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Abstract

This paper introduces a density- and entropy-adaptive
inference acceleration method for 3D point cloud based
deep neural networks. Based on the entropy of each in-
put frame, the method first determines the number of points
to be inferred. Then we apply a novel density calculation
method to sample the points in the order of density of each
point. Experiments on two representative 3D scene flow es-
timation models with the KITTI dataset show that the pro-
posed scheme reduces inference latency by 32% each within
0.01m of the estimation error.

1. Introduction

As the robot navigation and autonomous driving indus-
tries are rapidly developing, there is a lot of interest in the
technology that recognizes 3D environments based on point
cloud data. Recently, deep learning has been applied to this
field and has demonstrated excellent cognitive abilities in
tasks such as 3D object detection and semantic segmenta-
tion. However, most high-performance models require a
significant amount of computational resources due to their
complex structure, making it difficult to be inferred in real-
time on mobile devices with limited resources. Therefore,
a major challenge in implementing efficient deep learning
models in limited environments such as embedded systems
is reducing model size and increasing inference speed while
minimizing performance loss.

One possible solution is applying dynamic inference,
which is able to reduce the computational cost of deep neu-
ral networks by adaptively adjusting the inference process
according to the input data. Dynamic inference has evolved
in various forms for models that handle 2D image data. For
example, there have been dynamic pruning methods [3, 7]
that dynamically prune redundant weights when inferring
and dynamic quantization methods [15, 20] that train with
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Figure 1. Comparison of Mean EPE3D and inference time by
number of points. The color of the figure represents the value of
EPE3D (End Point Error 3D) for each point. Blue has small er-
rors and red has large errors.The above figure shows an inference
of 8192 points with EPE3D 0.007 and latency of 220ms, while the
below figure shows an inference of 4096 points with EPE3D 0.003
and latency twice as fast at 110ms.

full precision and dynamically quantize during inference.
In addition, other studies identify important parts of input
data and use only those parts for inference to increase the
efficiency of inference [14, 18].

However, dynamic inference has not been actively stud-
ied for 3D point cloud data. Furthermore, related re-
searches [10, 11, 16, 17] only focus on simplifying 3D
convolution operations or downsizing the model structure.
Nevertheless, dynamic inference using density can be im-
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Figure 2. The Overall process of dynamic inference of point based 3D deep neural network. When the input frame passes through the
density adaptive inference module, it infers faster with only selected points.

plemented while maintaining performance and reducing in-
ference time. Density is used as a key factor to maintain
performance in several studies of point cloud models. Effi-
cient semantic segmentation of Lidar and photogrammetric
reconstruction data is performed in [5] by clustering in-
put point cloud data based on density, extracting local fea-
tures of each cluster, and performing inference using these
features. To improve classification performance, Dance-
Net [9] calculates the density of each point with a multi-
layer perceptron and applies different convolution kernel
sizes adaptively according to the density.

However, these performance-oriented designs using den-
sity are complex in structure and require a lot of computa-
tional cost, but efficient point cloud down-sampling meth-
ods called point cloud compression can reduce computa-
tional costs. Effective encoding based on temporal and spa-
tial redundancy of point cloud data was implemented in [2].
However, it is difficult to implement in real-time because it
requires finding redundancy from multiple frames. In [4],
data is compressed by improved octree through considera-
tion of adjacent octree nodes. In [6], a compression method
that learns point-wise features with an auto-encoder to pre-
serve local information is implemented. However, struc-
tures that require multiple convolutional operations in [4,6]
are difficult to shorten inference time.

Fig. 1 shows that faster and more effective inference
is possible when efficient point cloud downsampling us-
ing density is performed. This figure is an example of
the 3D scene flow estimation inference result of a single
KITTI data. The figure above is the original inference re-
sult, and the figure below is the inference result of selecting
4096 points in order of small errors in the figure above. It
shows that the mean EPE3D and latency are reduced by half
compared to the original result, and the selected points are
mainly concentrated on dense objects, indicating that den-
sity is an important factor.

In this study, we introduce a method of implementing
real-time dynamic inference by performing efficient low-
cost downsampling based on the density of point clouds.
The proposed method determines the number of points to

be inferred based on the sparsity of data using entropy that
represents the distribution of data. This study also devises
a new density calculation method reflecting the characteris-
tics of point clouds where points are densely packed in ob-
jects. Subsequently, points are selected in density order for
final inference. We evaluate the proposed method based on
two representative 3D scene flow estimation models [ 1, 19],
which estimate point-wise motions from two consecutive
frames. As a result, the inference time was reduced by 32%
within the range of mean EPE3D value increase of 0.01 m
for the two representative models.

Overall, the key contributions of this work are as follows:

* To reduce the computational cost and latency of the
model, we propose a novel dynamic inference ap-
proach, which selects points from the input 3D point
cloud that contributes more to the deep learning model
inference.

* We propose a novel density calculation method that re-
flects the characteristics of a point cloud set.

* We evaluate the proposed method based on representa-
tive 3D scene flow estimation models and present the
efficiency and effectiveness of the proposed dynamic
inference.

2. Proposed Method

This work proposes a novel dynamic inference accelera-
tion method of 3D point cloud-based deep neural networks
that determines the number of inference points based on the
entropy of the frame and determines the inference points
based on density. Fig. 2 shows an overall process of pro-
posed method. An input point cloud is represented as a set
of 3D points s = {s;|i = 1,...,n}, where each point con-
tains points vector s; = (x;, y;, 2;). The number of points
to be inferred is determined through the entropy of the point
set s, and the density is calculated for each point s; to se-
lect points to be inferred in the order of density according
to the number of points determined. This density adaptive
dynamic inference method reduces computational costs by
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reducing the points of input data, and minimizes the loss
of prediction accuracy by selecting the points based on the
density of each point.

2.1. Determining the Number of Sampled Points
Using the Entropy

Entropy indicates how much different data are dis-
tributed within a given category, and the more diverse the
data, the higher the entropy value. By leveraging these
entropy characteristics, we are able to find the minimum
number of points required for dynamic inference, and thus
determine the distribution of point cloud data. Let p =
(p1,p2, ---,pn) be a finite discrete probability distribution
and suppose pr, = 0(k = 1,2,..,n) and > ,_, pr = 1.
The entropy H(p) = H(p1,p2, ..., pn) is defined as (1).

H(p1,p2,-Pn) = Y Prlogs pi- (1
k=1

To produce the probability distribution p in (1), we ap-
ply a multi-dimensional histogram of the input point cloud
data. For a point set s1;(x14, Y1i, 21:), We create a multi-
dimensional histogram of the x, y, z axes, and the data dis-
tribution is expressed as a probability by dividing the num-
ber of points belonging to each bin by the total number of
histogram bin.

Using the entropy of the input data, the number of in-
ference points is determined. We first calculate the min-
imum (Min(E)) and maximum (Max(E)) entropy of the
datasets. Then we determine the minimum number of points
(Min(N)) and the maximum number of points (Max(N)) re-
quired for inference. Finally, we match the minimum and
maximum entropy values with the corresponding minimum
and maximum number of inference points. The equation
can be represented as

Maz(N) — Min(N)
~ Maz(E) — Min(E)

(Input(E) — Min(E)) + Min(N), (2)

where N denotes the number of points for inference and F
is entropy of the input frame, M ax, Min means maximum
and minimum.

2.2. Point Sampling Based on the Density

When density is defined as the number of points included
in a unit space, the density of each point in a point cloud
can be relatively represented by taking the inverse of the
volume of that space when the number of points included is
the same. If we assume that the number of points included
is the same and represent it as 1, and if we call the radius of
that space r, which is expressed as

5 3)

Densityxnn(s) =

When we calculate the density with (3), radius r is the
distance from the reference point to the k-th furthest point.
However, since there is a possibility that the k-th point may
be a noise signal that has been measured incorrectly and it
does not reflect the distribution of other points included in
that space, the density of that point cannot be expressed only
by the distance from the reference point to the k-th point.
Therefore, we define a new density calculation method by
multiplying the inverse of the radius that reflects the dis-
tance for all other points in space by the sum of the vol-
umes and then taking the inverse. This method is expressed
as KNN density from obtaining the distance of k nearest
points, and the equation is shown as (4).

3. Experiment
3.1. Settings

In the experiments, the proposed method is applied to
two baselines, PointPWCNet [19] and BiPointFlowNet [ 1],
which are representative 3D scene flow estimation mod-
els. Note that, the default number of input points to
these two baselines are both 8§192. These two models in
[1, 19] are trained on FlyingThings3D [12] and validated
on KITTTI [13], which are two datasets commonly used for
3D scene flow estimation task. The experiments of this
study for verifying dynamic inference performance were
conducted only with the KITTI dataset. KITTI Scene Flow
2015 dataset provides actual Lidar scans and consists of 142
frame pairs for test. For a fair comparison, we applied the
same metrics as those used in recent studies [ 1,8, 19]. More-
over, we focus on the representative EPE3D metric, which
measures the average distance error between the predicted
pixel displacement vector and the actual pixel displacement
vector in 3D space. Experiments were conducted on the
Intel 17 9th generation CPU and NVIDIA RTX 2060 GPU
with PyTorch.

3.2. Results

Fig. 3 shows the relationship between entropy and den-
sity for EPE3D. Fig. 3(a) is the scatterplot of entropy and
mean EPE3D of KITTI data. On the right side of the plot,
two examples are selected and visualized from the actual in-
put data according to their entropy. These figures show that
data with low entropy results in a low mean EPE3D value as
points are concentrated on the object. Therefore, if we need
to reduce the number of points to be inferred according to
the input data, we can judge that it is effective to reduce the
number of points in data with low entropy. Fig. 3(b) shows
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Figure 3. Relationship between Entropy, Density and EPE3D. The
lower the entropy, the smaller the mean EPE3D value, and the
points of the data with the lower entropy are selected first in the
order of the high density.

a scatterplot of EPE3D and density for each point of data
with low entropy. According to the distribution of density
and EPE3D, our method selects points with higher density
in higher priority for inference, since they generally produce
lower estimation error. As visualized in the lower right, the
selected high-density points are well-presented with mean-
ingful shapes and can provide the almost same EPE3D per-
formance as using the full input.

Fig. 4 shows the results of applying the proposed method
to PointPWCNet and BiPointFlowNet. For both mod-
els, compared to baseline, latency decreases as the num-
ber of points to infer decreases, and latency can be sig-
nificantly reduced within EPE3D 0.01 m (1 cm). Over-
all, both models reduce latency when inferring with fewer
than 8192 points. However, the proposed method avoids
the significant EPE3D increase with negligible latency in-
crease compared to the random selection. In specific, the
proposed method can reduce the number of input points
for PointPWCNet from 8192 (EPE3D=0.054) to 6562
(EPE3D=0.056) with little increase in EPE3D, which re-
duces inference time by about 25 ms (12%). Additionally,
under the allowable EPE3D increase margin of 1cm (0.010
m), our method is able to reduce the number of inference
points to 4824 and the model inference time by up to 68 ms
(32%). When the inference points are reduced from 8192 to
6724 in BiPointFlowNet, EPE3D increases by only 0.003 m
and the inference time is about 22 ms (about 10%) less. If
the increase in EPE3D is constrained within 1cm, BiPoint-
FlowNet can be inferred using only 4972 points (EPE3D =
0.039) while reducing the inference time by 70 ms (32%).
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Figure 4. Comparison of baseline performance and proposed
method performance for PointPWCNet (red) and BiPointFlowNet
(blue). Solid lines represent the result of the proposed method, and
dashed lines represent the result of random selection. The horizon-
tal axis indicates latency, and the vertical axis indicates EPE3D.
The latency means the time that includes not only the model infer-
ence time but also the entropy and density calculation time.

4. Conclusion

We proposed a dynamic inference acceleration method
for 3D point cloud-based deep neural networks using den-
sities and entropy that can be useful for the deployment
of embedded systems. By calculating the entropy of each
frame, the proposed method determines the optimal num-
ber of points to infer and employs a novel point cloud den-
sity calculation method for inferring scene flows. Experi-
mental results reveal that the inference speed can be greatly
reduced with little increase in error for 3D scene flow esti-
mation deep learning models. In the future, we aim to im-
prove the performance to the level where real-time control
is possible by inferring within 100 ms in limited environ-
ments such as robots and vehicle controllers. We also plan
to expand our research to other 3D tasks such as 3D object
detection and 3D semantic segmentation by combining and
improving various downsampling techniques such as point
cloud compression.
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