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Section 1 of this supplemental material provides the de-
tails of data augmentation process, and Section 2 describes
details of additional ablation studies. The convergence anal-
ysis of our proposed network is discussed in Section 3, fol-
lowed by an additional analysis of results in Section 4.

1. Data augmentation
The proposed Efficient teaching network follows the data

augmentation guidelines given by STAC [5] and FixMatch
[4]. Here, we generate weak and strong augmented samples
that have been used to train teacher and student networks.
To synthesize weak augmented samples, we exert a random
resize process followed by a random horizontal flip opera-
tion. While for the generation of strong augmented samples,
we add complex augmentation operations like auto contrast,
random equalize, color jitter, random translate, random ro-
tate, random shear and random erase. The summary of the
step-wise process of producing the weak and strong aug-
mented samples is described in Table 1.

2. Ablation analysis
In the main manuscript (i.e., subsection 4.5), we pre-

sented an ablation study conducted on the MS-COCO based
10% partially labeled data setting. In this section, we pro-
vided the additional ablation analysis for the 1% and 5%
partially labeled data settings of MS-COCO dataset.

2.1. Effect of loss functions:

To inspect the significance of the introduced novel losses
(i.e., Equation no. 10 and 11 from main manuscript), the
proposed network is trained without the introduced losses
(Case I), with only background similarity loss (Case II), and
with only foreground-background dissimilarity loss (Case
III). The corresponding results for 1% and 5% partially la-
beled data settings are shown in Table 2. It can be seen
here that both introduced losses aid the proposed network
in acquiring better mAP measures. Furthermore, the pro-
posed network employs the supervised losses on teacher
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Table 1. The summary of the used data augmentation process.

Steps. Process Parameter Details
Weak Augmentation

1. RandomResize —
Resize the input image to the
given size

2. RandomFlip flip ratio = 0.5
Flip the given image randomly
with a given probability.

Strong Augmentation

1. RandomResize —
Resize the input image to the
given size

2. RandomFlip flip ratio = 0.5
Flip the given image randomly
with a given probability.

3.
(Any
one of
these)

AutoContrast prob. = 0.25
Autocontrast the pixels of the
given image randomly with a
given probability.

RandEqualize prob. = 0.25
Equalize the histogram of the
given image randomly with a
given probability.

RandSolarize prob. = 0.25
Solarize image randomly with
given probability by inverting
all pixel values above a threshold.

Color Jitter

brightness,
contrast, hue,
saturation =
0.4, 0.4, 0.1,

0.4

Randomly change brightness,
contrast, saturation, and hue of
an image. Brightness, contrast
and saturation factor is chosen
from [0.6, 1.4] while the hue
factor is chosen from [-0.1, 0.1].

RandContrast prob. = 0.25
Randomly choose the contrast
of the given image with a given
probability.

RandBrightness prob. = 0.25
Randomly choose brightness of
given image with given probability.

RandSharpness prob. = 0.25
Adjust the sharpness of the
image randomly with a given
probability.

RandPosterize prob. = 0.25

Posterize the image randomly
with a given probability by
reducing the number of bits
for each color channel.

4.
(Any
one of
these)

RandTranslate scale = (-0.1, 0.1) Random translate operation of
image keeping center invariant.

RandRotate scale = (-30o, 30o) Rotate the image by angle

RandShear scale = (-30o, 30o) Random shear operation of
image keeping center invariant.

5. RandErase size = [0, 0.2]
Randomly selects rectangle region
in image and erases its pixels.

and student network outcomes. Similar characteristics can
also be seen in Table 2, where the supervised losses from
both teacher and student networks can assist the proposed
network in obtaining improved mAP results.
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Table 2. Ablation analysis on different losses.

Network mAP mAP@50 mAP@75
1% 5% 1% 5% 1% 5%

Effectiveness of the introduced losses for classification task
Case 1: Lcls

fg + Lcls
bg 25.7 31.7 44.1 51.5 27.4 33.9

Case 2: Lcls
fg + Lcls

bg + Lsim
bg 26.0 32.0 44.4 51.9 27.7 34.3

Case 3: Lcls
fg + Lcls

bg + Ldissim
fg−bg 26.0 31.9 44.3 51.8 27.6 34.2

Proposed: Lcls
fg + Lcls

bg + Lsim
bg + Ldissim

fg−bg 26.3 32.2 44.6 52.1 28.0 34.6
Effectiveness of supervised losses

Proposed: (Both supervised losses) 26.3 32.2 44.6 52.1 28.0 34.6
- w/o teacher model based supervised loss 26.0 31.8 44.2 51.6 27.6 34.2
- w/o student model based supervised loss 25.7 31.5 43.9 51.2 27.4 34.0
- w/o both supervised losses 1.1 1.5 1.5 2.0 1.4 1.7

Table 3. Ablation analysis to check importance of label generator module.

Network mAP mAP@50 mAP@75
1% 5% 1% 5% 1% 5%

Proposed (Both label generators) 26.3 32.3 44.6 52.1 28.0 34.6
- w/o label generator (weak augmented data) 23.9 31.1 42.1 49.7 25.9 32.5
- w/o label generator (strong augmented data) 25.1 31.3 43.8 51.0 27.1 33.3

Table 4. Ablation analysis of introduced DEMA update mecha-
nism.

Network mAP mAP@50 mAP@75
1% 5% 1% 5% 1% 5%

Deep copy 20.1 26.1 38.3 46.0 20.7 26.9
EMA 25.7 31.2 43.7 51.3 27.3 33.6
DEMA 26.3 32.3 44.6 52.1 28.0 34.6

2.2. Importance of label generator module:

Few ablation experiments have been conducted to assess
the importance of two label generators associated with weak
and strong augmented samples. The corresponding results
are presented in Table 3, where it can be seen that the pro-
posed network with both label generators outperforms the
individual label generator settings.

2.3. Effect of introduced update mechanism:

We ablate the proposed network to validate the intro-
duced Double Exponential Moving Average (DEMA) up-
date mechanism. For that, the proposed network is also
trained using the Exponential Moving Average (EMA) as
well as with deep copy configuration (i.e., the weights of
teacher network are copied from the student network). The
corresponding results are shown in Table 4, where it can
be observed that the DEMA mechanism obtains +0.8% and
1.1% higher mAP measures on 1% and 5% labeled data set-
tings, respectively that proves its efficacy over the EMA up-
date mechanism.

Table 5. Ablation analysis on hyper-parameters.

(a) Effect of different γ values

γ
mAP mAP@50 mAP@75

1% 5% 1% 5% 1% 5%
0.03 26.0 31.8 44.3 51.7 27.4 34.0
0.04 26.2 32.1 44.5 51.9 27.6 34.2
0.05 26.3 32.3 44.6 52.1 28.0 34.6
0.06 26.1 31.9 44.4 51.8 27.5 34.1

(b) Effect of different Njitter values

Njitter
mAP mAP@50 mAP@75

1% 5% 1% 5% 1% 5%
5 26.0 32.0 44.4 51.8 27.5 34.1
10 26.3 32.3 44.6 52.1 28.0 34.6
15 26.2 32.2 44.6 52.0 27.7 34.4
20 26.1 32.1 44.5 51.9 27.7 34.3

2.4. Tuning of parameters:

For tuning, we study the proposed network’s two param-
eters called γ and Njitter. Table 5 shows the impact of
different values of these parameters and the best values are
highlighted in bold font. One can observe that the γ = 0.05
perceives highest mAP. Similarly, Njitter = 10 gives best
mAP results than other Njitter values. Hence, we choose
these parameter setting in our experiments.

2.5. Importance of Jitter Bagging module:

The ablation analysis of the Jitter Bagging module is pre-
sented in Table 6, where we can see that the proposed Jit-
ter Bagging module achieves the highest performance and
shows +1.2% absolute improvement in mAP measure over



Table 6. Ablation analysis to check importance of proposed Jitter
Bagging module.

Network mAP mAP@50 mAP@75
1% 5% 1% 5% 1% 5%

Proposed 26.3 32.3 44.6 52.1 28.0 34.6
- w/o Jitter Bagging 25.1 31.1 44.0 52.5 26.7 33.2
- with Box Jittering [6] 25.7 31.7 44.2 52.6 27.1 33.7

Figure 1. Analysis of adaptive threshold value and correspond-
ing mAP measures during training iterations. Here, dashed line
indicates the mAP measures while the straight line indicate the
threshold value.

Table 7. Effectiveness of adaptive threshold value over different
threshold measures on partially labeled data settings.

Proposed Network mAP mAP@50 mAP@75
1% 5% 1% 5% 1% 5%

with static 0.7 threshold 22.6 28.3 40.1 48.7 24.1 30.4
with static 0.8 threshold 25.7 31.3 43.1 50.5 26.6 32.4
with static 0.9 threshold 26.0 32.0 43.9 51.4 27.3 33.2
with dynamic thresholding [1] 26.1 31.8 44.0 51.6 27.5 33.8
with continuous form-based threshold 25.5 31.4 43.2 51.0 26.9 33.4
with proposed adaptive threshold 26.3 32.2 44.6 52.1 28.0 34.6

without Jitter Bagging module in 1% and 5% partially la-
beled data setting. Interestingly, when we employ the Box
Jittering [6] in our network, we observe that the proposed
Jitter Bagging still obtains +0.4% higher mAP than the Box
Jittering on 1% and 5% labeled data setting.

2.6. Effectiveness of adaptive threshold filter:

Our proposed network introduces an adaptive thresh-
old filter that adjusts the threshold value based on gen-
erated background/foreground bounding boxes. We have
observed the effect of threshold values during the training
process. Figure 1 shows this analysis for partially labeled
data settings (i.e., 1%, 5% and 10% labeled data). In ad-
dition, the corresponding effect on the mAP value is also
depicted in Figure 1 (i.e., highlighted with dashed lines for
1%, 5% and 10%). However, to observe the performance
over the static threshold value i.e., 0.9 as used in the Soft
Teacher model [6], few experiments have been performed
where the proposed network with different static threshold

(a) RPN Val loss

(b) RoIhead Val loss

Figure 2. Comparison of validation loss plots for 10% labeled
training data.

values are trained. Table 7 presents the corresponding re-
sults where we can see that in case of mAP, the proposed
adaptive threshold filter performs marginally better than the
static threshold = 0.9. However, in the case of mAP@50
and mAP@75 it achieves better results with a good margin.
Also, the threshold mechanism differs from that of intro-
duced by Li et al. [1]. To check its effectiveness over the
threshold module proposed by Li et al. [1], we employed
their thresholding module in our framework. The corre-
sponding results are added in Table 7, which is marginally
inferior to the proposed thresholding module. In our adap-
tive mechanism, we have used discrete thresholding to re-
duce fluctuations in the threshold value, Further, we trained
a variant of our model with a continuous form of threshold
and found lower performance than proposed discrete form.

3. Convergence Analysis
In this section, we empirically analyze the convergence

of our proposed efficient teaching network. Here we ob-



(a) Box Accuracy

(b) Number of Pseudo boxes

Figure 3. Improvement analysis of Pseudo-label in terms of (a)
accuracy, and (b) number of bounding boxes.

serve the classification and regression loss values of super-
vised and our proposed networks when 10% labeled data is
used during training. We have used the Faster R-CNN [3]
as our default detector, where the Region Proposal Network
(RPN) generates the proposals to predict the possibilities
of an object to either be in the foreground or background.
Using these data, the Region over Interest pooling coupled
with a classifier and regressor head (RoIhead) network clas-
sifies what is in the proposals and determines the bounding
box size. Both the networks are trained using the classifi-
cation and regression loss functions and the corresponding
loss values are noted. The changes in the loss values ob-
tained from the MS-COCO validation dataset [2] are shown
as plot graphs in Figure 2. Here, one can see that the pro-
posed network achieves better convergence than the super-
vised network for all protocols.

We have also observed improvement in pseudo-label box
accuracy and the number of pseudo boxes during the train-
ing process. Figure 3 shows these improvements for the
case of 10% labeled data. Here, we measure the accuracy

(a) Supervised

(b) Ours

Figure 4. Comparison of validation mAP plots for 1% labeled
training data.

Table 8. Analysis of different ResNet backbones for fully labeled
data.

Network Supervised Our
ResNet50 ResNet101 ResNet50 ResNet101

mAP@50 57.6 64.8 65.2 68.0
mAP@75 40.4 47.8 48.1 51.5

mAP 37.9 42.7 44.0 46.8

by comparing the generated pseudo-boxes with ground-
truth boxes and the corresponding analysis is presented in
Figure 3(a). We also observe the improvement in several
pseudo-boxes during the training process, which is illus-
trated in Figure 3(b). Here, GT indicates the average num-
ber of bounding boxes in the ground-truth labels (i.e., seven
bounding boxes per image).



Figure 5. Visual comparison with supervised results.

4. Result analysis

In this section, we provide the results of the proposed
network along with its supervised network on MS-COCO
dataset based partially labeled and fully labeled data set-
tings. Figure 4 shows the changes in mAP measures ob-
tained from validation dataset during the training of the su-
pervised and proposed networks. For a fair comparison with

existing methods, we use ResNet50 as a backbone in the
Faster-RCNN detector. Therefore, we have also monitored
the effect of more complex networks like ResNet101 in the
supervised baseline and proposed frameworks. The corre-
sponding results are illustrated in Table 8 where it can be
noticed that the ResNet101-based networks acquire higher
mAP values than that of ResNet50-based networks.

In addition to inspection of the main manuscript, we



Figure 6. Visual analysis on in-the-wild images: 1st and 2nd row images are taken from online, 3rd row image represents footage taken
from CCTV camera and last two row images are captured using mobile camera.

have appended additional qualitative comparisons in this
section. Here, we compare the outcomes of the supervised
and our proposed networks for a different proportion of la-
beled data. This can be visualized in Figure 5. Here, it is
analyzed that the proposed network detects the objects with
a better confidence score than the supervised framework.
We further analyzed the behavior of the proposed network
with unseen data by performing object detection on a few
in-the-wild images. The corresponding qualitative results
are presented in Figure 6.
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