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Abstract

Cross-Domain Few-Shot Learning (CD-FSL) aims to
recognize new classes from unseen domains, given lim-
ited training samples. Majority of the state-of-the-art ap-
proaches for this task introduce new task-specific additional
parameters for adapting to the novel task, which involves
changing the trained model architecture, in addition to in-
creasing the number of model parameters. The first contri-
bution of this work is to revisit the existing approaches like
modifying the Batch Normalization affine parameters and
the scale hyperparameter in cosine similarity based softmax
loss for adapting the trained model to the new tasks, with-
out changing the model architecture. Secondly, to aid the
model learning with few examples per class, we propose to
augment the data of each class with the styles of the seman-
tically similar classes. Extensive evaluation on the chal-
lenging Meta-Dataset shows that this simple framework is
very effective for the CD-FSL task. We also show that the
Similar-class Style Augmentation module can be seamlessly
integrated with existing approaches to further improve their
performance, thus establishing the state-of-the-art in this
challenging area.

1. Introduction
Over the past decade, significant progress has been made

in computer vision tasks such as image classification [6],
object detection [17, 21], image segmentation [3, 8, 10] etc.
However, while humans are capable of recognizing new ob-
jects by looking at just a handful of samples, the perfor-
mance of state-of-the-art deep neural networks usually de-
grades significantly in such low-data regimes. In real-world
scenarios, collecting and annotating large amounts of data
can be difficult and expensive, so it is necessary for ma-
chines to learn from limited labeled data. Additionally, test
data may come from a different distribution than training
data. The objective of cross-domain few shot learning (CD-
FSL) is to adapt a given feature extractor trained on large
scale annotated data to a new task with few labeled samples
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Figure 1. CD-FSL task: Training (left): Use labeled multi-domain
data to learn universal feature extractor; Testing (right): N-way K-
shot test tasks with unseen classes from unseen domains. Support
set comprises of limited labeled samples, which is used to adapt
the network and is then evaluated on the corresponding query set.

per class from unseen domains.
Most state-of-the-art CD-FSL frameworks address em-

ploy a two-step process, (i) Learning a universal feature ex-
tractor using training samples from different datasets; (ii)
adapting the model to novel tasks from new domains using
few labeled samples per class. Fig. 1 illustrates the train-
ing and testing stages of the CD-FSL task. After learning
the universal feature extractor in the first step, the recent ap-
proaches [15,16,24] usually incorporate task-specific learn-
able modules to adapt to the new task. Though they give
impressive performance for the CD-FSL task, these frame-
works result in changing the model architecture, in addi-
tion to introducing additional model parameters. As this
is not be desirable in many practical applications, here we
propose a simple, yet effective framework for the CD-FSL
task, without changing the model architecture or increasing
the model parameters.

In this work, we propose a simple and effective frame-
work for the CD-FSL task that does not require changing
the model architecture or increasing the model parameters.
Our approach builds on existing research in the field and
focuses on modifying only a few parameters of the trained
model to adapt it to unseen domains. Specifically, we pro-
pose to update the Batch Normalization (BN) affine pa-
rameters and analyze the importance of the scale parame-
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ter in the cosine similarity based softmax loss for the CD-
FSL task. Additionally, we address the challenge of lim-
ited training data in novel tasks by proposing to augment
the labelled data using styles from other semantically sim-
ilar classes. The proposed framework is termed Similar-
class Style Augmentation with appropriate Batch Norm and
Scale parameters (SSA-BNS). We evaluate our framework
on the Meta-Dataset benchmark and demonstrate that it
achieves close to state-of-the-art performance while requir-
ing fewer parameters than existing approaches that alter
the model architecture. We also show that our proposed
Similar-class Style Augmentation (SSA) module can be in-
tegrated with existing CD-FSL frameworks to further im-
prove their performance.

2. Related work
Here, we discuss some of the related works in the ar-

eas of Few-Shot Learning (FSL), Cross-Domain Few-Shot
learning (CD-FSL) and data augmentation.
Few-Shot Learning (FSL): FSL approaches [22, 26] of-
ten employ a Nearest Centroid Classifier (NCC), where the
class centroids are obtained using the labelled support set
samples. These centroids are then used to classify the sam-
ples from query set based on a distance metric like co-
sine similarity or Euclidean distance. Several prior works
[9, 22, 26] formulate FSL as a learning to learn or meta-
learning problem. In this perspective, the model is trained
over a distribution of few-shot tasks sampled from the train-
ing data. Having the experience of performing well on the
few-shot tasks, the model is now equipped to effectively
learn from limited data of a novel test task. [22] uses Eu-
clidean distance based NCC to meta-learn from training
data. Matching Networks [26] classify query samples based
on a distance-weighted linear combination of the support la-
bels. In MAML [9], the authors propose to learn the model
such that these parameters act as a good initialization for fu-
ture tasks, so that it can adapt using just a few gradient up-
dates with only limited data. Such learning strategies, hav-
ing proven effective for in-domain FSL are also extended
to the CD-FSL setting. But the additional challenge here
is to actually learn image representations that are effective
across domains.
Cross-Domain Few-Shot Learning (CD-FSL): We now
discuss prior methods for CD-FSL task that involves learn-
ing multi-domain feature extractor(s). SUR [7] proposes
to train multiple feature extractors, one for each domain.
During test time, these feature extractors provide universal
representations, over which a task-specific feature selection
mechanism is employed along with NCC. URT [18] alterna-
tively propose a meta-learning based selection mechanism
to adapt the universal representations. As these are com-
putationally complex, requiring a test sample to forward
pass through multiple feature extractors, later works [15,24]

propose effective ways to learn a single network using
multi domain data. In FLUTE [24], the authors propose
to learn domain specific FiLM [20] layers while keeping
the rest of the backbone shared across all training domains.
In URL [15], given the features from the universal fea-
ture extractor, a linear transformation is used which is task
specific and learnable, to obtain the adapted features. In
TSA [16], task-specific adapters are included in the back-
bone, which are then fine-tuned using support set samples.
These adapters can be serial/residual blocks parameterized
by a matrix or channel-wise transformation. These ap-
proaches are evaluated on the large-scale Meta-Dataset [25]
benchmark, which establishes several baselines, extending
the FSL methods for CD-FSL.
Data Augmentation: Data augmentation, in general, im-
proves the generalization ability of a model, as it introduces
more variations in the training data. It has been success-
fully used in several tasks including semi-supervised learn-
ing [23], unsupervised representation learning, contrastive
learning [1,2,4,28]. Popular image based augmentations [5]
include random crop, scale, flip, rotation, contrast enhance-
ment, color distortions etc. Recently, several works propose
to use Generative Adversarial Networks for data augmenta-
tion [29, 31]. Style transfer is another interesting data aug-
mentation technique as it preserves the semantic content of
the image. [12] propose to train a style transfer network
(STN) based on Adaptive Instance Normalization (AdaIN)
layer. AdaIN layer transfers the feature statistics (channel-
wise mean and variance) of one image to another. A de-
coder is then trained to obtain the style transferred image.
MixUp [11] is another popular data augmentation method
where virtual samples and labels are created as convex com-
binations of two random training samples. This encourages
linear behaviour for intermediate samples and is observed
to improve model robustness. In CD-FSL, since the model
has access to few support set samples to update the base
network, it is challenging to employ GAN or STN based
methods. Therefore, we emphasize the need for carefully
designing augmentation methods for CD-FSL. In our work,
we investigate the potential benefits of data augmentation in
improving the adaptation performance for the CD-FSL task.

3. Problem definition
Firstly, we formulate the CD-FSL task and describe the

notations used in this work. In general, a few shot learn-
ing task is described as N-way K-shot classification prob-
lem, where N represents the number of classes and K repre-
sents the number of samples per class available for train-
ing. We follow the Meta-Dataset benchmark where the
tasks are sampled such that the number of classes N and
samples per class K are varied. Each task T = (S,Q)
comprises of a support set S and a query set Q. The
model has to learn from a small labeled support set S =
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{(xs
i , y

s
i ), i = 1 . . . nS} and is then evaluated on a query

set Q = {xq
i , i = 1 . . . nQ} consisting of the same classes

as in the corresponding support set. Here, xs
i and ysi de-

notes the support sample and its corresponding label, while
xq
i refers to a query sample. nS and nQ denote the number

of samples in the support and query set respectively. We
denote the universal feature extractor as F and the feature
representation of a sample xs

i as zsi = F (xs
i ).

In the cross-domain scenario, the training and test do-
mains comprises of Mtrain and Mtest datasets respectively.

Dtrain = D1 ∪ D2 . . .DMtrain

Dtest = D
′

1 ∪ D
′

2 . . .D
′

Mtest

The objective is to use labeled data from Dtrain to learn a
feature extractor F . This feature extractor is then adapted
for novel few-shot tasks T sampled from Dtest, comprising
of previously unseen classes and also from unseen domains.
Now, we explain how recent state-of-the-art approaches
address this task, which also serves as the motivation for
this work.

Few shot task adaptation: Most of the SOTA ap-
proaches for the CD-FSL task involves two stages, which
are explained below.

1) Learning a Universal Feature Extractor: Firstly,
it is important to learn an effective feature extractor from
the diverse set of training datasets (Dtrain) with different
classes and possibly different domains. A simple way to
learn the feature extractor is to jointly use the labelled data
from all training domains. However, the domain shifts
among the various datasets pose challenges in such joint
training and hence requires careful learning mechanisms
and different approaches have been proposed for this task.
Since the training of the feature extractor plays an important
role in the final performance, for fair comparison, we use
the same universal feature extractor as used in [15, 16] and
primarily focus on the next stage, i.e task-specific model
adaptation.

2) Task-specific model adaptation: Given the uni-
versal feature extractor, the goal is to adapt it to a task from
an unseen domain with unseen classes using just a few
labelled samples per class. To successfully handle this chal-
lenging task, most of the recent methods like FLUTE [24],
URL [15], TSA [16] employ task specific additional pa-
rameters, and propose to fine-tune these parameters using
the support set samples and a nearest centroid classifier.
Though these methods obtain impressive performance on
the challenging Meta-Dataset [25], they involve either in-
creasing the number of model parameters [15,16,24] and/or
changing the originally trained architecture [15, 16]. Since

this may not be desirable for many practical applications,
in this work, we revisit adapting the BatchNorm (BN)
affine parameters, scale parameter of the cosine similarity
metric and also propose a new augmentation technique
termed SSA to address CD-FSL task, while not adding any
parameters or changing the model architecture.

4. Proposed SSA-BNS Framework
With this background, we now describe the proposed

framework (Fig. 2) for handling the CD-FSL task. As
mentioned earlier, we use the trained model as in earlier
works [15, 16] for fair comparison. We also make use of
non-parametric classifiers which have been extensively
used in few-shot learning methods as they avoid overfitting,
which often happens while training a parameterized classi-
fier using very less number of samples. First, we describe
in brief the training of the feature extractor and the NCC
for completion.

Universal Feature Extractor: We use the universal
feature extractor proposed in URL [15], which is also
used in TSA [16]. They learn the network in two stages:
1) Firstly, Mtrain single domain feature extractors are
trained, one for each of the training domains, using cross
entropy loss. 2) For efficient task adaptation in the future,
knowledge distillation is performed from the single domain
feature extractors to a universal feature extractor, all of
them sharing the same architecture. The domain specific
features are mapped to a common space using domain
specific adaptors, by minimizing Kullback-Liebler (KL) di-
vergence between the model predictions of domain-specific
features and the universal features. Alongside, the distance
between these two sets of features are also minimized
through Centered Kernel Alignment [13].

Nearest Centroid Classifier (NCC): Given the universal
feature extractor F and a few-shot task T = (S,Q) sam-
pled from Dtest, class centroids are obtained by averaging
the feature representations zsi = F (xs

i ) of the support set
samples xs

i ∈ S, for each class k = 1 . . . C present in this
task as:

ck =
1

|Sk|
∑

xs
i∈Sk

zsi ; Sk = {xs
i |ysi = k} (1)

The NCC loss based on cosine similarity, with scaling factor
η is obtained as

LNCC(z
s
i , y

s
i ; η) = − log p(y = ysi | zsi ; η) (2)

where p(y = ysi | zsi ; η) =
e
η cos θi,ys

i∑C
j=1 e

η cos θi,j

cos θi,ys
i
=

cTys
i
zsi

∥zsi ∥∥cys
i
∥
.
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Figure 2. Proposed SSA-BNS framework: A support set instance xs
i is augmented using a similar class sample xs

j , y
s
j ∈ Sys

i
through SSA

modules inserted in the universal feature extractor. Few shot task adaptation is done minimizing the LNCC loss over the actual features
along with SSA augmented features.

Now, we describe each of the components of the proposed
framework, namely updating the BN affine and scale pa-
rameters and the similar class style augmentation module.

4.1. Revisiting BatchNorm Adaptation for CD-FSL

In this work, we investigate how well we can adapt the
trained model for a test task without modifying its architec-
ture, or adding additional parameters. Specifically, we only
adapt the BN affine parameters present in the network.
Batch Normalization: Let f l denote the feature activations
at layer l. The batch normalized feature activations f l

BN are
obtained as

f l
BN = γlf̂ l + βl; where f̂ l =

f l − µl√
(σl)2 + ϵ

(3)

Here, µl and σl are the running mean and standard devia-
tion estimated from the training data.
Recently, adaptation of BN parameters (γl, βl) have been
successfully used for many applications. In TENT [27], the
BN scale and shift parameters are adapted to minimize the
test entropy and has been very effective in mitigating perfor-
mance degradation due to distribution shifts for Test-Time
Adaptation (TTA) task. CD-FSL task is very different from
TTA, as the classes in test tasks are unseen and there are
only limited samples to learn from.

In this work, we investigate the effectiveness of adapting
BN parameters for CD-FSL task. The combined BN scale
and shift parameters, which we denote as {γ, β}, are op-
timized to minimize the NCC loss over the support set as

min
γ,β

1

nS

∑
(xs

i ,y
s
i )∈S

LNCC(z
s
i , y

s
i ; η) where zsi = F (xs

i )

(4)
We now study the impact of cosine similarity scale factor η
on the CD-FSL performance.

4.2. Effect of Scale Factor on CD-FSL

Following several prior works in the few-shot learning
regime [7, 22, 24], in this work, we use a Nearest Centroid
Classifier based on cosine similarity metric. Using this clas-
sifier, the posterior probabilities over C classes are com-
puted using softmax as

p(y = k | zsi ; η) =
eη cos θi,k∑C
j=1 e

η cos θi,j
; k = {1, . . . , C}

(5)
where η is the scale hyper-parameter. The softmax scores
being a function of the logits, is dependent on the range of
values taken by the logits. The cosine similarity values, be-
ing the logits here, are in the range [-1,1]. Thus, it is a stan-
dard practice to scale these logits with a factor η in order to
expand the input range for the softmax function, thereby as-
signing reasonable probability scores. This scale factor al-
though plays a significant role in the training process of co-
sine similarity based metric learning, has only been scarcely
studied, especially in the few shot regime. AdaCos [30] pro-
posed an approach of identifying an optimal scale parameter
based on the number of classes, for a large scale face recog-
nition task. However, the CD-FSL task significantly differs
from that addressed in [30], as the number of samples avail-
able per class is very low here. In addition, each test task
can have varying number of classes and can come from an
unseen domain, which can be very different from the train-
ing domains. Thus, the analysis in [30], although insightful,
may not be directly applicable to the CD-FSL task.

In the previous CD-FSL works URL [15] and TSA [16],
the scale parameter η was fixed to 10. In this work, we
investigate the impact of this scale factor on the CD-FSL
task, where we only update the BN parameters using the
labelled support set. Here, since the target domain can be
very different from the training domains with few labeled
examples per class, we expect the model to be less confi-
dent in classifying the training data, as compared to other
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Figure 3. The mean and standard deviation of confidence scores of the predicted class over 600 tasks from Aircraft dataset for 40 training
iterations.
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Figure 4. The mean and standard deviation of loss curves over 600 tasks for 40 training iterations from Aircraft dataset.

applications where the test domain is similar to the training
domains or there are more training examples available. This
implies that for majority of the tasks and training examples,
the cosine similarities will be lower, resulting in low prob-
ability values. Since the scale factor controls the range of
probability values that the cosine similarity gets mapped to,
we expect that a higher scale factor will be beneficial for
the CD-FSL task, so that the model does not incur any loss
even when a training sample is correctly classified.

For the CD-FSL task, using the universal feature extrac-
tor, we perform experiments by varying scale parameter η
as 10, 25 and 50. We use one of the training domains Air-
craft, to analyse the impact of scale factor on the training
process. To understand the confidence scores of the pre-
dicted class of support set samples, we plot the confidence
scores averaged over all the support samples and the tasks,
as training progresses in Fig. 3. We observe from Fig. 3a
that for a scale of 10, the model is only able to assign con-
fidence scores in the range of 0.6-0.8 even towards the end
of training, although the support set samples get correctly
classified. Using a scale of 25, the model learns to correctly
classify samples while also gradually assigning high confi-
dence. On the other hand, using a scale of 50, the model
predictions attain confidence>0.8 for most of the samples

in only about 10 iterations. Correspondingly, the loss con-
verges in <25 iterations resulting in overfitting on the sup-
port set as shown in Fig. 4c, resulting in degraded perfor-
mance when compared to using a scale of 25.

As we later show in Table 2, empirically also, we ob-
serve that using a higher scale (η = 25) improves the CD-
FSL performance significantly as compared to setting it to
10, which was the default in URL and TSA. This verifies
our hypothesis, that because of the challenging nature of the
CD-FSL task, a higher scale factor is desirable. Needless to
mention, that if the scale factor is increased to a very high
value, the model assigns a high probability score irrespec-
tive of the cosine similarity value, which in turn reduces the
discriminability between samples and can hurt the training
process.

4.3. Similar Class Style Augmentations

Our objective is to learn to recognize new classes in un-
seen domains using limited training data. Here, we pro-
pose to augment the support set in the feature space using
the styles of similar class samples. For example, suppose
we have a cat training class which has examples of sitting
cat, sleeping cat, we can augment it with the styles of a
neighbouring class, say dog, which might have examples
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of standing dog, running dog. It may not be meaningful to
augment it with the styles of semantically dissimilar classes,
say bird, which may have examples of flying birds. The
early layer feature statistics are representative of the do-
mains/styles of the input sample [12, 32]. In this section,
we simplify the notation, by dropping the superscript s re-
ferring to support set samples for clarity.

Given a sample (xi, yi) ∈ S, we propose to mix its fea-
ture statistics (representative of style) with that of another
sample xj to synthesize a style augmented feature of class
yi. Although, this a label preserving transform, as explained
earlier, arbitrarily picking samples could adversely affect
the training process. Given the small support set, in order to
effectively style augment while also avoiding irrelevant fea-
ture perturbations, we propose to condition the mixing of
styles to only relevant classes based on the similarity of the
class representations. We now formulate the SSA (Similar-
class Style Augmentation) module.

Firstly, we obtain the pairwise class similarities based on
their centroids. The cosine similarity of class i with that of
class j can be obtained from their centroids ci, cj as

sim(ci, cj) =
cTi cj

∥ci∥∥cj∥
(6)

For a class k, the set of similar classes is determined as:

Sk = {t|sim(ct, ck) > τ ; t = 1, .., C} (7)

where τ is a pre-set threshold.
Denoting fi as the intermediate feature at a layer l, of

support sample xi belonging to class yi, we randomly select
another sample xj belonging to one of its similar classes
Syi

, i.e., yj ∈ Syi
. The style of xj is used to perturb the

style of xi to get the style augmented sample as follows:

µssa(fi; fj , yj ∈ Syi
) = λµ(fi) + (1− λ)µ (fj)

σssa(fi; fj , yj ∈ Syi
) = λσ(fi) + (1− λ)σ (fj)

fssa
i = σssa(fi; fj , yj ∈ Syi)⊙

fi − µ(fi)

σ(fi)
+ µssa(fi; fj)

(8)
Here, µ(fi), µ(fj) and σ(fi), σ(fj) are the channel-wise
mean and standard deviation of the features fi and fj re-
spectively. Let zi, zj and zssai denote the output feature
vectors (from last layer) obtained on passing fi, fj and fssa

i

respectively through the rest of the network. The SSA aug-
mented feature zssai is obtained by mixing the styles of xi

and xj . However the content of xi is preserved in the fea-
ture zssai and hence belongs to the class yi.
SSA-BNS: To summarize, we minimize the NCC loss over
the support set features and their augmentations obtained
through SSA as

min
γ,β

1

2nS

∑
(xs

i ,y
s
i )

LNCC(z
s
i , y

s
i ; η) + LNCC(z

ssa
i , ysi ; η)

(9)

For evaluation on query set Q, cosine similarity metric is
used to assign the query sample xq

i to the nearest centroid
as:

ŷqi =
k
cos θi,k; cos θi,k =

cTk z
q
i

∥zqi ∥∥ck∥
(10)

where zqi is the feature of the query sample xq
i .

Though this work is inspired from MixStyle [32], there
are significant differences between the two approaches as
discussed below:
1) Mixstyle mixes styles of samples from different source
domains during training, primarily to interpolate the
domain information. In our work, during training for the
new tasks, the source domain data is not available. All
the examples that are used for augmentation belong to the
same unseen domain.
(2) In MixStyle, the two samples can come from any class.
We observe that class-agnostic mixing is not meaningful
for this application as we are primarily mixing the styles,
and it also hurts the performance as seen empirically. Thus,
the style mixing takes place only between semantically
similar classes to generate realistic augmentations, which
aid the training process.

5. Experimental Evaluation

Here, we describe the datasets used, implementation
details and the experimental results.

Meta-Dataset Benchmark: Meta-Dataset [25] is a
recent benchmark proposed for the CD-FSL task. This
benchmark comprises of 10 datasets of which eight act as
training domains and the other two as test domains. The
training domains comprises of ImageNet, Omniglot, Air-
craft, Birds, Textures, Quick draw, Fungi and VGG Flower
datasets. Traffic Signs and MSCOCO act as test domains.
Additionally, following prior works [15,16,24], we also in-
clude MNIST, CIFAR-10 and CIFAR-100 as test domains.
The few shot tasks are sampled with varying number of
classes N , with N varying from 5 to the maximum number
of classes available in the dataset. The number of samples
per class K, although varying, is capped at 100 samples and
also the total support set size is limited to 500 samples in all.

Implementation details: We use a ResNet-18 back-
bone trained on the eight training domains following the
Meta-Dataset protocol [25]. This universal feature extractor
is the same as that used in [15, 16], which is trained by
distilling knowledge from eight individually trained feature
extractors.

For few shot task adaptation, we only finetune the BN
affine parameters {γ, β} on the support set of a given task
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Dataset SUR URT FLUTE tri-M URL* TSA* SSA-BNS TSA*+SSA

Imagenet 56.2± 1.0 56.8± 1.1 58.6± 1.0 51.8± 1.1 58.8± 1.1 59.5± 1.0 56.6± 1.0 58.9± 1.1
Omniglot 94.1± 0.4 94.2± 0.4 92.0± 0.6 93.2± 0.5 94.5± 0.4 94.9± 0.4 95.2± 0.5 95.6± 0.4
Aircraft 85.5± 0.5 85.8± 0.5 82.8± 0.7 87.2± 0.5 89.4± 0.4 89.9± 0.4 89.6± 0.4 90.0± 0.5
Birds 71.0± 1.0 76.2± 0.8 75.3± 0.8 79.2± 0.8 80.7± 0.8 81.1± 0.8 81.8± 0.8 82.2± 0.7

Textures 71.0± 0.8 71.6± 0.7 71.2± 0.8 68.8± 0.8 77.2± 0.7 77.5± 0.7 76.4± 0.7 77.6± 0.7
Quick draw 81.8± 0.6 82.4± 0.6 77.3± 0.7 79.5± 0.7 82.5± 0.6 81.7± 0.6 82.8± 0.6 82.7± 0.7

Fungi 64.3± 0.9 64.0± 1.0 48.5± 1.0 58.1± 1.1 68.1± 0.9 66.3± 0.8 66.7± 0.8 66.6± 0.8
VGG Flower 82.9± 0.8 87.9± 0.6 90.5± 0.5 91.6± 0.6 92.0± 0.5 92.2± 0.5 92.8± 0.6 93.0± 0.5

Traffic Sign 51.0± 1.1 48.2± 1.1 63.0± 1.0 58.4± 1.1 63.3± 1.1 82.8± 1.0 77.9± 1.1 84.9± 1.1
MSCOCO 52.0± 1.1 51.5± 1.1 52.8± 1.1 50.0± 1.0 57.3± 1.0 57.6± 1.0 56.1± 0.9 58.1± 1.0

MNIST 94.3± 0.4 90.6± 0.5 96.2± 0.3 95.6± 0.5 94.7± 0.4 96.7± 0.4 98.3± 0.5 98.5± 0.4
CIFAR-10 66.5± 0.9 67.0± 0.8 75.4± 0.8 78.6± 0.7 74.2± 0.8 82.9± 0.7 79.4± 0.7 82.9± 0.7
CIFAR-100 56.9± 1.1 57.3± 1.0 62.0± 1.0 67.1± 1.0 63.5± 1.0 70.4± 0.9 69.0± 0.9 70.8± 0.9

Average seen 75.9 77.4 74.5 76.2 80.4 80.4 80.2 80.8
Average unseen 64.1 62.9 69.9 69.9 70.6 78.1 76.1 79.0

Average all 71.4 71.8 72.7 73.8 76.6 79.5 78.7 80.1

Table 1. Average accuracy over 600 tasks are reported for all the compared approaches for CD-FSL task. URL, TSA, SSA+BNS,
TSA+BNS uses the same universal feature extractor. * indicates that these approaches uses additional parameters as compared to the
feature extractor (Table 3).

using the NCC. As in TSA [16], we also use Adadelta
optimizer with learning rate of 0.001 and train for 40
iterations. We set λ to 0.5 in eqn.(8) to perform SSA,
scale parameter η to 25 and the threshold τ to 0.7 in all the
experiments. MixStyle layers are inserted after the first and
second ResNet blocks.

Experimental Results: Table 1 reports the average
accuracy and 95% confidence interval over 600 tasks
obtained using the proposed framework, alongside compar-
isons with the state-of-the-art approaches. The first group
of results correspond to the seen domains and the second
group to unseen domains. The results of the other works
are directly taken from [16]. For the proposed work, we
reports two sets of results. First, we report the results of
our SSA-BNS framework, which does not include any
change in architecture or increase in number of parameters
compared to the originally trained model using the source
datasets. We observe that for the unseen domains, the pro-
posed SSA-BNS significantly outperforms FLUTE [24],
tri-M [19] and URL [15], and is second only to TSA [16].
For the seen domains, it performs comparably to all the
other approaches. On an average, SSA-BNS achieves an
accuracy of 78.7% as compared to 76.6% obtained by
URL. It is only second to [16], which obtains an average
accuracy of 79.5%. Note that all the other approaches uses
significantly more parameters and also involves change in
the trained model architecture as shown in Table 3. In addi-
tion, we also report the results of integrating the proposed
SSA module into the state-of-the-art [16] approach. We

SSA BNS(η) Seen domains Unseen domains
Aircraft Fungi CIFAR-100 MSCOCO

✗ ✗ 87.0 65.6 59.9 53.1
✗ 10 89.1 66.0 66.9 54.5
✗ 25 89.5 66.4 68.4 55.7
✗ 50 89.5 66.2 67.7 55.4
✓ 25 89.6 66.7 69.0 56.1

Table 2. CD-FSL performance on two seen and unseen domains
(averaged over 600 tasks). Effect of BN adaptation, scale factor η
and the SSA module.

observe that this simple, yet effective augmentation (with
no additional parameters) can be used to further improve
the performance of the SOTA approaches for both seen and
unseen domains.

6. Additional Analysis

Here, we perform additional analysis to better under-
stand the proposed framework and the usefulness for each
of its components.

Ablation Study: We study the importance of each
component for two seen and unseen domains and report
the results in Table 2. Firstly, we do not adapt the network
and simply use a NCC to classify the query samples, which
corresponds to the first row in Table 2. Then we study
the role of BN adaptation for the CD-FSL task. While
earlier works like URL [15], TSA [16] use a default scale
factor of 10, we experiment with other values (25 and
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Method #Additional parameters # Trainable parameters
URL 262144 262144
TSA 1482752 1482752

TSA+SSA 1482752 1482752
SSA-BNS None 9600

Table 3. Comparison of computational complexity with state-of-
the-art CD-FSL methods

50) to study its impact. We observe that using a scale of
25 consistently performs better as compared to using a
smaller scale factor like 10. Although using scale of 50 is
preferable over 10, the results degrade when compared to
using a scale of 25. This happens due to the assignment
of high confidence for correctly classified support samples
with low cosine similarity values as discussed in Sec-
tion 4.2. We also observe that the SSA module consistently
improves the performance for both the seen and unseen
domains. The effect of SSA module can also be seen by
comparing the accuracies obtained by TSA and TSA+SSA
in Table 1. This analysis shows that each of the proposed
components contribute significantly towards improving the
performance.

Trainable Parameters: We compare the complexity
of the proposed SSA-BNS framework with that of the
previous SOTA methods, URL [15] and TSA [16]. Specif-
ically, we report (i) the number of additional parameters
incorporated in the universal feature extractor for few shot
task adaptation and (ii) the number of trainable parameters
in Table 3.

Given the universal feature extractor, the SSA-BNS
framework does not require any change in the model
architecture, as it only leverages the existing BN layers in
the network for adaptation. Here, only the BN affine pa-
rameters (9600 in the ResNet-18 architecture) are trainable.
We observe that SSA-BNS framework is very efficient, and
significantly outperforms URL having 262,144 additional
parameters. It is only second to TSA which uses 154 times
more parameters. TSA+SSA, which outperforms all the
existing approaches has the same number of parameters as
TSA, since the proposed SSA module does not introduce
any additional parameters.

Performance with Different Augmentations: Al-
though it is common to use data augmentations for training
deep models, it is not always clear which type of aug-
mentation will help in which application, especially in the
low-data regime. Here, we perform extensive experiments
using a variety of image and feature space augmentations
for the CD-FSL task. Specifically, we investigate the
following successful and popularly used data augmentation
techniques for our task: 1) RandAugment [5] sequentially

Type Seen domains Unseen domains
Aircraft Fungi CIFAR-100 MSCOCO

RandAugment [5] 88.8 65.2 66.9 55.2
MixUp [11] 88.4 66.3 67.9 54.6

Feature MixUp [14] 88.9 66.3 68.3 55.3
Random MixStyle [32] 89.6 66.2 68.2 55.3

SSA (Proposed) 89.6 66.7 69.0 56.1

Table 4. Comparison of the proposed BNS module with different
augmentation techniques.

applies image transforms like autocontrast, polarize,
shear, posterize, equalize etc. to the input image. 2)
In MixUp [11], image augmentations and their labels
are obtained as convex combinations of image samples
and their labels. For e.g., given two samples xi and xj ,
mixup samples is created as xaug = λxi + (1 − λ)xj

with label yaug = λyi + (1 − λ)yj . 3) Inspired from
i-Mix [14], we perform Feature MixUp where a feature is
perturbed by slightly shifting it towards another sample.
The augmented feature of a sample xi using xj is obtained
as faug

i = λfi + (1 − λ)fi with λ set to 0.9. Such feature
mixing layers are inserted after the first two ResNet blocks.
4) Random MixStyle [32]: Here, the styles are augmented
as described in Section 4.3, but the samples whose styles
are mixed can belong to any class, not necessarily similar
classes. 5) SSA (Proposed): In this work, we use similar
class style augmentations as described in Section 4.3. We
observe that the proposed SSA module outperforms all the
commonly used augmentation techniques.

7. Conclusion

In this work, we address the challenging task of Cross-
Domain Few-Shot Learning (CD-FSL), where a model
learnt using diverse source domains has to be adapted to
new tasks (with different classes from different domains)
with only a few training examples per class. Since chang-
ing the trained model architecture and increasing the num-
ber of trainable parameters is often infeasible/not desirable,
we propose a novel framework, termed SSA-BNS, which
modifies the BN affine parameters and the scale parameter
of the cosine similarity based softmax loss, without modi-
fying the feature extractor or adding any parameters to the
source trained model, along with a similar-class augmen-
tation module for this task. Extensive experiments on sev-
eral datasets show that the proposed framework outperforms
several recent works with much lesser parameters and mod-
ifications. We also show that the proposed SSA module can
be integrated with the current state-of-the-art approach [16]
to further improve its performance, giving the state-of-the-
art performance for the challenging CD-FSL task.
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