
Phase-field Models for Lightweight Graph Convolutional Networks

Hichem Sahbi
Sorbonne University, CNRS, LIP6, F-75005, Paris, France

hichem.sahbi@sorbonne-universite.fr

Abstract

In this paper, we design lightweight graph convolutional
networks (GCNs) using a particular class of regularizers,
dubbed as phase-field models (PFMs). PFMs exhibit a
bi-phase behavior using a particular ultra-local term that
allows training both the topology and the weight param-
eters of GCNs as a part of a single “end-to-end” opti-
mization problem. Our proposed solution also relies on
a reparametrization that pushes the mask of the topology
towards binary values leading to effective topology selec-
tion and high generalization while implementing any tar-
geted pruning rate. Both masks and weights share the
same set of latent variables and this further enhances the
generalization power of the resulting lightweight GCNs.
Extensive experiments conducted on the challenging task
of skeleton-based recognition show the outperformance of
PFMs against other staple regularizers as well as related
lightweight design methods.

1. Introduction
Deep convolutional networks are nowadays becoming

mainstream in solving many pattern classification tasks in-
cluding visual recognition [2–6]. Their principle consists
in training convolutional filters together with pooling and
attention mechanisms that maximize classification perfor-
mances. Many existing convolutional networks were ini-
tially dedicated to grid-like data, including images [9, 10].
However, data sitting on top of irregular domains (such as
skeleton graphs in action recognition [47, 52, 66]) require
extending convolutional networks to general graph struc-
tures, and these extensions are known as graph convolu-
tional networks (GCNs) [7, 8]. Two families of GCNs exist
in the literature: spectral and spatial. The former achieve
convolutions using Fourier [11–16] whilst the latter are
based on message passing, via attention matrices, prior to
convolution [17–22]. Whereas spatial GCNs have been rel-
atively more effective compared to spectral ones, their pre-
cision is highly reliant on the accuracy of the attention ma-
trices that capture context and node-to-node relationships

[48]. With multi-head attention, GCNs are more accurate
but overparametrized and computationally overwhelming.

Many solutions are proposed in the literature in order
to reduce time and memory footprint of convolutional net-
works including GCNs. Some of them pretrain oversized
networks prior to reduce their computational complexity
(using distillation [23–29, 61], tensor decomposition [39,
40], quantization [30, 41–45] and pruning [31–37, 46]),
while others build efficient networks from scratch using
neural architecture search [58]. In particular, pruning meth-
ods, either unstructured or structured are currently becom-
ing mainstream. Their principle consists in removing con-
nections whose impact on the classification performance is
the least noticeable. Structured pruning [33,36,38] consists
in removing groups of connections, entire filters, etc., and
this makes the class of learnable subnetworks highly rigid.
In contrast, unstructured pruning [30, 34] is more flexible
and proceeds by dropping-out connections individually us-
ing different proxy criteria, such as weight magnitude [34]
or using more sophisticated variational methods [50,54,55].

The general recipe of variational pruning consists in
learning both the weights and the binary masks that capture
the topology of the pruned subnetworks. This is achieved
by minimizing an objective function that combines (via a
mixing hyperparameter) a classification loss and a regu-
larizer which controls the sparsity of the resulting masks
[36, 49, 51]. However, these methods are powerless to
implement any given targeted pruning rate (cost) without
overtrying multiple settings of the mixing hyperparame-
ters. Alternative variational methods model explicitly the
cost, using ℓ0-based criteria [51, 53], in order to minimize
the discrepancy between the observed cost and the targeted
one. Nonetheless, the underlying optimization problems
are highly combinatorial and existing solutions usually rely
on sampling heuristics. Existing more tractable relaxation
(such as ℓ1/ℓ2-based, etc. [56, 57, 59]) promote sparsity, but
are powerless to implement any given target cost exactly,
and also result into overpruning effects leading to discon-
nected subnetworks, with weak generalization, especially
at very high pruning regimes. Besides, most of the existing
pruning solutions decouple the training of network topology

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4644

(masks) from weights, and this doubles the number of train-
ing parameters and increases the risk of overfitting. Finally,
the mainstream magnitude pruning [34] allows reaching any
targeted cost, but relies on a tedious fine-tuning step and
also decouples the training of topology from weights and
this makes training clearly suboptimal.

Considering all these issues, we introduce in this paper
a new lightweight network design based on the phase-field
model (PFM). The latter gathers the upsides of the afore-
mentioned regularization methods while discarding their
downsides at some extent. PFM is based on an ultra-local
term with two local minima around 0 and 1; when com-
posed with a particular mask reparametrization, PFM pro-
motes sparsity by pushing the values of this reparametriza-
tion towards crisp (binary) values without any temperature
annealing. In other words, the proposed method allows gen-
erating only feasible solutions (i.e., binary masks) while
implementing any targeted pruning rate without overtrying
multiple mixing hyperparameters. The proposed solution
also avoids the decoupling of weights and masks, and this
reduces the number of training parameters, and also the risk
of overfitting. Experiments conducted on the challenging
task of action and hand-gesture recognition show a con-
sistent gain of the proposed PFM-based approach against
staple regularizers and cost-sensitive variational methods as
well as the related work including magnitude pruning.

2. A Glimpse on GCNs
Let {Gi = (Vi, Ei)}i denote a collection of graphs with

Vi, Ei being respectively the nodes and edges of Gi. Each
graph Gi (denoted for short as G = (V, E)) is endowed with
a signal {ϕ(u) ∈ Rs : u ∈ V} and associated with an ad-
jacency matrix A. GCNs aim at learning a set of C filters
F that define convolution on n nodes of G (with n = |V|)
as (G ⋆ F)V = f

(
AU⊤ W

)
, here ⊤ stands for transpose,

U ∈ Rs×n is the graph signal, W ∈ Rs×C is the matrix
of convolutional parameters corresponding to the C filters
and f(.) is a nonlinear activation applied entry-wise. In
this convolution, the input signal U is projected using A
and this provides for each node u, the aggregate set of its
neighbors. Entries of A could be handcrafted or learned
so (G ⋆ F)V implements a convolutional block with two
layers; the first one aggregates signals in N (V) (sets of
node neighbors) by multiplying U with A while the sec-
ond layer achieves convolution by multiplying the result-
ing aggregates with the C filters in W. Learning multiple
adjacency (also referred to as attention) matrices (denoted
as {Ak}Kk=1) allows us to capture different contexts and
graph topologies when achieving aggregation and convolu-
tion. With multiple matrices {Ak}k (and associated convo-
lutional filter parameters {Wk}k), (G ⋆ F)V is updated as
f
(∑K

k=1 A
kU⊤Wk

)
. Stacking aggregation and convolu-

tional layers, with multiple matrices {Ak}k, makes GCNs

accurate but heavy. We propose, in what follows, a method
that makes our networks lightweight and still effective.

3. Lightweight Design
In the rest of this paper, a given GCN is subsumed

as a multi-layered neural network gθ whose weights de-
fined as θ =

{
W1, . . . ,WL

}
, with L being its depth,

Wℓ ∈ Rdℓ−1×dℓ its ℓth layer weight tensor, and dℓ the di-
mension of ℓ. The output of a given layer ℓ is defined as
ϕℓ = fℓ(W

ℓ⊤ ϕℓ−1), ℓ ∈ {2, . . . , L}, being fℓ an acti-
vation function; without a loss of generality, we omit the
bias in the definition of ϕℓ. Pruning consists in zeroing-out
a subset of weights in θ by multiplying Wℓ with a binary
mask Mℓ ∈ {0, 1}dℓ−1×dℓ . The binary entries of Mℓ are
set depending on whether the underlying layer connections
are kept or removed, so ϕℓ = fℓ((M

ℓ ⊙Wℓ)⊤ ϕℓ−1), here
⊙ stands for the element-wise matrix product. In this def-
inition, entries of the tensor {Mℓ}ℓ are set depending on
the prominence of the underlying connections in gθ. How-
ever, such pruning suffers from several drawbacks. On the
one hand, optimizing the discrete set of variable {Mℓ}ℓ is
known to be highly combinatorial and intractable especially
on large networks. On the other hand, the total number
of parameters {Mℓ}ℓ, {Wℓ}ℓ is twice the number of con-
nections in gθ and this increases training complexity and
may also lead to overfitting. In order to circumvent these
issues, we consider an alternative reparametrization that al-
lows finding both the topology of the pruned networks to-
gether with their weights, without doubling the size of the
training parameters, while making learning still effective.

3.1. Weight Reparametrization

We consider an alternative parametrization of the net-
work related to magnitude pruning. This reparametrization
corresponds to the Hadamard product involving a weight
tensor and a function applied entry-wise to the same tensor

Wℓ = Ŵℓ ⊙ ψ(Ŵℓ). (1)

In the above equation, Ŵℓ is a latent tensor and ψ(Ŵℓ) is
a continuous relaxation of Mℓ which enforces the prior that
smallest weights should be removed from the network. In
order to achieve this goal, ψ must be (i) bounded in [0, 1],
(ii) differentiable, (iii) symmetric, and (iv) ψ(ω)⇝ 1 when
|ω| is sufficiently large and ψ(ω) ⇝ 0 otherwise. The first
and the fourth properties ensure that the reparametrization is
neither acting as a scaling factor greater than one nor chang-
ing the sign of the latent weight, and also acts as the identity
for sufficiently large weights, and as a contraction factor for
small ones. The second property is necessary to ensure that
ψ has computable gradient while the third condition guaran-
tees that only the magnitudes of the latent weights matter1.

1A possible choice, used in practice, that satisfies these four conditions (when
combined with PFM) is ψ(ω) = 2σ(ω2) − 1 with σ being the sigmoid function.

4645

-2 -1 0 1 2

L1

L2

L0

Phase-field

Entropy

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 80 85 90 95 100

Fixed Pruning Rates (%)

85

90

95

100

O
b
s
e
rv

e
d
 P

ru
n
in

g
 R

a
te

s
 (

%
)

=2

=2.5

=2.75

=2.99

=2.25

 Phase Field Model

 l2-based Cost

84 86 88 90 92 94 96 98 100

Pruning Rates (%)

10

20

30

40

50

60

70

80

90

100

A
c
c
u
ra

c
y
 (

%
)

Phase Field Model

l2-based Cost

l1

Entropy

l0

Magnitude Pruning

(a) (b) (c) (d) (e)
Figure 1. (a) This figure shows a comparison of different regularizers, namely ℓ0, ℓ1, ℓ2 and entropy as well as the balanced PFM (i.e., α = 0). From these curves, it is clear
that our PFM gathers the advantages of all these regularizers: (i) it strongly penalizes large mask values (as ℓ2), (ii) it (not only) pushes mask values near 0 (as all the regularizers),
but also near 1 (as ℓ0 and entropy) which allows counting non-zeros while (iii) behaving as a relaxed differentiable function (as ℓ1), (iv) finally, similarly to entropy, PFM has
also two local minima between 0 and 1, however entropy does not penalize large mask values and does not allow reaching any (a priori) fixed pruning rate. (b and c) These
figures show the two imbalanced versions of PFM (corresponding to α > 0 and α < 0) that allow implementing over and under-pruning respectively. In all experiments, β is
arbitrarily fixed to 3 while α is accordingly chosen depending on the targeted pruning rate tpr = α+β

2β (which corresponds to the local maximum of the ultra-local term). (d)
This figure shows the alignment between the fixed and the observed pruning rates when using cost-sensitive pruning and PFMs on the SBU dataset. (e) The underlying accuracy
w.r.t. different pruning rates. Note that β = 3 in all the PFMs. (Better to zoom the PDF version).

Note that the fourth property is implemented without any
ill-posed temperature annealing, but instead using a phase-
field model – presented subsequently – which controls the
smoothness of ψ around the support of the latent weights.
Put differently, the asymptotic behavior of ψ – that allows
selecting the topology of the pruned subnetworks – is ob-
tained using the phase-field energy as described below.

3.2. Phase-field Model

A phase-field is a real-valued function defined on an in-
put domain Ω ⊂ R [64]. A phase-field determines a region
by the map ξz(ψ) = {ω ∈ Ω : ψ(ω) > z} (where z is a
given threshold) and a phase-field energy as

EP (ψ) =

∫
Ω

V (ψ(ω)) dω, (2)

here V (t) - referred to as the ultra-local term - is given by

β

(
(2t− 1)4

4
− (2t− 1)2

2

)
+ α

(
2t− 1− (2t− 1)3

3

)
. (3)

If one minimizes (2) subject to ξz(ψ) = R for a fixed region
R, then away from the boundary ∂R, the minimizing func-
tion (denoted as ψR) assumes approximately the value +1
inside, and 0 outsideR thanks to the ultra-local term, and it
varies smoothly (depending on β) across the interface near
∂R. Considering a discrete approximation of the integral
on a finite set of parameters {ωi}i, one may rewrite EP (ψ)
as EP (ψ({ωi}i)) =

∑
i V (ψ(ωi)). In order to guarantee

two energy minima at 0 and +1 associated to the two classes
(pruned/unpruned), the inequality β > |α|must be satisfied,
so V ′(1) = V ′(0) = 0 and V ′′(1) = V ′′(0) > 0 where ′

and ′′ denote the first and second derivatives respectively.
Notice that the formulation of our PFM yields to choose
the threshold z to be at the maximum (β + α)/2β of V
which also corresponds to the fixed pruning rate (see Fig. 1-
abc). When setting α = 0 and β > 0, we get the particular
case of PFM; this leads to V (1) = V (0) corresponding to
equiprobable phases {0, 1}, and hence EP is suitable for

balanced pruning. In contrast, for significantly imbalanced
pruning (which is the main scope of this paper), one should
select α ̸= 0 so that the two phases {0, 1} will have differ-
ent energies: V (1) − V (0) = 4α/3 ̸= 0. In other words,
a strictly positive α allows implementing imbalanced over-
pruning and vice-versa (see again Fig. 1-abc).

3.3. Variational Pruning

Pruning is achieved using a global loss as a combination
of cross-entropyLe, and phase-field energyEP (which con-
trols the cost and aims at zeroing as much mask entries as
possible depending on the setting of α) resulting into

min
{Ŵℓ}ℓ

Le

(
{Ŵℓ ⊙ ψ(Ŵℓ)}ℓ

)
+ λ EP ({ψ(Ŵℓ)}ℓ), (4)

here λ is sufficiently large (overestimated in practice), so
Eq. (4) focuses on binarizing {ψ(Ŵℓ)}ℓ using the phase-
field energy, and also constraining the pruning rate to reach
α+β
2β . As training evolves,EP reaches its minimum and sta-

bilizes while the gradient of the global loss becomes domi-
nated by the gradient of Le, and this maximizes further the
classification performances.

4. Experiments
In this section, we evaluate the performances of our

pruned GCNs on skeleton-based recognition using two
challenging datasets, namely SBU [60] and FPHA [62].
SBU is an interaction dataset acquired using the Microsoft
Kinect sensor; it includes in total 282 moving skeleton se-
quences (performed by two interacting individuals) belong-
ing to 8 categories. Each pair of interacting individuals cor-
responds to two 15 joint skeletons and each joint is charac-
terized with a sequence of its 3D coordinates across video
frames. In this dataset, we consider the same evaluation
protocol as the one suggested in the original dataset re-
lease [60] (i.e., train-test split). The FPHA dataset includes
1175 skeletons belonging to 45 action categories with high
inter and intra subject variability. Each skeleton includes
21 hand joints and each joint is again characterized with a

4646

sequence of its 3D coordinates across video frames. We
evaluate the performance of our method following the pro-
tocol in [62]. In all these experiments, we report the average
accuracy over all the classes of actions.
Implementation details. We trained the GCNs end-to-end
using the Adam optimizer [1] for 2,700 epochs with a batch
size equal to 200 for SBU and 600 for FPHA, a momentum
of 0.9 and a global learning rate (denoted as ν(t)) inversely
proportional to the speed of change of the loss used to train
our networks. When this speed increases (resp. decreases),
ν(t) decreases as ν(t) ← ν(t − 1) × 0.99 (resp. increases
as ν(t)← ν(t− 1)/0.99). In all these experiments, we use
a GeForce GTX 1070 GPU (with 8 GB memory). The ar-
chitecture of our baseline GCN includes an attention layer
of 1 head on SBU (resp. 16 heads on FPHA) applied to
skeleton graphs whose nodes are encoded with 8-channels
(resp. 32 for FPHA), followed by a convolutional layer of
32 filters for SBU (resp. 128 filters for FPHA), and a dense
fully connected layer and a softmax layer. The initial net-
work for SBU is not heavy, its number of parameters does
not exceed 15,320, and this makes its pruning challenging
as many connections will be isolated (not contributing in
the evaluation of the network output). In contrast, the initial
network for FPHA is relatively heavy (for a GCN) and its
number of parameters reaches 2 millions. As shown sub-
sequently, both GCNs are accurate compared to the related
work on the SBU/FPHA benchmarks. Considering these
GCN baselines, our goal is to make them highly lightweight
and as accurate as possible.
Model analysis and comparison. Fig 1-d shows the align-
ment between the fixed/targeted pruning rates (tpr) and
the observed ones when using PFM and its comparison
against cost-sensitive pruning. In these experiments, PFM
acts not only as a regularizer (and binarizer) but also as a
rebalancing function which allows implementing any tpr
by choosing α that satisfies α+β

2β = tpr or equivalently
α = 2β × tpr − β. Fig. 1-e shows the accuracy of our
lightweight GCNs w.r.t. the underlying pruning rates. In
these results, PFM is compared against different alterna-
tive regularizers (plugged in Eq. 4 instead of PFM), namely
ℓ0 [51], ℓ1 [65], entropy [67] and ℓ2-based cost-sensitive
pruning. From these results, the impact of PFM is substan-
tial on highly pruned GCNs while relatively smaller pruning
regimes provide equivalent performances. Note that when
alternative regularizers are used, multiple settings (trials) of
the underlying hyperparameter λ (in Eq. 4) are necessary
prior to reach any targeted pruning rate, and this makes the
whole pruning process overwhelming. While cost-sensitive
pruning makes training more tractable, its downside resides
in the collapse of trained masks, and this degrades perfor-
mances significantly at high pruning rates; a similar behav-
ior is observed with magnitude pruning (see again Fig. 1-e).

Table 1 shows an ablation study (and extra comparisons)

of our PFM when used individually and jointly with the
other regularizers as well as cost-sensitive pruning. From
these results, we first observe that when training is achieved
with weight reparametrization, performances are equivalent
and sometimes overtake the initial heavy GCN, with less pa-
rameters (pruning rate does not exceed 70% as no control on
tpr is achieved) as this produces a regularization effect sim-
ilar to [63]. Second, we observe a positive impact of PFM
when jointly combined with the aforementioned regulariz-
ers and cost-sensitive loss; note that when PFM is jointly
used, α is set to 0, so tpr = 0.5 and this makes the rebalanc-
ing effect of PFM null, and only the other regularizers allow
implementing the targeted pruning rates when λ is appro-
priately tuned. Finally, extra comparison against magnitude
pruning [30] shows the substantial gain of our PFM at very
high pruning regimes.

Datasets Methods Pruning rates (%) # Parameters Accuracy (%)

SBU

Initial Model 0.0 15320 90.76
Weight Reparametrization (WR) 70.66 4494 93.84

Magnitude Pruning 98.58 216 61.53
WR+ℓ0 99.00 152 36.92

WR+ℓ0+PFM (α = 0) 99.05 144 55.38
WR+ℓ1 98.87 171 21.53

WR+ℓ1+PFM (α = 0) 98.94 161 73.84
WR+Entropy 98.97 157 60.00

WR+Entropy+PFM (α = 0) 98.96 158 61.53
WR+ℓ2-based Cost 98.96 158 36.92

WR+PFM (α = 2βtpr− β) 98.98 154 67.69
WR+ℓ2-based Cost+PFM (α = 0) 98.96 158 75.38

FPHA

Initial Model 0.0 1967616 86.08
Weight Reparametrization (WR) 50.38 976268 85.56

Magnitude Pruning 98.83 22892 52.69
WR+ℓ0 99.24 14858 8.34

WR+ℓ0+PFM (α = 0) 99.43 11203 64.69
WR+ℓ1 99.26 14460 2.78

WR+ℓ1+PFM (α = 0) 99.26 14460 70.78
WR+Entropy 99.09 17788 31.13

WR+Entropy+PFM (α = 0) 99.25 14683 67.47
WR+ℓ2-based Cost 99.49 9945 5.56

WR+PFM (α = 2βtpr− β) 99.68 6156 65.91
WR+ℓ2-based Cost+PFM (α = 0) 99.49 10034 69.91

Table 1. Ablation study of our pruning method (w and w/o PFMs). When PFMs
are combined with other regularizers, α is necessarily equal to 0, so only the regu-
larization effect is considered (as the other regularizers indirectly control the pruning
rate). When PFMs are individually used, α = 2βtpr − β where tpr corresponds to
the targeted pruning rate. In these results, PFMs are also compared against weight
reparametrization and magnitude pruning. It’s worth noticing that low accuracies
result from the disconnected pruned networks obtained at high pruning regimes.

5. Conclusion
In this paper, we introduce a novel pruning method

based on phase-field models (PFMs) which allow training
very lightweight GCNs at very high pruning regimes. The
strength of PFMs resides in their ability to leverage the ad-
vantage of different regularizers used in variational pruning
while discarding their inconveniences at some extent. In-
deed, the proposed PFMs allow training highly overpruned
networks, binarizing the underlying masks while imple-
menting any targeted pruning rate and improving general-
ization. Extensive experiments conducted on the challeng-
ing task of skeleton-based recognition show the substantial
gain of our pruned lightweight networks against different
baselines as well as the related work. As a future work, we
are currently investigating the extension of this method to
other network architectures and datasets.

4647

References
[1] D.P. Kingma, and J. Ba. ”Adam: A method for stochas-

tic optimization.” arXiv preprint arXiv:1412.6980
(2014)

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Ima-
genet classification with deep convolutional neural net-
works,” in NIPS, 2012.

[3] H. Sahbi and N. Boujemaa. ”From coarse to fine skin
and face detection.” Proceedings of the eighth ACM in-
ternational conference on Multimedia. 2000.

[4] M. Jiu and H. Sahbi. ”Laplacian deep kernel learning
for image annotation.” 2016 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2016.

[5] M. Jiu and H. Sahbi. ”Nonlinear deep kernel learn-
ing for image annotation.” IEEE Transactions on Image
Processing 26.4 (2017): 1820-1832.

[6] M. Jiu and H. Sahbi. ”Deep representation design from
deep kernel networks.” Pattern Recognition 88 (2019):
447-457.

[7] J. Bruna, W. Zaremba, A. Szlam, Y. LeCun. Spectral
networks and locally connected networks on graphs.
arXiv:1312.6203 (2013).

[8] M. Henaff, J. Bruna, Y. LeCun. Deep convolutional
networks on graph structured data. arXiv preprint
arXiv:1506.05163 (2015).

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual
Learning for Image Recognition. In CVPR, pages 770-
778, June 2016.

[10] R. Girshick. Fast R-CNN. In ICCV, pages 1440-1448,
2015

[11] A. Mazari and H. Sahbi. ”MLGCN: Multi-Laplacian
graph convolutional networks for human action recog-
nition.” The British Machine Vision Conference
(BMVC). 2019.

[12] TN. Kipf, M. Welling. Semi-supervised classification
with graph convolutional networks. In ICLR, 2017

[13] R. Levie, F. Monti, X. Bresson, M.M. Bronstein.
Cayleynets: Graph convolutional neural networks with
complex rational spectral filters. IEEE Transactions on
Signal Processing 67(1), 97–109 (2018)

[14] R. Li, S. Wang, F. Zhu, J. Huang. Adaptive graph con-
volutional neural networks. In AAAI, 2018.

[15] H. Sahbi. ”Learning laplacians in chebyshev graph
convolutional networks.” Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2021.

[16] M. Defferrard et al. Convolutional Neural Networks
on graphs with Fast Localized Spectral Filtering. In
NIPS, 2016

[17] H. Sahbi. ”Learning connectivity with graph convo-
lutional networks.” 2020 25th International Conference
on Pattern Recognition (ICPR). IEEE, 2021.

[18] M. Gori, G. Monfardini, F. Scarselli. A new model for
learning in graph domains. In IEEE IJCNN, vol. 2, pp.
729–734, 2005.

[19] A. Micheli. Neural network for graphs: A contex-
tual constructive approach. IEEE TNN 20(3), 498-511
(2009)

[20] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, P.S.
Yu. A comprehensive survey on graph neural networks.
arXiv:1901.00596 (2019).

[21] W. Hamilton, Z. Ying, J. Leskovec. Inductive repre-
sentation learning on large graphs. In NIPS. pp. 1024–
1034 (2017).

[22] H. Sahbi. ”Kernel-based graph convolutional net-
works.” 2020 25th International Conference on Pattern
Recognition (ICPR). IEEE, 2021.

[23] G. E. Hinton, O. Vinyals, and J. Dean, “Distill-
ing the knowledge in a neural network,” CoRR, vol.
abs/1503.02531, 2015.

[24] S. Zagoruyko and N. Komodakis, “Paying more at-
tention to attention: Improving the performance of con-
volutional neural networks via attention transfer,” in
ICLR, 2017.

[25] A. Romero, N. Ballas, S. Ebrahimi Kahou, A. Chas-
sang, C. Gatta, and Y. Bengio, “Fitnets: Hints for thin
deep nets,” in ICLR, 2015.

[26] S.-I. Mirzadeh et al. “Improved knowledge distillation
via teacher assistant,” in AAAI, 2020.

[27] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu,
“Deep mutual learning,” in CVPR, 2018.

[28] S. Ahn, S. X. Hu, A. C. Damianou, N. D. Lawrence,
and Z. Dai, “Variational information distillation for
knowledge transfer,” in CVPR, 2019.

[29] Sahbi, Hichem. ”Coarse-to-fine deep kernel net-
works.” Proceedings of the IEEE International Confer-
ence on Computer Vision Workshops. 2017.

4648

[30] S. Han, H. Mao, and W. J. Dally, “Deep compression:
Compressing deep neural network with pruning, trained
quantization and huffman coding,” in ICLR, 2016.

[31] H. Sahbi. ”Lightweight Connectivity In Graph Con-
volutional Networks For Skeleton-Based Recognition.”
2021 IEEE International Conference on Image Process-
ing (ICIP). IEEE, 2021.

[32] B. Hassibi and D. G. Stork, “Second order derivatives
for network pruning: Optimal brain surgeon,” in NIPS,
1992.

[33] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P.
Graf, “Pruning filters for efficient convnets,” in ICLR,
2017.

[34] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning
both weights and connections for efficient neural net-
work,” in NIPS, 2015.

[35] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal
brain damage,” in NIPS, 1989.

[36] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang,
“Learning efficient convolutional networks through net-
work slimming,” in ICCV. 2017, IEEE Computer Soci-
ety.

[37] H. Sahbi. ”Topologically-Consistent Magnitude Prun-
ing for Very Lightweight Graph Convolutional Net-
works.” 2022 IEEE International Conference on Image
Processing (ICIP). IEEE, 2022.

[38] Zhao, Chenglong, et al. ”Variational convolutional
neural network pruning.” In IEEE/CVF CVPR, 2019.

[39] E-L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and
R. Fergus. Exploiting linear structure within convolu-
tional networks for efficient evaluation. In NIPS, pages
1269–1277, 2014

[40] W. Wang, Y. Sun, B. Eriksson, W. Wang, and V. Ag-
garwal. Wide compression: Tensor ring nets. In IEEE
CVPR, pages 9329–9338, 2018.

[41] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv,
and Y. Bengio. Binarized neural networks: Training
deep neural networks with weights and activations con-
strained to+ 1 or-1. arXiv preprint arXiv:1602.02830,
2016

[42] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P.
Narayanan. Deep learning with limited numerical pre-
cision. In International Conference on Machine Learn-
ing, pages 1737–1746, 2015

[43] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y.
Chen. Compressing neural networks with the hashing
trick. In ICML, 2015

[44] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi.
Xnor-net: Imagenet classification using binary con-
volutional neural networks. In ECCV, pages 525–542.
Springer, 2016

[45] E. Park, J. Ahn, and S. Yoo. Weighted entropy based
quantization for deep neural networks. In IEEE CVPR,
2017

[46] F. Tung and G. Mori. Clip-q: Deep network com-
pression learning by in-parallel pruning-quantization.
In IEEE CVPR, pages 7873–7882, 2018

[47] L. Wang and H. Sahbi. ”Nonlinear cross-view sample
enrichment for action recognition.” Computer Vision-
ECCV 2014 Workshops: Zurich, Switzerland.

[48] P. Veličković, G. Cucurull, A. Casanova, A. Romero,
P. Lio, and Y. Bengio (2017). Graph attention networks.
arXiv preprint arXiv:1710.10903.

[49] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learn-
ing structured sparsity in deep neural networks. In proc
of NIPS, 2016.

[50] D. Kingma, P. Durk, T. Salimans, and M. Welling.
”Variational dropout and the local reparameterization
trick.” In NIPS 28 (2015).

[51] C. Louizos, M. Welling, and D. Kingma. Learning
sparse neural networks through l0 regularization. In
proc. of ICLR, 2018

[52] L. Wang and H. Sahbi. ”Bags-of-daglets for action
recognition.” 2014 IEEE International Conference on
Image Processing (ICIP). IEEE, 2014.

[53] W. Pan, H. Dong, and Y. Guo. Dropneuron: Simpli-
fying the structure of deep neural networks. In arXiv
preprint arXiv:1606.07326, 2016

[54] P. David, Wipf, B. Dai, C. Zhu. Compressing neural
networks using the variational information bottleneck.
proc. of ICML, 2018.

[55] D. Molchanov, A. Ashukha, and D. Vetrov. Variational
dropout sparsifies deep neural networks. proc of ICML,
2017.

[56] A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu,
T.J. Yang, and E. Choi. Morphnet: Fast and simple re-
source constrained structure learning of deep networks.
In Proc. of CVPR, 2018

4649

[57] M. A Carreira-Perpin and Y. Idelbayev. Learning com-
pression algorithms for neural net pruning. In Proc. of
CVPR,pages 8532–8541, 2018

[58] H. Pham, M-Y. Guan, B. Zoph, Q-V. Le, and J. Dean.
Efficient neural architecture search via parameter shar-
ing. arXiv preprint arXiv:1802.03268, 2018

[59] C. Lemaire, A. Achkar, and P-M. Jodoin. ”Structured
pruning of neural networks with budget-aware regular-
ization.” Proceedings of the IEEE/CVF CVPR, 2019.

[60] K. Yun, J. Honorio, D. Chattopadhyay, T-L. Berg, and
D. Samaras, CVPR Workshop, 2012.

[61] H. Sahbi. Coarse-to-fine support vector machines for
hierarchical face detection. Diss. PhD thesis, Versailles
University, 2003.

[62] G. Garcia-Hernando, S. Yuan, S. Baek, and T.K.
Kim. First Person Hand Action Benchmark with RGB-
D Videos and 3D Hand Pose Annotations. In CVPR,
2018.

[63] Wan, Li, et al. ”Regularization of neural networks us-
ing dropconnect.” International conference on machine
learning. PMLR, 2013.

[64] P-C. Hohenberg and B-I. Halperin. ”Theory of dy-
namic critical phenomena.” Reviews of Modern Physics
49.3 (1977): 435.

[65] B. Koneru, N. Girish, and V. Vasudevan. ”Sparse
artificial neural networks using a novel smoothed
LASSO penalization.” IEEE TCS II: Express Briefs
66.5 (2019): 848-852.

[66] A. Mazari and H. Sahbi. ”Deep temporal pyramid de-
sign for action recognition.” ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2019.

[67] Wiedemann, Simon, et al. ”Entropy-constrained train-
ing of deep neural networks.” In IEEE IJCNN, 2019.

4650

