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Abstract

In light of the enormous computational resources re-
quired to store and train modern deep learning models, sig-
nificant research has focused on model compression. When
deploying compressed networks on remote devices prior
to training them, a compression scheme cannot use any
training data or derived information (e.g., gradients). This
leaves only the structure of the network to work with, and
existing literature on how graph structure affects network
performance is scarce. Recently, expander graphs have
been put forward as a tool for sparsifying neural architec-
tures. Unfortunately, however, existing models can rarely
outperform a naı̈ve random baseline. In this work, we pro-
pose a stronger model for generating expanders, which we
then use to sparsify a variety of mainstream CNN architec-
tures. We demonstrate that accuracy is an increasing func-
tion of expansion in a sparse model, and both analyse and
elucidate its superior performance over alternative models.

1. Introduction

State-of-the-art results in deep learning are often
achieved by highly over-parameterized models consisting
of millions, and even billions, of parameters. Such mod-
els consume vast computational resources for both training
and storage, making them infeasible to transmit to, store
on, and train using resource constrained devices. Exten-
sive research [1, 5, 9, 15] has therefore focused on model
compression to alleviate the computational resources that
they consume, whilst maintaining performance. In settings
where models are transmitted to edge devices to train on lo-
cal private data (e.g., federated learning), a server-side com-
pression algorithm may not use any data, which leaves the
structure of the network to work with.

Early work on pruning at initialization (PaI) [21, 27, 28]
proposed pruning metrics defined with respect to the gra-
dient of the loss, and therefore depends on data. For other
relevant work and background on PaI, see the survey pa-
pers [6, 29]. In settings where PaI should take place in-
dependently of both the task and data, more structural ap-
proaches are necessary. It has long been understood how

certain structural properties of neural networks impact their
performances [18, 20]. Outside the context of compression,
the general graph structure of neural networks has also been
studied [30]; however, relatively little attention has been
placed on the graph structure of sparse neural networks.

In this work, we complement recent research [6, 11, 25,
27] on how sparse graph structure and connectivity can be
harnessed as a tool for model compression. We investigate
the role played by graph expansion in the performance of
sparse models. We empirically demonstrate that classifi-
cation accuracy is an increasing function of graph expan-
sion, in highly sparse regimes. With this as motivation, we
propose a stronger model (RReg) for constructing sparse
expander layers, and observe their improved properties at
the scale of typical vision architectures. We demonstrate,
for a variety of architectures and datasets, that RReg con-
sistently outperforms a random baseline [23], whereas ex-
isting models [11, 25] often do not, particularly in highly
sparse regimes. Finally, we show the practical relevance
of highly sparse models by exhibiting expander sparsified
ResNets with fewer parameters and superior performance
than their fully-connected alternatives.

2. Expander Graphs
Preliminaries To capture the graph structure of a neural

network, we follow the approach of [25], which models
individual layers of a neural network as bipartite graphs.
Whilst more complicated models are possible, such as
relational graphs [30], we believe that the straightforward
approach best captures the intuition behind the relationship
between graph structure and behaviour of the layers of
a neural network. We achieve a sparse architecture by
masking weights; that is, we associate a binary mask
to each layer of the network. For a linear layer with
n0 input units and n1 output units, M ∈ {0, 1}n0×n1

indicates the non-zero parameters of the layer. For a
convolutional layer with n0 input channels and n1 output
channels, a binary mask M indicates which input channels
each entire filter is applied to. In both cases, the layer
corresponds to a bipartite graph G = (V 0

G, V
1
G, EG),

with V 0
G = {1, . . . , n0}, V 1

G = {1, . . . , n1}, and
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(a) Linear layer: graph expansion
allows subsets of input neurons to

interact with larger subsets of output
ones (highlighted in green).
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(b) Conv layer: a filter is applied to
input channels {ij}j=2,4,5,6,7, to

obtain output channel o1, as
determined by the graph structure.

Figure 1. Illustration of bipartite expander graph representations
of sparse layers.

EG = {(i, j) | i ∈ V 0
G, j ∈ V 1

G,Mi,j = 1}, where Mi,j is
the element in the ith row and jth column of M .

Definition 1 (α-expander). Let d ≥ 3 (degree) be an integer
and let α > 0 be a real number. We say that a d-regular
bipartite graph G = (V 0

G, V
1
G, EG) is an α-expander if, for

all i ∈ {0, 1} and all S ⊆ V i
G with |S| ≤ |V i

G|/2, we
have that |∂S| ≥ α|S|, where ∂S denotes the set of vertices
connected to S.

The above definition already illustrates why expander
graphs are of interest as a tool for data-free model com-
pression – expanders are simultaneously sparse yet highly
connected. When modelling a layer of a neural network as
a bipartite expander, greater values of α allow subsets of
neurons to interact with a larger subset of other neurons,
therefore promoting a better feature shareability and flow
of information through the network, as depicted in Fig. 1.

We may also give a spectral definition of the class
of d-regular expanders. For an n-vertex d-regular bipar-
tite graph, let λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) de-
note the eigenvalues of its adjacency matrix, and define
λ(G) = maxi ̸=1 |λi(G)|.

Definition 2 (ϵ-expander). Let d ≥ 3 be an integer and let
ϵ > 0 be a real number. We say that an n-vertex d-regular
bipartite graph is an ϵ-expander if it satisfies λ(G) ≤ ϵd.

We can define a class of expanders using either of
Def. 1 and 2, and the ways in which they relate are well-
understood [13]. The spectral definition of an expander al-
lows us to conveniently compare the expansion properties
of different graph classes, and understand the best possi-
ble expansion properties that a class of graphs can have. It
is known [24] that for every ϵ and d, there exists n such
that all d-regular graphs G with at least n vertices satisfy
λ(G) > 2

√
d− 1− ϵ. A d-regular graph G is called a Ra-

manujan graph if it satisfies λ(G) ≤ 2
√
d− 1, and such

graphs therefore give the best possible expanders [13]. We

Table 1. Comparison between random models at degree d.

Model Regularity α Edges

Random [4, 23] random low d · n/2
X-Net [25] d-left-regular medium d · n/2
RReg (ours) d-regular high d · n/2

are interested in constructing graphs with the strongest pos-
sible expansion properties, so that we can employ them as
effective sparsifiers for the layers of a neural network. We
analyze two existing models from the literature: the ran-
dom left-regular model [25] (X-Net) and the random graph
model [4,23] (Random). We then propose a stronger model
based on the Random Regular graph model (RReg).

Methodology The RReg model, for fixed n and d,
chooses a random n-vertex d-regular graph uniformly at
random from the set of all such graphs (Tab. 1). The X-Net
model [25], for fixed n and d, chooses a random n-vertex d-
left-regular (every left vertex has degree d) graph uniformly
at random from the set of all such graphs. Finally, the ran-
dom model [23], for fixed n and d, connects every pair of
vertices with an edge independently with probability 2d/n.

With high probability, RReg graphs are essentially Ra-
manujan, and achieve optimal expansion [2, 24]. These op-
timal expansion properties provide our motivation for their
use, and we demonstrate empirically that the RReg model
produces stronger expanders than both X-Net and Random.

The random baseline [23] is crucially important, and
has so far been overlooked by existing work [11, 25]. In
graph terms, it can be viewed as a version of the Erdős-
Rényi random graph model [4], which is known to produce
poor expanders. In [23], it is shown that, in certain sparsity
regimes, randomly pruned architectures can match the per-
formance of their fully-connected equivalents. Another re-
cent work [11] develops metrics to demonstrate that existing
work on expander-based PaI often cannot be separated from
a random baseline. Whilst they do not propose a model for
overcoming this, we do so by equipping our random graph
model with a simple procedure for sampling vertex subsets,
in order to estimate α and thereby allow us optimize the
expansion properties of our generated graphs

We note that theoretical results on expanders apply
asymptotically – the properties of random graphs and the
probabilities they occur with are, strictly speaking, only
valid for graphs of large enough size. Despite this, we em-
pirically verify that the expansion properties of the various
random graph models that we appeal to, do indeed align
with their theoretical properties. Further, the current state
of the art is achieved every year by deeper and wider archi-
tectures [16, 32].
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3. Results
3.1. Experimental Setup

Datasets We consider popular benchmarks under vari-
able dataset sizes and numbers of classes. We use: CI-
FAR [17] with 10 or 100 classes, containing 50k train-
ing and 10k testing samples; Tiny ImageNet [19] with 200
classes, containing 100k training and 10k testing samples;
ImageNet [3] with 1k classes, containing approximately
1.3M training and 100k testing samples. We use the same
batch size for each model/dataset pair – the largest batch
size compatible with a GeForce RTX 2080 Ti GPU.

Metrics We evaluate performance along several met-
rics. Methods are ranked according to top-1 accu-
racy, Acc (%, ↑). Relative gain of Acc2 against a
baseline Acc1 is measured in terms of (i) relative gain
∆R = (Acc2 −Acc1)/Acc1; and (ii) room-aware relative
gain ∆RAR = (Acc2 −Acc1)/(100−Acc1). Sparsity is
measured by the number of remaining parameters P (M, ↓)
or by their percentage, PP (%, ↓) at a certain degree d (↓).
Network connectivity is measured via combinatorial expan-
sion α (↑). Model calibration, i.e., the ability to predict
probability estimates representative of the true correctness
likelihood, is measured through the ECE score, as in [7].

Sparse graph generation We follow the masking ap-
proach described in Sec. 2. We implement sparse linear and
convolutional layers in PyTorch, endowed with a mask that
defines the sparsity pattern for the relevant layer. This mask
is applied to to all forward and backward passes through the
layer. Upon initialisation of the sparse model, we generate
the mask for each layer by taking the biadjacency matrix
of a NetworkX [8] graph object, which can be constructed
according to any desired model.

The theoretical motivations described in Sec. 2 largely
concern regular bipartite graphs, which are necessarily bal-
anced (have the same number of left and right-hand ver-
tices). In practice this is not always the case; however, in
spite of this minor deviation from the theoretical setup, we
empirically observe the expansion properties that we expect
to see in the graphs generated by each of the models that we
consider, as we show in Sec. 3.2.

3.2. Experimental Results

Empirical motivation We show in Fig. 2 that expander-
based PaI improves accuracy, by sparsifying a network ac-
cording to graphs with varying expansion, but same aver-
age degree d (and thus the same number of edges). This
controlled experiment is conducted on CIFAR10 using a
small 2-layer CNN (with 6 and 16 channels, respectively),
where the penultimate linear layer is sparsified via 3-regular
graphs with increasingly strong expansion properties.

Variable sparsity We evaluate on CIFAR10/100 in
Tab. 2 for a VGG16 backbone [26]. Each horizontal block
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Figure 2. Accuracy is an increasing function of expansion for a
small CNN on CIFAR10. A best fit line is shown in black.

Degree d = 3 is constant across all sparse models.

Table 2. Results on CIFAR10/100 using VGG16 at variable spar-
sity levels. The original VGG model has 15M parameters. ∆R

and ∆RAR are computed with respect to Random.

CIFAR10 CIFAR100

Method PP d Acc ∆R ∆RAR Acc ∆R ∆RAR

Original 100 - 94.24 - - 74.16 - -
Random [23] 93.50 - - 72.97 - -
X-Net [25] 93.46 -0.04 -0.62 72.73 -0.33 -0.89
RReg (ours)

13.79
±0.11

60
93.50 +0.00 +0.61 72.72 -0.34 -0.04

Random [23]
30

92.51 - - 69.81 - -
X-Net [25] 92.65 +0.15 +1.87 69.80 -0.01 -0.03
RReg (ours)

7.07
±0.20 93.05 +0.58 +5.44 70.15 +0.49 +1.16

Random [23] 91.30 - - 66.58 - -
X-Net [25] 91.38 +0.09 +0.92 66.81 +0.35 +0.69
RReg (ours)

3.62
±0.15

15
91.50 +0.22 +1.39 67.72 +1.71 +2.74

Random [23] 0.79
±0.03

3
85.81 - - 56.98 - -

X-Net [25] 86.06 +0.29 +1.76 56.69 -0.51 -0.67
RReg (ours) 87.02 +1.41 +6.89 59.61 +4.62 +6.74
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Figure 3. CIFAR100 Acc of a sparsified VGG16 with d = 3 over
variable training data percentage.

corresponds to a different level of sparsity: from top to bot-
tom, the percentage of remaining parameters PP diminishes
with the layer degree d. The mean standard deviation over
all models over five runs is ∼ 0.2. As shown in [11], we
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Table 3. Results on Tiny-ImageNet with several architectures at a fixed degree d = 3. ∆R is computed with respect to Random.

VGG16 MN RN18 RN34 RN50 RN101 RN152 WRN28-10 WRN40-14 Avg
Method PP [%] Acc PP [%] Acc PP [%] Acc PP [%] Acc PP [%] Acc PP [%] Acc PP [%] Acc PP [%] Acc PP [%] Acc Acc ∆R

Original 100 40.03 100 54.75 100 53.88 100 56.95 100 57.08 100 60.13 100 61.29 100 46.27 100 49.04 53.27 -

Random [23] 22.84 19.33
(±0.10)

21.81 44.02 2.33
(±0.02)

47.34 46.77 8.52
(±0.08)

49.56 49.05 1.04
(±0.02)

35.5 39.51 39.63 -
X-Net [25] 23.20 19.49 42.69 46.97 45.36 49.45 49.47 35.57 40.21 39.16 -1.20

RReg (ours)

0.79
(±0.03)

25.31 34.26

3.45
(±0.05)

44.30 46.30

14.24
(±0.06)

48.27 51.04

6.62
(±0.08)

51.21 36.50

0.65
(±0.01)

40.54 41.94 +5.11

Table 4. Results of RN50 on ImageNet at a fixed degree d = 3.

Method PP Acc ∆R

Original 100 68.69 -

Random [23] 14.24
(±0.06)

51.48 -
X-Net [25] 52.63 +2.23
RReg (ours) 54.26 +5.40

verify that is hard to separate existing methods (e.g., X-Net)
from a random baseline. Nevertheless, our method outper-
forms both the random baseline and X-Net almost every-
where (with one exception on CIFAR100). Looking at ∆R

and ∆RAR, we observe that our method is most effective at
high levels of sparsity (lower blocks).

Fig. 3 shows that our approach is consistently higher at
variable percentage of training samples, therefore revealing
its usefulness, even in low data regimes.

Additionally, we argue that expander sparsified architec-
tures achieve higher confidence calibration [7] than fully-
connected ones, as recently showed for post-training prun-
ing techniques [22]. The fully-connected model has an ECE
score of 0.044 and 0.141 on CIFAR10 and CIFAR100, re-
spectively. On the other hand, RReg at high level of sparsity
(d = 3) has an ECE score of 0.037 and 0.075, respectively.
ECE reduction reflects a higher calibration, which gives the
model higher correctness likelihood and interpretability.

More backbones, samples, and classes We evaluate on
Tiny-ImageNet and ImageNet at a high level of sparsity
(d = 3). To prove the robustness of our approach to mod-
els with variable design choice, depth and width, we eval-
uate popular CNNs on Tiny-ImageNet in Tab. 3: VGG16
[26], MobileNet (MN) [14], ResNets (RN) [10] and Wide-
ResNets (WRN) [31]. Our method consistently outperforms
both Random and X-Net by over 5% relative gain.

Tab. 4 reports RN50 on ImageNet, where the relative
gain is much higher than in previous cases – the higher task
difficulty appears to increase the influence of network struc-
ture. Overall, our RReg proves to be applicable to multiple
backbones and to datasets with varying numbers of samples
(from 3k to ∼ 1.2M) and classes (from 10 to 1k).

Why do we need expander-sparsified architectures?
PaI presents similar challenges to those encountered when
pruning post-training. Sparse architectures (pruned either
before or after training) are yet to fully reveal their ad-

Table 5. Sparse architectures improve smaller networks (Tiny-
ImageNet). Note: batch size is ∼ 2x higher than in Tab. 3.

Type Model P Acc ∆R ∆RAR Model P Acc ∆R ∆RAR

Orig RN50 23.9 59.36 - - WRN28-4 5.9 43.16 - -
RReg RN152 21.9 62.01 +4.46 +6.52 WRN28-10 5.9 43.76 +1.39 +1.06

vantages, mainly due to limitations of both hardware and
libraries which hinder large-scale deployment of pruned
models [6, 12, 29]. This leaves several exciting possible ap-
plications of PaI; for example, as a tool for neural architec-
ture search that provides sparse networks from the outset.
Nevertheless, we argue that our RReg PaI method reveals
to be effective in designing sparse architectures that achieve
higher accuracy at a same number of parameters than their
shallower and narrower fully-connected counterparts. We
investigate this claim in Tab. 5 for RN and a WRN-based
architectures. An RN152 sparsified according to RReg sig-
nificantly outperforms a fully-connected (shallower) RN50
by ∆RAR = 6.52. Interestingly, the original RN50 con-
tains around 10% more parameters than the sparse RN152.
Similar results also hold for the WRN.

4. Conclusions

In this work, we explored the use of expander graphs as
sparsifiers for neural network architectures. We proposed a
model (RReg) for generating sparse layers with optimal ex-
pansion properties. We have further identified the settings
in which expansion impacts network performance, and cap-
tured this relationship by observing that classification ac-
curacy is an increasing function of graph expansion. Our
results show a consistent improvement over existing ran-
dom graph models for data-free PaI (e.g. XNet, Random),
for a range of image classification tasks and architectures.
We believe that our work better explains the role that ex-
pansion plays, and gives compelling motivation for future
research in this area. For example, application to larger-
scale architectures (e.g. transformers, LLMs) and domains,
proving theoretical guarantees around the performance of
expander sparsified architectures, and exploring the graph
structure of neural networks in general.
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[4] Paul Erdős, Alfréd Rényi, et al. On the evolution of ran-
dom graphs. Publications of the Mathematical Institute of
the Hungarian Academy of Sciences, 5(1):17–60, 1960. 2

[5] Jonathan Frankle and Michael Carbin. The lottery ticket hy-
pothesis: Finding sparse, trainable neural networks. In Pro-
ceedings of the International Conference on Learning Rep-
resentations (ICLR), 2019. 1

[6] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy,
and Michael Carbin. Pruning neural networks at initializa-
tion: Why are we missing the mark? In Proceedings of
the International Conference on Learning Representations
(ICLR), 2021. 1, 4

[7] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. In Proceedings of
the International Conference on Machine Learning (ICML),
pages 1321–1330. PMLR, 2017. 3, 4

[8] Aric Hagberg, Pieter Swart, and Daniel S Chult. Explor-
ing network structure, dynamics, and function using Net-
workX. Technical report, Los Alamos National Lab.(LANL),
Los Alamos, NM (United States), 2008. 3

[9] Song Han, Huizi Mao, and William J. Dally. Deep com-
pression: Compressing deep neural network with pruning,
trained quantization and huffman coding. In Yoshua Bengio
and Yann LeCun, editors, Proceedings of the International
Conference on Learning Representations (ICLR), 2016. 1

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016. 4

[11] Duc N.M Hoang, Shiwei Liu, Radu Marculescu, and
Zhangyang Wang. Revisiting pruning at initialization
through the lens of Ramanujan graph. In Proceedings of
the International Conference on Learning Representations
(ICLR), 2023. 1, 2, 3

[12] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dry-
den, and Alexandra Peste. Sparsity in deep learning: Prun-
ing and growth for efficient inference and training in neu-
ral networks. The Journal of Machine Learning Research,
22(1):10882–11005, 2021. 4

[13] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander
graphs and their applications. Bulletin of the American Math-
ematical Society, 43(4):439–561, 2006. 2

[14] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 4

[15] Steven A Janowsky. Pruning versus clipping in neural net-
works. Physical Review A, 39(12):6600, 1989. 1

[16] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec
Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for
neural language models. arXiv preprint arXiv:2001.08361,
2020. 2

[17] Alex Krizhevsky. Learning Multiple Layers of Features from
Tiny Images. Technical report, Univ. Toronto, 2009. 3

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Communications of the ACM, 60(6):84–90, 2017. 1

[19] Ya Le and Xuan Yang. Tiny imagenet visual recognition
challenge. CS 231N, 7(7):3, 2015. 3
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