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1. Notations
Table 1 provides a summary of the notations used in the

paper.

2. Algorithmic Details
2.1. Description of CORAL

CORAL [19] is an efficient domain alignment technique,
which aligns source and target domain feature distributions
by matching their covariance. In semi-supervised domain
adaptation, CORAL will align feature distributions of la-
beled data (source data, target labeled data) and unlabeled

Table 1. Table of notations

Symbol Description

N
et

w
or

k

Gc ConvNeXt-XL backbone
Gs Swin-L backbone
Fc Linear classifier, trained using features extracted from Gc

Fs Linear classifier, trained using features extracted from Gs

wc Weights of classifier Fc

ws Weights of classifier Fs

D
at

as
et

s
/F

ea
tu

re
se

ts

Ds Source dataset
Dtl Target labeled dataset
Dtu Target unlabeled dataset
Dc

s Source feature set obtained from Gc

Dc
tl Target labeled feature set obtained from Gc

Dc
tu Target unlabeled feature set obtained from Gc

Dc
tu′ Strongly augmented target unlabeled feature set from Gc

Ds
s Source feature set obtained from Gs

Ds
tl Target labeled feature set obtained from Gs

Ds
tu Target unlabeled feature set obtained from Gs

Ds
tu′ Strongly augmented target unlabeled feature set from Gs

Dc
co Co-training feature set for training Fc

Ds
co Co-training feature set for training Fs

Dc
cons Consistency regularization feature set for training Fc

Ds
cons Consistency regularization feature set for training Fs

Uc Pseudo labeled set obtained from Fc

Us Pseudo labeled set obtained from Fs

L
os

se
s/

fa
ct

or
s Lce Cross-entropy loss

Llsr Cross-entropy loss with label-smoothing regularization
λs Scaling factor for source data loss
λtl Scaling factor for target labeled data loss
λco Scaling factor for co-training loss
λcons Scaling factor for consistency regularization loss

Sa
m

pl
es

/F
ea

tu
re

s
/M

is
ce

lla
ne

ou
s

(xs, ys) Paired source samples
(xtl, ytl) Paired target labeled samples
xtu Unlabeled target samples
yps,c Pseudo label from set Uc

yps,s Pseudo label from set Us

fs Source feature obtained from Gc

ftl Target labeled feature obtained from Gc

ftu Target unlabeled feature obtained from Gc

ftu′ Strongly augmented target unlabeled feature from Gc

gs Source feature obtained from Gs

gtl Target labeled feature obtained from Gs

gtu Target unlabeled feature obtained from Gs

gtu′ Strongly augmented target unlabeled feature from Gs

Nouter Outer iterations
Ninner Inner iterations
Nmax Maximum number of iterations
K Number of classes
τ Confidence threshold
η Learning rate
ψ Weak augmentation
ϕ Strong augmentation



data (target unlabeled data). More precisely, CORAL first
whitens labeled data feature distribution and then re-color
it with the covariance of unlabeled data feature distribution.
However, in our work, we use CORAL for introducing di-
versity at the feature distribution level by applying it at the
features of only one of the backbones.

Algorithm 1: CORAL (correlation alignment)
Input : Source data features F s, target labeled

data features F tl and target unlabeled data
features F tu

Output: Updated features F s, F tl

1 F lab = concatenate (F s,F tl)
2 F lab = F lab − E[F lab]
3 F tu = F tu − E[F tu]
4 Clab = cov(F lab) + λI
5 Ctu = cov(F tu) + λI

6 F lab = F lab ∗C−1/2
lab // whitening labeled

data

7 F lab = F lab ∗C1/2
tu // re-coloring labeled

data

Where, E[·] and cov(·) represents the mean and covari-
ance of the data features respectively. λ is the small constant
added to the diagonal elements of the covariance matrix to
make it an invertible matrix. Investigation of using other
techniques [4, 5, 18] similar to CORAL in our framework
(MARRS) are left for future exploration.

2.2. Weak augmentation details

In MARRS, we use perspective preserving padding as a
weak data augmentation for image level diversity module.
It preserves perspective while padding the image, which
equalizes the dimensions of the resultant image. PyTorch-
like pseudocode is given in Pseudo-code 1.

2.3. Initial training algorithm

In our framework, initially classifiers Fc and Fs are
trained on their individual labeled feature sets. An outline of
the initial training algorithm for Fc is given in Algorithm 2.
The same can be obtained for Fs by using Dss as source
feature set and Dstl as target labeled feature set.

2.4. Student model training algorithm

We use knowledge distillation [6] to transfer the knowl-
edge from teacher model (MARRS-trained classifers) to
student model (i.e. MobileNetV2). Detailed steps of train-
ing the student model are given in Algorithm 3.

Pseudo-code 1: PyTorch-like pseudocode for per-
spective preserving padding

Input : Image
Output: Image with perspective preserving padding

// Calculating maximum dimension of image

maxd = max(image.size)
// Left and top padding size

pleft, ptop = [(maxd - s) // 2 for s in image.size]
// Right and bottom padding size

pright, pbottom = [maxd - (s+pad) for s, pad in
zip(image.size, [pleft, ptop])]
// Combining all padding sizes

padding = (pleft, ptop, pright, pbottom)
// returning image after padding

return transforms.functional.pad(image, padding, 0,
’constant’)

Algorithm 2: Initial training
Input : Linear Classifier F , parameters w,

learning rate η, source feature set Dcs,
target labeled feature set Dctl, weight
balancing parameters λs, λtl and iterations
Nmax.

Output: updated parameters w.

1 for n← 1 to Nmax do
2 Ls = Lce (Ds;w)
3 Ltl = Lce (Dtl;w)
4 Llab = λs ∗ Ls + λtl ∗ Ltl
5 w = w − η · ∇Llab
6 end

3. Training Details
3.1. Feature extractors details

In our framework MAARS, we use ConvNeXt-XL [11]
and Swin-L [10] as two fixed feature extractors. Implemen-
tation of feature extractors in our work MARRS is based on
the timm1 python library. Details about feature extractors
are given in Table 2.

3.2. Hyperparameter details

We set Ninner = Nmax = 400 and Nouter = 30. We set
the balancing hyperparameters as λco = 0.9, λcons = 0.5.
Smoothing parameter ϵ = 0.1 for DomainNet dataset and
ϵ = 0.001 for other datasets. The values of other hyperpa-
rameters λs, λtl, τs and τtu are taken from recent work [9]
and set as λs = 0.4 for Algorithm 2 and λs = 0.1 other-
wise, λtl = 0.2 for Algorithm 2 and λtl = 0.05 otherwise,

1https://github.com/rwightman/pytorch-image-models



Algorithm 3: Knowledge Distillation
Input : MARRS-trained classifiers Fc,Fs with

parameters wc and ws respectively,
student model w, learning rate η, iterations
N , weight balancing parameters λs, λtl
and λtu, Batch Size B, confidence
threshold τ and datasets Ds,Dtl and Dtu .

Output: Student model w.

1 for n← 1 to N do
2 Sample S =

{(
xis, y

i
s

)}B
i=1

from Ds.
3 Sample T =

{(
xitl, y

i
tl

)}B
i=1

from Dtl.
4 Sample U =

{
xitu

}2B

i=1
from Dtu.

5 Set Upl = ∅. // empty pseudo-label set

6 Ls = Lce (S;w)
7 Ltl = Lce (T ;w)

// Calculating confident and agreed

pseudo labels

8 for i← 1 to 2B do
9 fi ← extracted feature of xitu for FC .

10 gi ← extracted feature of xitu for Fs.
11 pc = maxk p (k | fi;wc).
12 ps = maxk p (k | gi;ws).
13 ŷc = argmaxk p (k | fi;wc)
14 ŷs = argmaxk p (k | gi;ws)
15 if (ŷc = ŷs and pc > τ and ps > τ)
16 Update Upl ← Upl +

{(
xitu, ŷc

)}
.

17 end
18 end
19 Ltu = Lce (Upl;w)
20 Ltotal = λs ∗ Ls + λtl ∗ Ltl + λtu ∗ Ltu
21 w = w − η · ∇Ltotal
22 end

τs = 0.8 and τtu = 0.9 (initially, and decrease by 0.1 af-
ter each 10 Nouter iterations). In knowledge distillation,
we set the value of τ to 0.7 and the values of balancing hy-
perparameters λs, λtl and λtu are set as 0.1, 0.05 and 0.9
respectively, which are same as their previous values.

4. Additional Results

4.1. Feasibility analysis of co-training

To ensure the effectiveness of co-training in our frame-
work, we determine whether the linear classifiers in our
framework satisfy the relaxed version of the ϵ- expand-
ability [1, 2] condition or not. For this, we removed co-
training from our framework MARRS and replaced it with
self-training [8, 12]. Now, each classifier will use its own
pseudo-label sets to construct two labeled co-training fea-
ture sets, namely Dcco and Dsco (cf. Subsection 3.2 of the

Figure 1. Feasibility analysis of effective co-training on the Real
to Clipart, 3-shot adaptation task on the DomainNet [14] dataset.
The numbers Both, One, and None indicate the proportion of un-
labeled examples in which both, exactly one and none of the clas-
sifiers have confidence respectively.

main paper). After training both classifiers Fc and Fs, we
apply each classifier on the entire unlabeled dataset, as Fc
on Dctu and Fs on Dstu. So after applying Fc on Dctu, we
calculate the binary confidence indicator for each u ∈ Dctu,
as:

Mc(u) =

{
1 if maxk p (k | u;wc) > τ,

0 otherwise.
(1)

The value of binary confidence indicator will be 1 for
confident samples whose maximal probability score lies
above a threshold (τ = 0.5) and 0 otherwise. Similarly, we
can applyFs onDstu and calculate the binary confidence in-
dicatorMs(u) for each u ∈ Dstu. Now, we calculate three
values Nnone, None and Nboth representing the number of
unlabeled examples on which none, exactly one and both
of the classifiers have confidence respectively. These three
values are formulated as:

Nnone :
∑

u∈Dc
tu,u

′∈Ds
tu

M̄c(u)M̄s(u
′),

None :
∑

u∈Dc
tu,u

′∈Ds
tu

Mc(u)M̄s(u
′) + M̄c(u)Ms(u

′),

Nboth :
∑

u∈Dc
tu,u

′∈Ds
tu

Mc(u)Ms(u
′),

(2)
Where, M̄c(u) = 1−Mc(u) and M̄s(u

′) = 1−Ms(u
′).

We ran the experiment on Real to Clipart, 3-shot setting on
the DomainNet [14] dataset in which |Ds| = 70,358, |Dtu|
= 18,325 and |Dtl| = 378, and then we verified the relaxed
version of the ϵ-expandability [1,2] condition which can be
written as:

None ≥ ϵmin (Nboth , Nnone ) , (3)

for some ϵ > 0. Fig. 1 demonstrates the results, where af-
ter the end of 30 outer iterations, the values of Nnone, None



Table 2. Feature extractors details

Feature extractor Input resolution Output resolution Pretrain Finetune
ConvNeXt-XL 384 × 384 2048 ImageNet 22K ImageNet 1K

Swin-L 384 × 384 1536 ImageNet 22K ImageNet 1K

Table 3. Accuracy (%) on DomainNet dataset under the 5-shot and 10-shot settings. MARRS∗ (student model) uses MobileNetV2
(3.4 M parameters), and all other baselines use ResNet34 (22 M parameters). 5-shot (10-shot) represents that 5 target labeled samples (10
target labeled samples) per class are available during training. The best results are in bold, and the second-best results are underlined.

Method R→C R→P P→C C→S S→P R→S P→R Mean
5-sh 10-sh 5-sh 10-sh 5-sh 10-sh 5-sh 10-sh 5-sh 10-sh 5-sh 10-sh 5-sh 10-sh 5-sh 10-sh

S+T 64.5 68.5 63.1 66.4 64.2 69.2 59.2 64.8 60.4 64.2 56.2 0.7 75.7 77.3 63.3 67.3
ENT 77.1 79.0 71.0 72.9 75.7 78.0 61.9 68.9 66.2 68.4 64.6 68.1 81.1 82.6 71.1 74.0
MME 75.5 77.1 70.4 71.9 74.0 76.3 65.0 67.0 68.2 69.7 65.5 67.8 79.9 81.2 71.2 73.0
CLDA 80.3 81.2 76.0 77.7 77.8 80.3 71.6 74.1 74.5 77.1 72.9 74.1 84.0 85.1 76.7 78.5
CDAC 80.8 83.1 75.3 77.2 79.9 81.7 72.1 74.3 74.7 76.3 72.9 74.6 83.2 84.7 76.9 78.9

MARRS* 86.2 87.6 84.2 85.5 86.5 87.7 77.9 79.0 84.2 85.3 76.5 78.1 91.0 91.8 83.8 85.0
MARRS 86.6 87.9 85.8 86.9 86.8 87.8 78.2 79.0 86.3 87.2 77.3 79.0 92.9 93.5 84.8 85.9

Table 4. Accuracy (%) on Office-31. MARRS∗ (student model)
uses MobileNetV2 (3.4 M parameters), and all other baselines use
AlexNet (61 M parameters). The best results are in bold and the
second-best results are underlined.

Method W→ A D→ A Mean
1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

S+T 50.4 61.2 50.0 62.4 50.2 61.8
ENT 50.7 64.0 50.0 66.2 50.4 65.1
MME 57.2 67.3 55.8 67.8 56.5 67.6
CDAC 63.4 70.1 62.8 70.0 63.1 70.0
CLDA 64.6 70.5 62.7 72.5 63.6 71.5

MARRS∗ 88.4 89.5 87.5 89.9 88.0 89.7
MARRS 88.5 89.7 87.5 89.9 88.0 89.8

and Nboth are 570, 1563 and 16,192 respectively. Our two
linear classifiers satisfy the Eq. (3) with ϵ = 2.74, which
again demonstrates the usefulness of the proposed diver-
sity module in inducing diversity among classifiers, which
makes classifiers diverse enough to become applicable for
applying co-training efficiently.

4.2. Results on larger shots

We conducted additional experiments by using higher
number of labeled target samples per class during training
i.e. 5-shot and 10-shot adaptation tasks on the DomainNet
dataset using the data splits provided by APE [7]. As can
be seen in Table 3, our framework MARRS and MARRS∗

(student model) consistently outperforms previous SSDA
approaches with large margin across all adaptation scenar-
ios under the both 5-shot and 10-shot settings showing the
dominance of our framework (MARRS) and student model
(MARRS∗) in even larger shot settings.

Table 5. Performance of MARRS with different modern back-
bones on mean test accuracy (%) of DomainNet, 3-shot task.
Here, Gc and Gs represent the first backbone (where weak augmen-
tation is applied) and second backbone (where CORAL is applied)
respectively.

Gc Gs Accuracy
ConvNeXt-B Swin-B 83.4
ConvNeXt-B VIT-L 83.7
ConvNeXt-L Swin-B 83.5
ConvNeXt-L VIT-L 83.8
ConvNeXt-B ConvNeXt-L 83.1

VIT-L Swin-B 82.8

4.3. Results on Office-31

Office-31 [16] is a small size adaptation dataset consists
of 31 categories belonging to 3 domains, namely DSLR (D),
Webcam (W) and Amazon (A). Following [17] we report
results on two adaptation scenarios namely W→ A and D
→ A. As shown in Table 4, MARRS and MARRS∗ achieve
nearly the same performance under both 1-shot and 3-shot
settings. The MARRS achieves mean accuracies of 88.0%
and 89.8%, which outperforms the previously best perform-
ing method CLDA by a large margin of 24.4% and 18.3%
in 1-shot and 3-shot settings.

4.4. MARRS with other modern backbones

In MARRS, we use ConvNeXt-XL and Swin-L as two
modern backbones. Here, XL and L denote extra large
and large respectively, which represents the size of back-
bone. We choose ConvNeXt-XL and Swin-L in our work
based on the recent analysis reported by [15], which ex-



(a) (b) (c)

Figure 2. Hyperparameter analysis on Clipart to Art (C → A), 1-shot adaptation task of the OfficeHome dataset. (a) Effect of changing
the weight of consistency regularization (λcons) on the validation accuracy. (b) Effect of changing the weight of co-training (λco) on the
validation accuracy. (c) Effect of changing the learning rate (η) on the validation accuracy.

Table 6. Analysis of co-training on test accuracy (%) of DomainNet, 3-shot task. Fc (Fs) are ConvNeXt-XL (Swin-L) based classifiers.

Method Model R→C R→P P→C C→S S→P R→S P→R Mean

MARRS
(w/o co-training)

Fc 81.6 83.5 82.8 76.0 84.6 75.0 92.3 82.3
Fs 83.1 83.8 83.4 73.5 83.4 73.8 91.6 81.8

Ensemble 84.4 85.4 85.4 77.2 85.7 76.5 92.6 83.9

MARRS
Fc 85.3 85.1 85.8 77.1 85.5 76.7 92.7 84.0
Fs 85.2 85.3 85.7 76.9 85.1 76.7 92.8 84.0

Ensemble 85.5 85.9 86.1 77.6 86.1 77.3 92.9 84.5

hibits their outstanding performance across various tasks
like: Out-of-Distribution Detection [20], model calibra-
tion [13] etc. In Table 5, we also show the analysis
of MARRS with relatively smaller or different modern
backbones. From the family of Vision Transformers, we
choose VIT-L [3] and Swin-B, while from the fully CNN
based family, we pick relatively smaller variants of Con-
vNeXt [11] namely, ConvNeXt-L and ConvNeXt-B. The
first four rows in Table 5 show that even with other mod-
ern backbones, MARRS is consistently outperforming pre-
vious ResNet34 based works. Note that all the first four
settings also outperform PACE [9], which uses 28 mod-
ern backbones, including ConvNeXt-XL and Swin-L, to ob-
tain a mean accuracy of 83.3% for DomainNet 3-shot task.
This suggests that our framework, MARRS is highly stable.
However, the gap in performance with respect to PACE be-
comes thinner due to the use of relatively less strong and
small modern backbones. The performance decline in the
last two rows highlights the significance of the backbone
level diversity module, which emphasizes that backbones
from different family (i.e. one backbone from CNN fam-
ily and other from Vision Transformers family) should be
employed for larger performance gains.

4.5. Significance of co-training

We analyze the significance of co-training in our frame-
work by comparing MARRS to MARRS without co-
training. The difference between the two approaches is in
how co-training datasets (Dcco and Dsco) will be generated.

In MARRS without co-training, each classifier will use
its own pseudo-label sets to generate co-training datasets.
As can be seen in Table 6, MARRS performs better than
MARRS w/o co-training on both ensemble and each model
alone. Notably, each model of MARRS also outperforms
ensemble of MARRS w/o co-training, which demonstrates
the power of two models exchanging their strengths for mu-
tual gain.

4.6. Multiple runs results

We report multi-run results for DomainNet 3-shot,
Office-Home 3-shot domain adaptation tasks in Table 7
and Table 8 respectively. In particular, we conducted three
runs of our framework MARRS using three different seeds
{123, 1234, 12345} and reported mean performance and
standard deviation. Low standard deviation in both Do-
mainNet 3-shot and Office-Home 3-shot domain adaptation
tasks shows the reliability of our framework MARRS.

4.7. Hyperparameter analysis

We utilize validation performance on the complex, 1-
shot C→ A (Clipart to Art) task of the OfficeHome dataset
for deciding hyperparameters values. From Fig. 2a, we no-
tice that validation accuracy increases on increasing weight
of consistency regularization (λcons) and achieves the peak
value of 92.5% at λcons = 0.5. Nonetheless, a difference
of just 0.7% between the greatest and lowest validation ac-
curacy demonstrates that our method also performs well
with other values of λcons and is less sensitive to it. Simi-



Table 7. Multiple run results on DomainNet, 3-shot task. Mean performance and standard deviation are reported based on the three
runs of our framework MARRS using three different seeds {123, 1234, 12345}.

Method R→C R→P P→C C→S S→P R→S P→R Mean
MARRS 85.5±0.1 85.93±0.06 86.3±0.17 77.47±0.15 86.07±0.06 77.3±0.00 92.9±0.00 84.5±0.00

Table 8. Multiple run results on OfficeHome, 3-shot task. Mean performance and standard deviation are reported based on the three
runs of our framework MARRS using three different seeds {123, 1234, 12345}.

Method R→C R→P R→A P→R P→C P→A A→P A→C A→R C→R C→A C→P Mean
MARRS 87.03±0.06 96.03±0.06 90.67±0.11 95.3±0 86.43±0.11 90.8±0.1 95.6±0 86.57±0.06 94.77±0.06 95.23±0.06 92±0.17 95.03±0.06 92.13±0.06

larly, from Fig. 2b, we can see that the validation accuracy
achieves its maximum values of 92.3% at λco = 0.9, and
it starts to decrease on further rising value of λco. Never-
theless, except from early values of λco such as 0.1 and 0.2,
the performance of MARRS is steady and does not fluctuate
greatly when the value of λco is changed, indicating that our
method is likewise not sensitive to the value of λco. From
Fig. 2c, we find that intermediate values of learning rate (η)
like 30 and 40 give the best validation accuracy relative to
lower and larger values of η.
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