and 2-bit precision make
the full-precision weights change too significantly that hurt
the network performance.

Finally, we also present the best results from different
models, as shown in Table 1. We observe that our imple-
mented QNNs match the performance of the original PACT
paper [3]. Note that although the random MPQ-tickets pro-
duced by IRQ achieve good accuracy, the performance starts
to degrade quickly when the average bitwidth is below 8-
bit. We observe that MPQ-tickets consistently outperform
other models in terms of best accuracies with low average
bitwidth.

4.3. The hardware acceleration of MPQ-tickets

We choose FPGA chip XC7Z020 as the experiment plat-
form which is a very common type currently to acceler-
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Figure 5. Comparison of IMP and PACT-full IMP.
The performance degrades significantly in our experi-
ment when activations are clipped even with learnable
thresholds.
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Figure 6. Comparison of IMQ when 1-bit and 2-bit
are excluded from or included in quantization hier-
archy. The performance degrades significantly when
1-bit and 2-bit are included.

ate neural network inference. The dominant frequency is
100MHz. We quantizes ResNet20s on CIFAR10 dataset
utilizing the proposed MPQ-tickts. We explore the accelera-
tion limits using three quantized activation (32-bit, 8-bit and
4-bit).

Figure 4 depicts the relationship of average bit-width
and speed-up. The latency performance is normalized and
compared with latency of full precision (32-bit). The trend
can be seen from the Figure 4 that the lower the bit-width,
the higher the speed-up. When the weight bit-width is low-
est (2.29-bit), the latency performance is optimal, reaching
2.69×, 5.79× and 8.63× speed-up with 32bit, 8bit and 4bit
activation, respectively.

The element-wise quantized operand improves the effi-
ciency of processor, by making a single DSP slice calculates
multiple MAC (Multiply-Accumulate) operations simulta-
neously. However, another benefit brought by the proposed
MPQ-ticket is to reduce memory consumption, which ad-
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Figure 7. The memory consumption ResNet20s on
FPGA with various average bit.
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Figure 8. The curves of accuracy v.s. average bitwidth
of different pruning or quantization methods. Note that
QNN-8 IMP denotes IMP with the network initilized to
an 8-bit QNN.

dresses the bottleneck of data access. Since the element-wise
quantization method compresses most of the weight into
low-bit data, once data is accessed, more data can be fetched
from and stored in the off-chip DDR. Figure 7 concludes that
the memory consumption on FPGA reduces with the lower
average bit-width. When the average bit-width is 2.29-bit,
the memory consumption of ResNet20s on FPGA is only
0.07 MB, which outperforms 14.57× than the full precision
model (1.02MB).

5. Conclusions

In this paper, we relax hard pruning of vanilla lottery
tickets with soft pruning, and introduce IMQ which is soft
version of IMP. With IMQ, we successfully validate the wide
existence of MPQ-tickets, which outperform other strong
baselines in terms of performance and compression trade-
off. We further introduce customized hardware support to
accelerate MPQ-tickets, and realize up to 8.x speed-up of in-
ference speed, compared to the unaccelerable original lottery
tickets due to the unstructured pruning nature. Future work
may be directed to how to integrate 1-bit and 2-bit in the
quantization hierarchy of IMQ for smoother soft pruning.
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