
ETAD: Training Action Detection End to End on a Laptop

Shuming Liu1, Mengmeng Xu1, Chen Zhao1, Xu Zhao2, Bernard Ghanem1

1King Abdullah University of Science and Technology 2Shanghai Jiao Tong University
{shuming.liu, mengmeng.xu, chen.zhao, bernard.ghanem}@kaust.edu.sa zhaoxu@sjtu.edu.cn

Abstract

Temporal action detection (TAD) with end-to-end train-
ing often suffers from the pain of huge demand for com-
puting resources due to long video duration. In this work,
we propose an efficient temporal action detector (ETAD)
that can train directly from video frames with extremely
low GPU memory consumption. Our main idea is to min-
imize and balance the heavy computation among features
and gradients in each training iteration. We propose to
sequentially forward the snippet frame through the video
encoder, and backward only a small necessary portion of
gradients to update the encoder. To further alleviate the
computational redundancy in training, we propose to dy-
namically sample only a small subset of proposals during
training. Various sampling strategies and ratios are studied
for both the encoder and detector. ETAD achieves state-of-
the-art performance on TAD benchmarks with remarkable
efficiency. On ActivityNet-1.3, training ETAD in 18 hours
can reach 38.25% average mAP with only 1.3 GB memory
per video under end-to-end training. Code is available at
https://github.com/sming256/ETAD.

1. Introduction
Let us assume a junior researcher, who does not have ac-

cess to a high-end GPU (e.g. NVIDIA A100), starts to work
on the temporal action detection (TAD) task, which takes
as input a raw video and predicts the period of pre-defined
temporal activities [10, 14, 44, 49]. Although great progress
has been made in this area, training the whole TAD pipeline
is getting computationally heavier and slower, which may
discourage the disadvantaged researcher when only limited
resources are available. To help with this situation, an effi-
cient end-to-end TAD method with a low-cost requirement
(e.g. a standard laptop) is in demand.

Most of the current TAD pipeline consists of a video en-
coder and an action detector. Training them jointly, i.e. end-
to-end training, has become the recent trend [6, 7, 21, 27].
The advantage of such a paradigm is multi-fold, e.g. it
allows feature adaptation on the target data domain, en-

GPU memory (G)

m
ea

n
 A

ve
ra

ge
 P

re
ci

si
o

n
 (

%
)

0 64168 32 128

38

37

36

35

ASFD (BS=1)

LoFi
(BS=16)

E2E-TAL (BS=4)

TALLFormer (BS=1)

ETAD (BS=4)

256

laptop workstation cluster

Figure 1. Compared with recent end-to-end TAD methods,
ETAD has very low GPU memory consumption and SOTA
performance. ETAD minimizes and balances the heavy com-
putation among features and gradients. On ActivityNet-1.3, it
reaches 38.25% average mAP, 2.65% higher than SOTA end-to-
end method TALLFormer [6], while only using 5.2 GB GPU mem-
ory (batch size 4) and 18 hours of training.

ables online frame augmentation to enhance the represen-
tation, etc. The main challenge of end-to-end training for
TAD is the tremendous GPU memory requirement to pro-
cess a single long untrimmed video (e.g. 34 GB for 5 mins
video). This is why TAD methods like ASFD [22] resort
to downscaling the video frame resolution to 96 × 96 and
sampling a small set of frames (768) during training, while
SBP [7] stops a portion of the gradient flow for backpropa-
gation, and TALLFormer [6] caches most of the video fea-
tures and only updates 15% − 60% of them. Nonetheless,
these methods still need moderate GPU memory (e.g. 32
GB) to achieve state-of-the-art detection performance.

Our main motivation is to reduce the computation re-
dundancy and leverage minimal GPU memory during end-
to-end TAD training. First, although current methods pro-
cess multiple video snippets in parallel to extract features,
our study shows that a sequential process of snippet en-
coding as well as backpropagation can significantly reduce
the peak memory usage without sacrificing any detection
performance, and it only moderately increases the train-

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4525



ing time. Meanwhile, we observe that not all snippets are
needed for updating the video encoder during backpropaga-
tion, since most consecutive frames in an untrimmed video
are similar in semantics. Second, to guarantee a high re-
call rate and cover all potential temporal activities, common
TAD practice utilizes a dense distribution of action candi-
dates or proposals, such as the proposal map in BMN [24].
We find that such a design choice is not necessary, since
most proposals overlap with each other, and they eventually
share similar feature representations. Our study shows that
sampling only a small portion of these proposals does not
affect the detection performance but can improve the train-
ing efficiency, and further reduce memory usage.

In this work, we propose an Efficient Temporal Action
Detector (ETAD), which provides an end-to-end TAD so-
lution that requires extremely low GPU memory and has
affordable training time, as shown in Fig. 1. The success of
ETAD is based on a Sequencialized Gradient Sampling
(SGS) process and an Action Proposal Sampling (APS)
design. SGS forwards the snippet frames in micro-batches
through the video encoder, and selectively backwards only
a small portion of gradients, reducing the peak GPU mem-
ory usage up to 92%. Additionally, SGS can reduce the
delay in synchronizing the encoder input and the detector
input, which can result in a training time that is similar to
parallelized solutions (only +14%). APS, on the other hand,
generates a much smaller but sufficient set of action candi-
dates during training. It shows that only 6% of proposals
can still guarantee decent action detection performance and
thus remove the training redundancy. Subsequently, our em-
pirical study on sampling strategies in both modules shows
that most common strategies, such as label-guided sampling
and feature-guided sampling, are not evidently better than
the heuristic stochastic sampling.

ETAD achieves state-of-the-art performance on two pop-
ular benchmarks in an end-to-end fashion with low memory
cost and acceptable time consumption. On ActivityNet-1.3,
for example, we train ETAD on a single GPU for 18 hours
to reach 38.25% average mAP, while the memory consump-
tion is only 1.3 GB per video. Note that this memory usage
is even less than many TAD methods that take as input pre-
extracted video features [44,48]. The main contributions of
this work can be summarized as follows:

1. We propose to sequentially backpropagate a small por-
tion of gradients to update the video encoder for end-
to-end TAD training. This significantly reduces GPU
memory usage without increasing training time much.

2. We adopt various sampling strategies to study the snip-
pet gradient redundancy and action proposal redun-
dancy in the current TAD framework. Surprisingly, us-
ing only 6% of proposals and 30% of snippet gradients
can guarantee a good detection performance.

3. Extensive experiments show that ETAD reaches state-

of-the-art performance on two TAD benchmarks,
ActivityNet-1.3 and THUMOS-14. In particular,
ETAD achieves 38.25% average mAP on ActivityNet
with only 1.3 GB per video in end-to-end training.

2. Related Work

Temporal Action Detection. An action detector can lo-
calize action instances directly from videos (direct), or
merely refine the boundaries of proposals from a proposal-
generation network (refinement). The direct methods usu-
ally focus on enhancing the temporal feature representa-
tion [29, 44] or improving the proposal evaluation [2, 4, 13,
24, 40, 43]. For example, G-TAD [44] utilizes graph con-
volutions to model the correlations between video snippets.
The refinement methods tend to prune off-the-shelf action
proposals [10, 11, 28] and provide more accurate boundary
predictions [33, 34, 48]. P-GCN [45] is a typical refinement
method that exploits proposal-proposal relations to refine
predictions of BSN [25]. TCANet [33] uses high-quality
proposals generated from BMN [24] and proposes a cas-
cade structure to progressively refine actions. Our proposed
ETAD belongs to the family of direct solutions, since it does
not rely on any external proposal generation methods, but it
can surpass the best refinement method.

End-to-end Solutions in TAD. Recently, more methods
study TAD directly from the original video frames to the fi-
nal proposal predictions, which is referred to as end-to-end
training. The early work R-C3D [40] encodes the frames
with 3D filters and proposes action segments then classifies
and refines them. PBRNet [26] and ASFD [21] also train
detectors from raw frames, but they suffer from the small
batch size and low-resolution frames. E2E-TAL [27] fur-
ther confirms the benefit of end-to-end training for TAD and
studies different design choices. Re2TAL [47] propose to
rewires the pretrained video backbones as reversible mod-
ules, whose intermediate activations can be cleared from
memory during training. Moreover, some works propose
ways of pre-training the video encoder by new training tasks
to close the gap between action recognition and action de-
tection, e.g. TSP [1] and BSP [41]. Differently, our ETAD
is able to train the network with high frame resolution, large
batch size, and single-stage training.

Sampling in Video Understanding. Although densely
sampling snippets over the entire video is effective for un-
derstanding short video clips, such an approach is expen-
sive for long untrimmed videos. An alternative way is
to summarize the video [15] by selecting only the rele-
vant frames or snippets. For example, SCSampler [18] se-
lects salient clips from video for efficient action recognition.
SBP [7] stochastically drops certain backpropagation paths
to train the action recognition/detection model memory ef-
ficiently. However, the forward path of SBP still requires a

4526



lot of memory for long video input. To reduce the forward
computation, TALLFormer [6] first stores the pre-computed
video feature in a feature bank and only updates a relatively
small portion of features in each iteration. Since features in
the bank are not always up-to-date, if the training dataset is
too large, this method may fail because the features of the
same video between two epochs can be drastically different.
Besides, proposal sampling in TAD is an under-explored
topic, and most methods [20, 24, 44] exhaustively enumer-
ate the possible locations of activity, leading to redundant
computation for highly overlapped proposals.

3. Method
Given an untrimmed video, temporal action detection

aims to predict its foreground actions, denoted as Ψ =
{φi=(ts, te, c)}Mi=1, where (ts, te, c) are the start time, end
time, and category of the action instance φi, respectively.
M is the total number of actions.

3.1. Model Architecture

The overall architecture of ETAD is shown in Fig. 2,
which illustrates the pipeline of feature extraction and ac-
tion detection. For feature extraction, an off-the-shelf ac-
tion recognition model, such as TSM [23], R(2+1)D [37],
is adapted to encode multiple video snippets to a list of fea-
ture vectors. Specifically, each vector is obtained from the
feature map before the classification head of the recognition
model, with global average pooling applied on the tempo-
ral and spatial dimensions. For action detection, we adopt
a simple yet effective detector to retrieve actions. First, two
LSTM layers capture long-range temporal relations to en-
hance the snippet-level feature representations. Then, two
convolution layers are applied to classify the startness and
endness of each snippet. Last, a proposal evaluation mod-
ule refines the candidate proposal boundaries and predicts
the proposal confidence. To improve the boundary preci-
sion, we stack three proposal evaluation modules with pro-
gressively improved IoU thresholds. More details of the
detection head can be found in the supplementary material.

Based on the simple detection head, we adopt sequen-
tialized gradient sampling and action proposal sampling to
alleviate the computation burden, targeting efficient end-to-
end TAD training with minimal memory usage.

3.2. Preliminary of Sequentialized Gradient

Typically in TAD, the untrimmed long video is repre-
sented as X ∈ RN×3×T×H×W , where N snippets (or
clips) are sampled from the video, and each snippet x has T
frames with spatial resolution H × W . Given an arbitrary
video encoder denoted as fe, which can be a CNN-based or
a transformer-based action recognition model, snippet x is
encoded as a feature vector f ∈ RC by the video encoder.

Thus, the feature sequence F ∈ RN×C is extracted from N
snippets in parallel. Subsequently, an action detector fd re-
trieves action candidates ϕ from this feature sequence. The
whole forward process can be denoted as follows:

F = [f1, f2, ..., fN ] = fe([x1, x2, ..., xN ]) (1)

ϕ = fd(F ) (2)

During training, in order to update the parameters θ of
video encoder fe , all the intermediate activations in Eq. (1)
must be saved for later gradient backpropagation. Given the
loss L, the gradients of θ are computed by:

∆θ =
∂L

∂θ
=

∂L

∂F
· ∂F
∂θ

(3)

Compared with standard action recognition, the exis-
tence of snippet dimension in X causes a tremendous com-
putation in fe, which increases linearly with the number
of snippets N . For example, when using 128 snippets,
224 × 224 resolution, 16 videos in a batch, even a light
weight action recognition model (TSM [23]) needs more
than 500GB memory, which is infeasible to perform end-to-
end training on most platforms. However, the computation
graph of each snippet in fe is essentially independent of
others. Precisely, as long as no batch-level parameters need
to update, such as batch normalization, we can apply asso-
ciative law to Eq. (1) to get fi = fe(xi), then the parallel
computation in Eq. (3) can be decoupled as:

∆θ =
∂L

∂[f1, ..., fN ]

∂[f1, ..., fN ]

∂θ
=

N∑
i=1

∆fi
∂fi
∂θ

(4)

3.3. Sequentialized Gradient Sampling

Eq. (4) suggests us that the computation of the partial
derivative of snippet feature F to encoder parameter θ can
be obtained from two different ways, i.e. parallelly compute
the derivative from the N snippets in one-step, or divide N
snippets into multiple micro-batches (a micro-batch has K
snippets, K << N ), and then sequentially compute the
gradient within a micro-batch by N/K iterations and ac-
cumulate the gradients. Based on the above derivation, we
propose Sequentialized Gradient Sampling (SGS) for ef-
ficient end-to-end TAD training, which is consist of three
stages as illustrated in Fig. 2.

1. Sequentialized video encoding. We temporally split
the video X into multiple micro-batches. Each micro-
batch has K snippets. We run forward passes on the
encoder for N/K times without saving any intermedi-
ate activations, and concatenate the output features in
the temporal dimension as F .

4527



Proposal 
Sampling

forward

backward
sample

𝑓𝑒
Sequentialized
Video Encoding

disable gradient

enable gradient

f

…

Play

…

skip skip skip

…Sequentialized 
Gradient 
Sampling

𝑓𝑒 𝑓𝑒 𝑓𝑒 𝑓𝑒 𝑓𝑒

𝑓𝑒 𝑓𝑒 𝑓𝑒
𝑓𝑒

feature 
encoder

Action
Detector…

Loss

Figure 2. The training pipeline of ETAD can be divided into three stages: sequentialized video encoding, action detector learning,
and sequentialized gradient updating. The sequential video decoding in stage 1 and sequential gradient updating in stage 3 visibly
alleviate the whole network’s GPU memory consumption. The action proposal sampling in stage 2 and gradient sampling in stage 3 further
cut down the computation redundancy and reduce the training time.

2. Action detector learning. We use F to train the detec-
tor for one iteration and backpropagate the gradients
to the concatenated features F . We collect the feature
gradients ∆[f1, · · · , fN ], and free all the cache in GPU
memory.

3. Gradient sampling and sequentialized updating. We
sample γ portion from N snippets and sequentially
update the encoder with their gradients. In each step,
we use a micro-batch to compute the gradients of en-
coder parameters and accumulate all the gradients for
the later parameter update.

The key to achieving efficient end-to-end training by
SGS is to sequentially process a small micro-batch data in
each iteration during stage 1 and stage 3, and only back-
ward a small portion of gradients during stage 3. As a
comparison, in traditional end-to-end training, all N snip-
pets’ intermediate activations in the video encoder in stage
1 are reserved for later backpropagation, which takes over
95% of total GPU memory. Instead, our SGS operates on
a small data volume for video encoding during each iter-
ation, and the peak memory usage is only K

N of the tra-
ditional end-to-end setting. Since the micro-batch data is
related to K instead of N , such memory usage can be con-
stant and independent of the video length. In the extreme
case, if K = 1, no matter how long the video is given, the
maximum memory usage by SGS is aligned with the mem-
ory usage as designed in action recognition task. Another
advantage offered by SGS is its high GPU utilization. Un-
like traditional parallel design that requires all snippets to
be ready for the video encoder, which can result in high la-
tency such as frame decoding and data augmentation, SGS
can efficiently utilize GPUs without such requirements.

Moreover, although extra forward computation is in-
volved in stage 3, using gradient sampling in SGS can ad-
dress this deficiency and reduce the overall computation to

be less than the original end-to-end training (see Tab. 5).
In the experiments, we find that such sampling won’t affect
the TAD performance (see Sect. 4.3). This is because the
consecutive video frames in the untrimmed video are usu-
ally similar in appearance and semantics, and the feature
vectors of corresponding snippets may share similar repre-
sentations. Thus, the gradients of encoders on such snippets
are also similar. Moreover, as mentioned by [6], since the
video encoder is already pre-trained on a large-scale action
recognition dataset, thus it evolves more slowly than other
modules in the network with a smaller learning rate, leading
to relatively small gradient values. Based on such insight,
our SGS which only backpropagates a small ratio of snip-
pets would still guarantee high TAD performance.

Regards to time efficiency, although the sequential pro-
cessing breaks down the parallel design, the total training
time using SGS is only 114% than original end-to-end train-
ing, but it requires less than 1/25 memory of the default
setting (see Tab. 3). Besides, SGS can be complemen-
tary of other memory-efficient techniques, such as activa-
tion checkpointing [5], mixed-precision training [31], etc.
Noted that our SGS is agnostic of encoder architecture and
thus can incorporate any of the common encoders in its
framework.

In summary, our proposed SGS approach can effectively
achieve efficiency in memory usage, overall computation,
and training time under end-to-end training. The pseudo-
code of our SGS algorithm can be found in the supplemen-
tary material.

3.4. Action Proposal Sampling

Beyond SGS, we also study proposal sampling, which
aims to reduce the redundant action proposals in the ac-
tion detector. In the current two-stage TAD methods (i.e.
methods use RoI alignment or similar to explicitly extract

4528



proposal features), a dense candidate proposal set is needed
for proposal refinement. For example, BMN [24] and G-
TAD [44] enumerate all possible combinations of start and
end locations to generate candidate proposals to deal with
the large action length variation. Mathematically, given the
number of snippets N , there will be C2

N = N · (N − 1)/2
proposals, which has the quadratic complexity with respec-
tive to N . However, due to the dense enumeration, most
of these proposals overlap with each other. Thus, a large
portion of the extracted proposal features is similar or du-
plicated. Moreover, the proposal evaluation module in TAD
usually refines each proposal’s start and end boundary [26],
so it is unnecessary to consider proposals that are tempo-
rally close.

To reduce such redundancy while preserving high detec-
tion performance, we propose to replace the densely sam-
pled proposals with a subset produced by an efficient sam-
pling approach, called Action Proposal Sampling (APS),
as illustrated in Fig. 2. Our experiments suggest that with
a proper sampling strategy (see Sect. 3.5), using only 6%
proposals can provide a similar detection performance to
the full setup, but it saves more than 90% of the detector’s
computation. By combining APS with SGS, our method
can achieve extremely memory-efficient end-to-end train-
ing with state-of-the-art detection performance.

3.5. Sampling Strategy

We further study the possible sampling strategies in both
SGS and APS. Three types of sampling strategies are pro-
posed and compared: heuristic sampling, feature-guided
sampling, and label-guided sampling.
Heuristic Sampling includes three strategies: random,
grid, and block. They are similar to the samplings in
MAE [12]. The random strategy simply samples snippets or
proposals randomly following a uniform distribution. The
grid strategy samples the snippets with a pre-defined tem-
poral stride (along the temporal dimension) or grid (on a
proposal map), as shown in Fig. 3. The block strategy sam-
ples consecutive snippets or a block of proposals in the pro-
posal map. This strategy essentially evaluates the model in
a trimmed clip of the video.
Feature-guided Sampling are based on the data distribu-
tion in the feature space. Farthest Point Sampling (FPS, [9])
selects the new snippet/proposal which has the farthest dis-
tance, where a distance is defined as the euclidean distance
between two snippet features or proposal features. FPS can
provide the most distinguished samples of the candidates
since the selected samples are more variant in the embed-
ding space. We also implement the Determinantal Point
Process (DPP) to enforce diversity during training. We take
the cosine similarity as the kernel function and update the
determinant in every training epoch. When a sampling ratio
is given, we can directly apply kDPP [19] because the target

(a) random

(c) block

(b) grid

(d) FPS/DPP

t-sne visualization

Figure 3. Different sampling strategies: random, grid, block,
FPS, DPP. Random strategy samples certain proposals/snippets
from a uniform distribution, grid strategy samples with a fixed
temporal stride, and block strategy samples a consecutive area in
proposal map/snippet sequence. Besides, FPS (farthest point sam-
pling) chooses the new snippet/proposal which has the farthest dis-
tance to the selected samples. DPP (determinantal point process)
selects the data from the feature embedding space to enforce the
sample diversity.

has a fixed size. Please refer to the supplementary material
for more discussions.
Label-guided Sampling uses ground truth supervision dur-
ing action proposal sampling. IoU-balanced sampling [32]
guarantees the selected proposals have nearly the same
number in different IoU thresholds, such as {0 ∼ 0.3, 0.3 ∼
0.7, 0.7 ∼ 1}. Similarly, scale-balanced sampling main-
tains the equivalence of proposal numbers around different
action scales: small (scale<0.3), middle (0.3<scale<0.7),
and large (scale>0.7).

Our experiment shows that random sampling, grid sam-
pling, and DPP-based sampling all work well (see Tab. 4).
Using a rather small sampling rate, e.g. 30% at SGS and
6% at the APS, can provide a decent TAD performance.
Such small sampling ratios can greatly reduce computa-
tion in both the video encoder and the action detector while
keeping the SOTA performance.

4. Experiments
4.1. Implementation details

Datasets and evaluation metrics. ActivityNet-1.3 [14]
is a large-scale video understanding dataset, consisting of
19,994 videos annotated for the temporal action detection
task. The dataset is divided into train, validation, and test
sets with a ratio of 2:1:1. THUMOS-14 [16] contains 200

4529



Table 1. Action localization results on the validation set of ActivityNet-1.3, measured by mAP (%) at different tIoU thresholds and the
average mAP. E2E means the method is under end-to-end training. Mem. is the GPU memory usage (GB) per video.

Method Video Encoder E2E Flow 0.5 0.75 0.95 Average Mem. Pub.

RTD-Action [36] I3D ✗ ✓ 47.21 30.68 8.61 30.83 - ICCV2021
P-GCN [45] I3D ✗ ✓ 48.26 33.16 3.27 31.11 - ICCV2019
BMN [24] TSN ✗ ✓ 50.07 34.78 8.29 33.85 - ICCV2019
VSGN [48] TSN ✗ ✓ 52.38 36.01 8.37 35.07 1.6 ICCV2021
G-TAD [44] R(2+1)D-34 (TSP) ✗ ✗ 51.26 37.12 9.29 35.81 0.7 CVPR2020
CSA [35] R(2+1)D-34 (TSP) ✗ ✗ 52.64 37.75 7.94 36.25 - ICCV2021
ActionFormer [46] R(2+1)D-34 (TSP) ✗ ✗ 54.70 37.80 8.40 36.60 - ECCV2022
RCL [39] R(2+1)D-34 (TSP) ✗ ✗ 55.15 39.02 8.27 37.65 - CVPR2022

R-C3D [40] C3D ✓ ✗ - - - 26.80 - ICCV2017
AFSD [21] I3D ✓ ✓ 52.40 35.30 6.50 34.40 12 CVPR2021
LoFi [42] TSM-ResNet50 ✓ ✗ 50.91 35.86 8.79 34.96 29 NeurIPS2021
PBRNet [26] I3D ✓ ✓ 53.96 34.97 8.98 35.01 - AAAI2020
E2E-TAL [27] SlowFast-ResNet50 ✓ ✗ 50.47 35.99 10.83 35.10 3 CVPR2022
TALLFormer [6] Video Swin-B ✓ ✗ 54.10 36.20 7.90 35.60 29 ECCV2022
ETAD TSM-ResNet50 ✓ ✗ 53.79 37.59 10.56 36.79 1.7 CVPRW2023
ETAD R(2+1)D-34 (TSP) ✓ ✗ 55.49 39.32 10.57 38.25 1.3 CVPRW2023

annotated untrimmed videos in the validation set and 213
videos in the test set. We also evaluate our methods on
the HACS dataset [49] and achieve state-of-the-art perfor-
mance (see supplementary material). Mean Average Preci-
sion (mAP) at certain IoU thresholds and average mAP are
reported as the main evaluation metrics. On ActivityNet-
1.3, the IoU thresholds are chosen from 0.5 to 0.95 with
10 steps. On THUMOS-14, the thresholds are chosen from
{0.3, 0.4, 0.5, 0.6, 0.7}.

Implementation Details. Our method is implemented with
PyTorch 1.12, CUDA 11.1, and mmaction2 [8] on 1 Tesla
V100 GPU by default. TSM [23] and R(2+1)D [37] are
adopted as our video encoder for end-to-end training on
ActivityNet-1.3, while two stream I3D [3] is adopted as the
encoder on THUMOS-14. We fix the weights of the first
two stages of the video encoder and freeze all batch nor-
malization layers. For TSM, the image resolution is set to
224 × 224 with clip length 8, which is the same as in [42].
For R(2+1)D, the image resolution is set to 112× 112, and
the clip length is set to 16, following [1]. We adopt random
cropping as data augmentation. Note that the TSM model
is only pretrained on Kinetics-400 [17] and not finetuned
on the target datasets, i.e. ActivityNet-1.3, or THUMOS-
14. The R(2+1)D model is pretrained on the ActivityNet
dataset by [1]. We use a batch size of 4 and the AdamW
optimizer [30] with weight decay of 10−4. The learning
rate is set to 10−3 for the action detector and 10−6/10−7 for
TSM/R(2+1)D. The micro-batch size K in SGS is set to 4
by default. The sampling ratios are 30% and 6% in SGS
and APS, respectively. The total training epoch is set to 6
and the learning rate decays by 0.1 after 5 epochs. Follow-

ing [24, 33], we apply the video-level classification scores
from [50] on ActivityNet-1.3 and [38] on THUMOS-14.

4.2. Comparison with State-of-the-Art Methods

ActivityNet-1.3. Tab. 1 compares ETAD with other state-
of-the-art methods on ActivityNet-1.3. Under end-to-end
training, ETAD achieves 38.25% average mAP with only
1.3 GB memory (per video), outperforming other state-of-
the-art end-to-end training methods both on efficiency and
efficacy by a large margin. Compared with LoFi [42] which
also uses TSM-ResNet50 as the video encoder, ETAD
achieves +1.83 average mAP gain with only 15% GPU bud-
get. Interestingly, the memory usage of end-to-end-based
ETAD is even smaller than feature-based VSGN [48], sug-
gesting that ETAD is extremely memory-efficient. When
the batch size is 4, ETAD’s total memory usage is still lower
than 8 GB, which can be easily trained on a RTX2080.

THUMOS-14. We also show the advantage of our method
on THUMOS-14 in Tab. 2, which reaches the compara-
ble performance with other end-to-end methods, such as
ASFD [21], E2E-TAL [27]. Particularly, ETAD is better
on high IoU thresholds, indicating the high precision of the
generated action boundaries. Furthermore, our SGS can en-
able end-to-end training of SOTA feature-based TAD meth-
ods, e.g. ActionFormer [46]. As shown in Tab. 2 (bottom
block), end-to-end training consistently boosts the mAP un-
der all IoU thresholds, while only costing 10.4 GB memory
with the heavy Swin transformer backbone.

4530



Table 2. Action localization results on test set of THUMOS14,
measured by mAP (%) at different tIoU thresholds. † means the
reproduced results with Video Swin-T and only RGB modality.

Method 0.3 0.4 0.5 0.6 0.7

BMN [24] 56.0 47.4 38.8 29.7 20.5
G-TAD [44] 57.3 51.3 43.0 32.6 22.8
TCANet [33] 60.6 53.2 44.6 36.8 26.7
VSGN [48] 66.7 60.4 52.4 41.0 30.4
AFSD [21] 67.3 62.4 55.5 43.7 31.1
E2E-TAL [27] 69.4 64.3 56.0 46.4 34.9
ETAD 69.63 64.47 56.17 47.18 35.89

ActionFormer† 69.63 62.63 51.26 38.29 21.10
· · ·+ETAD 72.82 66.95 57.28 44.51 28.75

4.3. Ablation Study

In this section, we conduct the ablation studies on
ActivityNet-1.3 to verify the effectiveness of each design.

Up to 94% dense action proposals are redundant for ac-
tion detection. To prepare an efficient and powerful action
detector for end-to-end training, we first operate on pre-
extracted video features to verify the effectiveness of APS.
Fig. 4 shows that the performance of the detector saturates
from a small proposal sampling ratio. When the sampling
ratio is under 4%, the mAP starts to drop visibly. This re-
sult confirms our assumption that dense enumerated propos-
als are redundant for action detection. Using 6% sampling,
ETAD successfully results in the same detection perfor-
mance as using a complete proposal set. With pre-extracted
frozen features, it speeds up the training 7.5x faster (from
45 mins to 6 mins), and cuts down 92% of memory usage
(from 16 GB to 1.2 GB).

0.1 0.2 2 4 6 10 20 100
Sampling Ratio (%)

0

10

20

30

40

50

M
em

or
y 

(G
B)

 / 
Ti

m
e 

(m
in

)

4.2 4.2 4.5 5.2 6.0 7.8
10.5

45.0

0.3 0.3 0.6 0.9 1.2 1.9 3.5

16.1

Training Time (min)
GPU Memory (GB)

34.0

34.5

35.0

35.5

36.0

36.5

37.0

Av
er

ag
e 

m
AP

 (%
)

34.59

35.22

35.70
35.93

36.13 36.09 36.07 36.10

Average mAP over 5 runs

Figure 4. Using only 6% proposals are sufficient for action de-
tection. For proposal sampling, we use pre-extracted TSM fea-
tures with different sampling ratios and report the mAP, GPU
memory, and training time. Random sampling is adopted.

End-to-end training can improve TAD performance, but
it is memory-consuming. Based on the efficient action de-
tector with APS, we extract the snippet feature with a learn-
able video encoder and jointly optimize it with the action
detector. As shown in Tab. 3 (first row), end-to-end train-

Table 3. Sequential backpropagation can greatly reduce the
peak GPU memory while requiring more training time. Com-
bined with gradient sampling, ETAD can achieve efficient and
effective end-to-end training. Seq. means adopting sequential-
ized backpropagation. Ratio is the gradient sampling ratio. K
stands for the micro-batch size in SGS.

Seq. Ratio K FLOPs Mem.(GB) Time mAP

✗ 100% - 100% 137 100% 36.85

✓ 100%

8 150% 10.3 180%

36.85
4 150% 6.6 190%
2 150% 4.7 194%
1 150% 3.8 264%

✓

50% 4 100% 6.6 137% 36.83
40% 4 90% 6.6 121% 36.82
30% 4 80% 6.6 114% 36.79
20% 4 70% 6.6 101% 36.75
10% 4 60% 6.6 91% 36.68

ing can bring a significant performance gain from 36.13 to
36.85, which also proves the importance of end-to-end TAD
training. However, this naive end-to-end training requires
137 GB memory, which is infeasible on most platforms.

Sequential backpropagation is memory-efficient for
end-to-end training, but it is also time-consuming. To
further alleviate the memory limitations of end-to-end train-
ing, we apply sequential backpropagation on the naive end-
to-end training, as shown in Tab. 3 (middle block). In exper-
iments, we also find such an implementation has the same
detection performance as the naive one, which also verifies
the equality discussed in Sect. 3.3. Thus, we only compare
the peak GPU memory and training time, which shows that
adopting sequential backpropagation in end-to-end training
can greatly reduce the GPU memory consumption from 103
GB to 3.8 GB. Unfortunately, the training time is also in-
creased by 2.6× larger. Besides, since we need to recom-
pute the activations during backpropagation, the number of
FLOPs is also increased.

Gradient sampling can effectively save training time,
without sacrificing detection performance. To further re-
duce the training time, gradient sampling is combined with
sequential backpropagation, known as our complete SGS
approach. As shown in Tab. 3 (bottom), gradient sampling
with a ratio larger than 30% can still maintain nearly the
same detection performance, which proves the existence
of snippet-level learning redundancy. Such a scenario also
happens in THUMOS-14 dataset (see supplementary mate-
rial). In the meantime, the training time is evidently de-
creased from 190% to 114%, which is almost the same as
the naive end-to-end training. These results verify that SGS
can be served as an effective tool for memory-efficient end-
to-end TAD training.

4531



Table 4. Effect of different sampling strategies. We apply the
TSM-R50 as the video encoder and report the mAP on Activi-
tyNet. Frozen backbone is used in APS and end-to-end training is
used in SGS, thus the later results are expected to be higher.

Sampling
Type

Sampling
Strategy APS SGS

heuristic
random 36.13 36.79

grid 36.04 36.77
block 32.97 36.74

feature-guided
FPS 33.59 36.61
DPP 36.16 36.78

label-guided
IoU-balanced 34.84 N.A.

Scale-balanced 35.10 N.A.

Heuristic sampling strategy is recommended. As shown
in Tab. 4, from the APS column for proposal sampling, we
find that random sampling, grid sampling, and DPP work
well. While block sampling and label-guided sampling
both show certain downgrades in performance because they
change the proposal distribution and thus can not guarantee
the variety of proposals. From the SGS column for gradi-
ent sampling, all experiments outperform the pre-extracted
feature baseline in APS (36.13%). Considering the detec-
tion performance and computation complexity of different
sampling strategies, we recommend adopting heuristic sam-
plings such as random or grid strategies in APS and SGS.
More discussions can be found in supplementary material.

4.4. Further Discussions

Compared with other end-to-end strategies, SGS shows
both memory-efficiency and performance superiority.
We compare SGS with other end-to-end TAD strategies in
Tab. 5. From the aspect of memory usage, SGS lever-
ages only 1.7 GB memory per video to train the model
in an end-to-end fashion, which is much lower than other
methods. From the aspect of detection performance, SGS
reaches almost the same mAP as in naive end-to-end train-
ing, and beats other end-to-end strategies. For example,
though TALLFormer [6] uses less forward computation by
adopting the feature bank technique, the method may face
the risk of failure if the training dataset is large, where the
features of the same snippet between two epochs can be
drastically different. Therefore, we insist to adopt the full
forward propagation for all the snippets, and backward the
gradient sequentially and selectively.

SGS is complementary to other memory-saving tech-
niques. For example, activation checkpointing [5] also
saves part of intermediate activations and does forward re-
computation during backpropagation, but it operates on the
model’s different layers. Mixed-precision technique [31]
adaptively combines half-precision computation to save
memory and speed up the training. The gradient accumu-

Table 5. Comparison of Sequentialized Gradient Sampling
with other end-to-end training strategies in TAD. We set the
sampling rate to 30% and use ETAD detector in all experiments.
Computation in forward/backward stands for the theoretical com-
putation cost of the video encoder during each propagation. GPU
memory is reported with TSM-ResNet50 backbone.

Methods Forward Backward Mem. mAP

Pre-extracted Feature 0% 0% 1.2 36.13

Multi-stage Training [44] 60% 60% 44 36.36
Feature Bank [6] 30% 30% 44 36.54
SGS (ours) 130% 30% 6.6 36.79

Naive End-to-End 100% 100% 137 36.85

Table 6. Combination of SGS with other memory-saving meth-
ods. We report the memory usgae with batch size 4.

Method mAP Mem.(GB)

Naive End-to-End 36.85 137
SGS 36.79 6.6

Checkpoint 36.50 72
Checkpoint + SGS 36.63 4.8

Mxied Precision 36.49 67
Mxied Precision + SGS 36.70 4.8

Checkpoint + Mxied Precision + SGS 36.71 4.0

lation sums the gradient over multiple batches to implicitly
change the batch size to save memory. For comparison, our
sequential gradient sampling process focuses on reducing
the complexity over temporal dimensions, instead of batch
dimensions or depth dimensions. As shown in Tab. 6, SGS
is complementary to aforementioned memory-saving tech-
niques. It allows the detector to accommodate higher reso-
lution frames, larger batch sizes, and a deeper backbone.

5. Conclusion

In this paper, we propose an end-to-end training method
for the temporal action detector with extremely low GPU
memory consumption. The training pipeline of ETAD con-
tains sequentialized video encoding, action detector learn-
ing, and sequentialized gradient updating. ETAD achieves
state-of-the-art action detection performance on multiple
benchmarks. The proposed sequentialized gradient sam-
pling method makes end-to-end training tractable in real-
world applications, and the empirical results of different
sampling strategies can shed light on how to effectively re-
duce computations in video localization problems. We hope
this work will encourage the community to carry out more
research on end-to-end training in various untrimmed video
understanding tasks, such as video language grounding and
video captioning.

4532



References
[1] Humam Alwassel, Silvio Giancola, and Bernard Ghanem.

TSP: Temporally-sensitive pretraining of video encoders for
localization tasks. In Int. Conf. Comput. Vis. Worksh., 2021.
2, 6

[2] Yueran Bai, Yingying Wang, Yunhai Tong, Yang Yang,
Qiyue Liu, and Junhui Liu. Boundary content graph neural
network for temporal action proposal generation. In ECCV,
2020. 2

[3] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the Kinetics dataset. In CVPR,
2017. 6

[4] Yu-Wei Chao, Sudheendra Vijayanarasimhan, Bryan Sey-
bold, David A. Ross, Jia Deng, and Rahul Sukthankar. Re-
thinking the faster R-CNN architecture for temporal action
localization. In CVPR, 2018. 2

[5] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin.
Training deep nets with sublinear memory cost. arXiv
preprint arXiv:1604.06174, 2016. 4, 8

[6] Feng Cheng and Gedas Bertasius. Tallformer: Temporal ac-
tion localization with long-memory transformer. In ECCV,
2022. 1, 3, 4, 6, 8

[7] Feng Cheng, Mingze Xu, Yuanjun Xiong, Hao Chen, Xinyu
Li, Wei Li, and Wei Xia. Stochastic backpropagation: A
memory efficient strategy for training video models. arXiv
preprint arXiv:2203.16755, 2022. 1, 2

[8] MMAction2 Contributors. Openmmlab’s next gen-
eration video understanding toolbox and benchmark.
github.com/open-mmlab/mmaction2, 2020. 6

[9] Yuval Eldar, Michael Lindenbaum, Moshe Porat, and
Yehoshua Y Zeevi. The farthest point strategy for progres-
sive image sampling. IEEE Transactions on Image Process-
ing, 6(9):1305–1315, 1997. 5

[10] Victor Escorcia, Fabian Caba Heilbron, Juan Carlos Niebles,
and Bernard Ghanem. DAPs: Deep action proposals for ac-
tion understanding. In ECCV, 2016. 1, 2

[11] Jiyang Gao, Kan Chen, and Ramakant Nevatia. CTAP: Com-
plementary temporal action proposal generation. In ECCV,
2018. 2

[12] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In CVPR, 2022. 5

[13] Fabian Caba Heilbron, Wayner Barrios, Victor Escorcia, and
Bernard Ghanem. SCC: Semantic context cascade for effi-
cient action detection. In CVPR, 2017. 2

[14] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem,
and Juan Carlos Niebles. ActivityNet: A large-scale video
benchmark for human activity understanding. In CVPR,
2015. 1, 5

[15] Cheng Huang and Hongmei Wang. A novel key-frames se-
lection framework for comprehensive video summarization.
IEEE Transactions on Circuits and Systems for Video Tech-
nology, 30(2):577–589, 2019. 2

[16] YG Jiang, J Liu, A Roshan Zamir, G Toderici, I Laptev, M
Shah, and R Sukthankar. Thumos challenge: Action recog-
nition with a large number of classes, 2014. 5

[17] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017. 6

[18] Bruno Korbar, Du Tran, and Lorenzo Torresani. Scsampler:
Sampling salient clips from video for efficient action recog-
nition. In ICCV, 2019. 2

[19] Alex Kulesza and Ben Taskar. k-dpps: Fixed-size determi-
nantal point processes. In ICML, 2011. 5

[20] Chuming Lin, Jian Li, Yabiao Wang, Ying Tai, Donghao
Luo, Zhipeng Cui, Chengjie Wang, Jilin Li, Feiyue Huang,
and Rongrong Ji. Fast learning of temporal action proposal
via dense boundary generator. In AAAI, 2020. 3

[21] Chuming Lin, Chengming Xu, Donghao Luo, Yabiao Wang,
Ying Tai, Chengjie Wang, Jilin Li, Feiyue Huang, and Yan-
wei Fu. Learning salient boundary feature for anchor-free
temporal action localization. In CVPR, 2021. 1, 2, 6, 7

[22] Chuming Lin, Chengming Xu, Donghao Luo, Yabiao Wang,
Ying Tai, Chengjie Wang, Jilin Li, Feiyue Huang, and Yan-
wei Fu. Learning salient boundary feature for anchor-
free temporal action localization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3320–3329, June 2021. 1

[23] Ji Lin, Chuang Gan, and Song Han. TSM: Temporal shift
module for efficient video understanding. In ICCV, 2019. 3,
6

[24] Tianwei Lin, Xiao Liu, Xin Li, Errui Ding, and Shilei Wen.
BMN: boundary-matching network for temporal action pro-
posal generation. In ICCV, 2019. 2, 3, 5, 6, 7

[25] Tianwei Lin, Xu Zhao, Haisheng Su, Chongjing Wang, and
Ming Yang. BSN: Boundary sensitive network for temporal
action proposal generation. In ECCV, 2018. 2

[26] Qinying Liu and Zilei Wang. Progressive boundary refine-
ment network for temporal action detection. In AAAI, 2020.
2, 5, 6

[27] Xiaolong Liu, Song Bai, and Xiang Bai. An empirical study
of end-to-end temporal action detection. In CVPR, 2022. 1,
2, 6, 7

[28] Yuan Liu, Lin Ma, Yifeng Zhang, Wei Liu, and Shih-Fu
Chang. Multi-granularity generator for temporal action pro-
posal. In CVPR, 2019. 2

[29] Fuchen Long, Ting Yao, Zhaofan Qiu, Xinmei Tian, Jiebo
Luo, and Tao Mei. Gaussian temporal awareness networks
for action localization. In CVPR, 2019. 2

[30] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2019. 6

[31] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory
Diamos, Erich Elsen, David Garcia, Boris Ginsburg, Michael
Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed
precision training. arXiv preprint arXiv:1710.03740, 2017.
4, 8

[32] Jiangmiao Pang, Kai Chen, Jianping Shi, Huajun Feng,
Wanli Ouyang, and Dahua Lin. Libra r-cnn: Towards
balanced learning for object detection. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 821–830, 2019. 5

4533



[33] Zhiwu Qing, Haisheng Su, Weihao Gan, Dongliang Wang,
Wei Wu, Xiang Wang, Yu Qiao, Junjie Yan, Changxin Gao,
and Nong Sang. Temporal context aggregation network for
temporal action proposal refinement. In CVPR, 2021. 2, 6, 7

[34] Zheng Shou, Dongang Wang, and Shih-Fu Chang. Tempo-
ral action localization in untrimmed videos via multi-stage
CNNs. In CVPR, 2016. 2

[35] Deepak Sridhar, Niamul Quader, Srikanth Muralidharan,
Yaoxin Li, Peng Dai, and Juwei Lu. Class semantics-based
attention for action detection. In CVPR, 2021. 6

[36] Jing Tan, Jiaqi Tang, Limin Wang, and Gangshan Wu. Re-
laxed transformer decoders for direct action proposal gener-
ation. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 13526–13535, 2021. 6

[37] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann
LeCun, and Manohar Paluri. A closer look at spatiotemporal
convolutions for action recognition. In CVPR, 2018. 3, 6

[38] Limin Wang, Yuanjun Xiong, Dahua Lin, and Luc Van Gool.
Untrimmednets for weakly supervised action recognition
and detection. In CVPR, 2017. 6

[39] Qiang Wang, Yanhao Zhang, Yun Zheng, and Pan Pan. Rcl:
Recurrent continuous localization for temporal action detec-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 13566–13575,
2022. 6

[40] Huijuan Xu, Abir Das, and Kate Saenko. R-C3D: Region
convolutional 3D network for temporal activity detection. In
ICCV, 2017. 2, 6

[41] Mengmeng Xu, Juan-Manuel Pérez-Rúa, Victor Escorcia,
Brais Martinez, Xiatian Zhu, Bernard Ghanem, and Tao Xi-
ang. Boundary-sensitive pre-training for temporal localiza-
tion in videos. In ICCV, 2021. 2

[42] Mengmeng Xu, Juan Manuel Perez Rua, Xiatian Zhu,
Bernard Ghanem, and Brais Martinez. Low-fidelity video
encoder optimization for temporal action localization. In
NeurIPS, 2021. 6

[43] Mengmeng Xu, Mattia Soldan, Jialin Gao, Shuming Liu,
Juan-Manuel Pérez-Rúa, and Bernard Ghanem. Boundary-
denoising for video activity localization. arXiv preprint
arXiv:2304.02934, 2023. 2

[44] Mengmeng Xu, Chen Zhao, David S Rojas, Ali Thabet, and
Bernard Ghanem. G-TAD: Sub-graph localization for tem-
poral action detection. In CVPR, 2020. 1, 2, 3, 5, 6, 7, 8

[45] Runhao Zeng, Wenbing Huang, Mingkui Tan, Yu Rong,
Peilin Zhao, Junzhou Huang, and Chuang Gan. Graph con-
volutional networks for temporal action localization. In
ICCV, 2019. 2, 6

[46] Chenlin Zhang, Jianxin Wu, and Yin Li. Actionformer: Lo-
calizing moments of actions with transformers. In ECCV,
2022. 6

[47] Chen Zhao, Shuming Liu, Karttikeya Mangalam, and
Bernard Ghanem. Reˆ 2tal: Rewiring pretrained video back-
bones for reversible temporal action localization. In CVPR,
2023. 2

[48] Chen Zhao, Ali K Thabet, and Bernard Ghanem. Video self-
stitching graph network for temporal action localization. In
ICCV, 2021. 2, 6, 7

[49] Hang Zhao, Zhicheng Yan, Lorenzo Torresani, and Antonio
Torralba. HACS: Human action clips and segments dataset
for recognition and temporal localization. ICCV, 2019. 1, 6

[50] Y Zhao, B Zhang, Z Wu, S Yang, L Zhou, S Yan, L Wang, Y
Xiong, D Lin, Y Qiao, et al. Cuhk & ethz & siat submission
to activitynet challenge 2017. CVPR ActivityNet Workshop,
2017. 6

4534


