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Abstract
We propose a dataset-efficient deep learning training

method by ensembling multiple models trained on differ-
ent subsets. The ensembling method leverages the difficulty
level of data samples to select subsets that are representa-
tive and diverse. The approach involves building a common
base model with a random subset of data and then allotting
different subsets to the models in an ensemble. The mod-
els are trained with their own subsets and then merged into
a single model. We design an multi-phase training strat-
egy that aggregates models in the ensemble more frequently
and prevents divergence. The experiments on ResNet18
and ImageNet show that ensembling outperforms the no-
ensemble case and achieves 64.8% accuracy with only 30%
of dataset, saving 20 hours of training time in a single V100
GPU training experiment with a mild accuracy drop.

1. Introduction
Deep learning has revolutionized computer vision and

other domains with ever-growing DNN architectures and
training datasets, which promise remarkable performance
at the price of prohibitively high training cost and energy
consumption [10]. Multiple approaches focusing on dif-
ferent aspects of training have been proposed to increase
the efficiency of the training procedure and democratize
access to large DNNs. We have seen a growing number
of tools supporting model and data distribution to mul-
tiple devices [1, 17], while others propose more efficient
model optimization algorithms [11,25]. Recently, many re-
searchers have focused on addressing training costs through
data-centric approaches that explore using subsets of train-
ing data instead of the entire dataset [6, 13, 15, 21]. While
these methods have shown promising results, they often
need a carefully designed training procedure [8]. Addition-
ally, some of these methods work well on certain datasets
but fail on others [20], making them difficult to generalize
across a wide range of applications.

To address these limitations, recent work [14] explored
including samples of all difficulty levels in the training sub-
set, where difficulty is defined as prediction uncertainty for
the sample. The results indicated that such training sub-

sets achieve higher accuracy, which is not surprising, as se-
lecting data items from different difficulty levels naturally
widens the selection space and makes models more gen-
eral compared to focusing only on the most difficult exam-
ples [15, 21], which are closer to the classification bound-
aries. However, the particular combination of difficulty lev-
els that works best can differ for different model and dataset
characteristics. For instance, recent work [20] observed
that keeping easy examples is better when the training data
is scarce, while keeping hard examples is better when the
training data is abundant.

This work presents a dataset-efficient training method by
ensembling models trained on subsets of different difficulty
levels. We first sort data samples based on the GraNd [15]
algorithm, which scores each item based on its expected
loss gradient norm. High-scoring samples are difficult, as
their expected loss is high, while low-scoring samples are
easy. Each model is trained with samples of different diffi-
culty and then aggregated to generate one final model. By
using the ensemble method, we eliminate the need for ex-
perimentation to select the most appropriate sample diffi-
culty for different architectures and datasets. We also ex-
tend the method to an iterative multi-phase ensemble train-
ing method that aggregates models in the ensemble more
frequently. Our results show that the proposed method out-
performs the no-ensemble case. From the experiment with
ResNet18 and the Imagenet Dataset, we achieved 64.8% ac-
curacy with only 30% of the dataset while the roofline ac-
curacy is 67.65%.

2. Background
2.1. Subset training

Several previous works have proposed novel subset se-
lection algorithms based on various factors to select the
most effective samples without negative impact on the accu-
racy of a model trained with the subset. For example, some
algorithms consider dataset geography [19,22], while others
take into account error or loss [15,21]. Another approach is
to use gradient matching [8,13]. In these approaches, a sub-
set is selected to reduce the difference between the gradient
from the subset and the gradient from the entire dataset.

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4700



These existing methods have primarily focused on pro-
viding theoretical guarantees for the quality of mod-
els. Thus, their experiments are usually limited to small
datasets. However, using a single algorithm can generate a
biased subset because of 1) a lack of representativeness and
randomness, and 2) a model that can overfit to the subset.
In comparison to these prior works, our approach takes a
different angle: we focus on providing a practical method
that can be applied to large datasets such as Imagenet.

The data pruning approach in [20] trains a probe student
perceptron on the training data for a few epochs, computes
the margin of each training example, constructs a subset of
a certain size by retaining the hardest examples, and then
trains a new perceptron to completion on the subset. Addi-
tionally, the authors used self-supervised learning (SSL) to
develop a new, inexpensive unsupervised data pruning met-
ric that does not require labels, unlike prior metrics.

2.2. Ensemble methods

Ensembling methods combine the predictions from mul-
tiple models to improve overall performance. Bagging [2]
is a type of ensembling that trains a large number of strong
learners (models that are relatively unconstrained) in paral-
lel on different subsets of the training data. By averaging or
voting the predictions of these learners, bagging can reduce
variance and prevent overfitting of complex models.

Recently, researchers have studied the effectiveness of
averaging the parameters instead of the predictions [4, 12,
23, 24]. [4] observed a connection between the optima of
loss functions, enabling better ensembling methods. Based
on this observation, averaging the model parameters is pre-
ferred over averaging predictions for some use cases. It was
also used in federated learning [9] to synchronize models
trained in different sites.

3. Proposed Methods
3.1. Ensemble of Models

Studies have shown the effectiveness of subset selection
based on sample difficulty [3, 15, 21]. Intuitively, when a
model is trained on difficult samples, it learns to general-
ize better and achieve higher performance. However, for
GraNd, only data with a single level of difficulty is exposed
to the entire training, restricting the representativeness of
the subset and making it prone to overfitting. To address this
issue, prior work [14] leveraged active learning to update
the subset during training. However, this process requires
more training epochs compared to baseline subset training
since it gradually adds data samples to the subset.

To overcome the limitations of subset training with a
lack of data diversity, we propose an ensemble of mod-
els, where each model is trained with samples of different
difficulty. Figure 1 shows the high-level view of our ap-
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Figure 1. Proposed Subset Training Method

proach, which consists of three main stages: (1) building a
base model, (2) training an ensemble, and (3) model merg-
ing. First, we start with explaining the single-phase method
(i.e., n phase = 1) where each stage is executed once, and,
next, we extend the method to iterative multi-phase ensem-
ble training in Section 3.2.

In the first stage we train a common base model using
a fixed subset of data, i.e., for N

2∗n phase epochs, we do
not re-select the subset. Here, N indicates the total bud-
get for training (e.g., number of training epochs). To build
the fixed subset, we select k% of samples using either a
random sampling or a data selection algorithm. We will
discuss the performance of both methods in the evaluation
section. After the base model training is completed, we
copy the base model n models times to create an ensemble
of size n models, and assign each model a different sub-
set to train on. To create subsets for ensemble models, we
score all data samples in the full datasets using GraNd al-
gorithm [15] and divide it into n models difficulty classes.
Next, from each difficulty class, we select k% data to form a
final training subset. Each model in the ensemble is trained
for 1

n models of the remaining training budget, and after the
subset training is done, all models are merged into one sin-
gle model using simple yet effective parameter averaging
method [4, 16, 24].

3.2. Iterative Multi-phase Ensemble Training

Training ensemble models on separate subsets for an ex-
tended number of epochs can cause the models to diverge
due to differing data distributions in each subset. This
makes it challenging to maximize the benefits of weight av-
eraging. To address this issue, we propose iterative multi-
phase ensemble training. In addition to the single-phase en-
semble training, this approach repeats the three stages de-
scribed above for a specified number of phases (n phases
), with the training budget (e.g., the number of epochs) di-
vided evenly between phases. By aggregating models more
frequently, we can prevent the ensemble models from di-
verging too far from each other. In addition, we found that
introducing the random subset in an interleaved fashion fur-
ther improves training convergence.
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For instance, if the training budget is 200 epochs, then
single-phase ensemble training uses 100 epochs for base
model training and the remaining 100 epochs for ensem-
ble training where each ensemble gets a training budget of

100
n models epochs. Suppose we consider the same budget for
the iterative multi-phase ensemble training with 2 phases.
Then, each phase is assigned a budget of 100 epochs, with
50 epochs for training on a fixed subset and 50 epochs used
for ensemble training. This effectively shortens the time
models train on their unique subsets and should prevent sub-
sets overfitting and, thus, diverging from the general data
distribution.

4. Experiment Results
To evaluate the effectiveness of the proposed methods,

we use ResNet18 [7] and ImageNet dataset [18] that in-
cludes 1.28 million training samples and 100,000 test sam-
ples. Before starting the proposed subset training method,
we perform an initial model warm-up by training the model
with a full dataset for 5 epochs with monotonically increas-
ing learning rate from 0.1 as suggested by [5]. Each ex-
periment has a total training budget of 200 epochs, and the
models are trained with batch size of 256 and SGD opti-
mizer. We use a cosine decay scheduler for learning rate
scheduling. The initial learning rate is 0.1, the momentum
is 0.9, and the weight decay is 5 ∗ 1e− 4.

4.1. Common Base Model

This experiment compares two methods for fixed subset
selection and their effects on the performance of the base
model. The Top-subset is created using the GraNd algo-
rithm, which selects the most informative samples from the
dataset based on gradient loss. The Random-subset is cre-
ated by random sample selection.

Table 1. Accuracy for ensemble size=4 when the base model is
trained on Top-subset vs Random-subset.

Data Fraction (k%) 1% 5% 10% 30%

Top 30.58 46.14 52.61 61.16
Random 38.58 52.46 56.49 61.71

Results in Table 1 shows that Random-subset-trained
base model outperforms the Top-subset-trained base model.
This is because Top-subset tends to include difficult sam-
ples that are more biased than Random-subset. This exper-
iment result supports a claim that it is better to learn more
diverse and general features during the early phase of train-
ing. Thus, for the remaining experimental results, we use
Random-subset-trained model as our base model.

Figure 2 depicts the test loss measured at each epoch (the
x-axis is converted to steps) for 10% and 30% subset train-
ing with a Top-subset base model and a Random-subset base

Figure 2. Test Loss for different base model

model. For both 10% and 30% subsets, training with ran-
dom subsets shows lower test loss.

4.2. Effectiveness of Ensembling

Results in Table 2 present the performance of ensem-
bling in a single-phase training. After we build a common
base model, we perform Ensemble of models training, i.e.,
we continue the training of multiple models in parallel with
different subsets. We compare the performance between en-
sembles of different sizes, where ensemble size is equal to
the number of models n model. Each model in the ensem-
ble is trained for 100

n models epochs (note that the first 100
epochs are spent on training the common base model). To
select a subset for each model, we sort all samples in the
dataset by GraNd score, and divide it to n model groups,
and select k% ∈ {1%, 5%, 10%, 30%} data samples from
each group. For a comparison, we added a No ensemble
case, where the model continues training on the same sub-
set that was used for the first 100 epochs.

Table 2. Accuracy depending on different ensemble sizes.

Data Fraction (k%) 1% 5% 10% 30%

No ensemble 18.10 43.53 49.92 57.98
Ensemble size = 2 35.56 48.16 53.56 60.52
Ensemble size = 4 38.58 52.46 56.49 61.71
Ensemble size = 10 38.31 52.79 57.23 60.90

Table 2 shows that Ensemble of models outperforms No
ensemble training across all training subset sizes. We ob-
serve the highest increase in performance for the smallest
subset size (i.e., k = 1%). In contrast, when the subset
size grows, the performance gap between Ensemble of mod-
els and No ensemble is reduced. This result indicates that
Ensemble of models is particularly useful in the context of
very small training subsets since each model in the ensem-
ble gets the most representative fraction of samples from
different difficulty classes and specializes in learning fea-
tures distinctive to that class.

We also observe that accuracy for each data fraction
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reaches its plateau at a certain ensemble size. For instance,
increasing the ensemble size from 2 to 4 improved the per-
formance while increasing the size from 4 to 10 had a minor
impact on the accuracy. The diminishing improvement can
be explained by a fixed training budget, which is divided
evenly by all the models in the ensemble. In other words, if
as the ensemble size increases, each model in the ensemble
is given less epochs to train on its subset. Thus, increasing
the ensemble size without adjusting the training budget may
bring limited improvements.

Figure 3. Test Loss for ensemble models size of four. Loss mea-
sured on the final aggregated model is depicted with a star.

To get more evidence on ensemble effectiveness, in Fig-
ure 3 we show the test loss measured at each epoch (the
x-axis is converted to steps) for k = 30% subset training.
We used an ensemble consisting of 4 models trained on top
of a random-subset trained base model. For the remaining
budget of 100 epochs, each model in the ensemble trains
with a different subset for each 100

4 = 25 epochs, thus de-
creasing the loss accordingly. If we aggregate the models in
the ensemble, the final loss (depicted with a star in the fig-
ure) is even lower than any of the models in the ensemble.
This shows the effectiveness of the ensemble method.

4.3. Effectiveness of Iterative Multi-phase
Ensemble Training

In this experiment, we evaluate the effectiveness of itera-
tive multi-phase ensemble training proposed in Section 3.2.
For iterative multi-phase ensemble training, entire training
is divided into multiple phases. We measured the final ac-
curacy for two configurations: when the number of phase
is 2 and 5. For each phase, we do base model training and
aggregation. When the number of phase is increased, we
repeat the process of base model training and aggregation
while number of epochs for total training is fixed to 200
epochs.

The experiment results show that if we increase the num-
ber of phases, accuracy rises only when the ensemble size
is 2. In other words, increasing the number of phases does
not always lead to better accuracy when the ensemble size

Table 3. Accuracy of iterative multi-phase ensemble training.

Number of
Phases

Ensemble
Size

Data Fraction (k%)
1% 5% 10% 30%

2
2 37.78 52.09 57.47 63.78
4 39.68 53.33 58.52 63.91
10 37.98 52.29 57.94 63.28

5
2 38.53 52.85 58.24 64.80
4 39.37 52.71 58.47 64.71
10 35.58 50.86 57.10 64.24

is large. Intuitively, if we aggregate more frequently, the pa-
rameters of all the models in the ensemble should align with
each other. However, if we aggregate too often, each model
can train only for a limited number of epochs; hence, mod-
els cannot reach enough diversity. This limits the accuracy
improvement in large ensemble and many phases.

Table 4. Accuracy and training time when model is trained with
different data fractions.

Data Fraction (k%)
1% 5% 10% 30% Full

Accuracy 39.68 53.33 58.52 63.91 67.65
Time (hrs) 8.13 12.60 17.32 41.45 60.03

Finally, in Table 4 we examine the training efficiency of
the proposed approach and compare it with the training time
and accuracy of a model that is trained on the full dataset.
Due to time constraints, the full dataset training was con-
ducted for 100 epochs, while the ensemble training had a
training budget of 200 epochs. For the comparison, we se-
lected ensemble of size 4 with 2 phases. For the training
time measurement, we used 1 V100 GPU. Overall, we ob-
serve that increasing the subset size improves accuracy at
the cost of longer training time. Nonetheless, by selectively
using 30% of the original data, the proposed method can
significantly decrease the accuracy gap to the full dataset
training while saving about 20 hrs in training time with min-
imal loss of accuracy.

5. Conclusion

In this paper, we proposed a data-efficient training
method based on ensemble training. The proposed method
independently trains multiple models with different subsets
and merge all the models in the ensemble to build one final
model. We also extended the method to an iterative multi-
phase training, which allows early aggregation of models in
the ensemble. Experiments show the proposed method out-
performs the no-ensemble baseline, particularly when train-
ing with a small fraction of the full dataset.
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