
BinaryViT: Pushing Binary Vision Transformers Towards Convolutional Models
(Supplementary Material)

Phuoc-Hoan Charles Le *

le.charles55@gmail.com

Xinlin Li
Huawei Noah’s Ark Lab
xinlin.li1@huawei.com

Output size BinaryViT

Stage 1 H
4 × W

4


C1 = 64
R1 = 8
N1 = 1
E1 = 8

× 3

Stage 2 H
8 × W

8


C2 = 128
R2 = 4
N2 = 2
E2 = 8

× 4

Stage 3 H
16 × W

16


C3 = 256
R3 = 1
N3 = 4
E3 = 4

× 8

Stage 4 H
32 × W

32


C4 = 512
R4 = 1
N4 = 8
E4 = 4

× 4

Table 1. Architectural settings for BinaryViT where Ci is the base
hidden dimension, Ri is the reduction ratio of the Bi-SR-MHA,
Ni is the number of heads in the attention, and Ei is the expansion
ration of the FFN in Stage i.

1. Architecture details
Table 1 shows the architectural settings of the BinaryViT.

We designed the pyramid architecture in this way such that
we still match the number of parameters of the DeiT-S
model [10] and for the ReAcNet method [6] to be com-
patible with the transition from the 2nd to the 3rd stage.
If the third stage has a base channel dimension of 320, we

*This work was done when Phuoc-Hoan Charles Le was an intern at
Huawei Noah’s Ark Lab Montreal Research Center.

wouldn’t be able to apply the concatenate operation prop-
erly as in [6], since 320 is not divisible by 128.

2. Experimental settings
We train the binary ViT from scratch mainly following

the hyperparameters from DeiT [10], using PyTorch [9] and
we train the model with Adam [5, 8] optimizer for 300
epochs with a batch-size of 512, a weight-decay of 0.0,
warmup-epochs of 0, and with an initial learning rate of
5e-4 for the cosine learning rate decay scheduler. Also,
we do not train with any data augmentation such as Rand-
Augment [2], random erasing [15], stochastic depth [4],
CutMix [13], Mixup [14], and repeated augmentation [1,3].
However, we still use Random Resize Cropping and hori-
zontal flipping. For knowledge distillation, we use a full-
precision DeiT-S [10] as our teacher model. Our optimizer
and scheduler are from the Timm library [11] and our train-
ing loop/pipeline is based on the DeiT repository [10].

3. Calculation of representational capability
Following [7, 12], we quantify the element-wise repre-

sentational capability as the number of possible absolute
values that each element in a tensor can have. We calculate
the element-wise representational capability of these mod-
els by calculating the element-wise representational capa-
bility of the tensor that will be the input for the classifier
layer or the final layer, following the steps from [7, 12] and
we assume the first layer has binary weights only for sim-
plicity.

3.1. Fully-binary DeiT-S

Following [7], for fully-binary DeiT-S, for the first layer,
each output element can have a value range from [0,
195,840], since P ·P ·C ·max(x) = 16·16·3·255 = 195, 840
where P is the patch size, C is the number of channels,
and max(x) = 255 is the max value an input image can
hold. If we want to have a zero mean, then the range
would be [-97,920, 97,920]. Therefore, the current repre-
sentational capability at that point is 97,920. From [7], nor-

1



malization wouldn’t affect the representational capability,
since normalization is just an element-wise affine transfor-
mation. For each binary fully connected layer in the at-
tention, for the query, key, value, and in the final projec-
tion layer, the element-wise representation capability for
each of these layers is D = 384 which is the base hid-
den dimension for DeiT-S. For the matrix multiplication
between the binarized attention probability and the bina-
rized value matrix, the element-wise representation capa-
bility for this is N = 196 which is the sequence length
for DeiT-S throughout the whole model. For the FFN, it
would be 4 · D = 4 · 384 = 1, 536 for each binarized
fully connected layer in the FFN. If we calculate the total
element-wise representational capability of the fully-binary
baseline ViT with DeiT-S backbone, R(DeiT-S), it would be
(384 ·4+196+4 ·384 ·2) ·12+97, 920 = 153, 216, consid-
ering the total number of fully connected layers per trans-
former block, and the total number of transformer blocks in
DeiT-S.

3.2. Fully-binary ResNet-34

Following [7], for fully-binary ResNet-34, for the first
layer, each output element can have a value range from [0,
37,485], since K1 ·K1 ·C ·max(x) = 7 ·7 ·3 ·255 = 37, 485
where K1 is the kernel size of the first convolutional layer.
If we want to have a zero mean, then the range would be [-
18,742, 18,742]. Therefore, the current representational ca-
pability at that point is 18,742. After the first convolutional
layer, the feature map goes through max-pooling which has
no effect on the element-wise representational capability of
the model. ResNet-34 has 4 stages with each stage con-
taining different feature map resolutions and hidden dimen-
sions. For stage 1 in ResNet-34, each convolutional layer
would have an element-wise representational capability of
3 · 3 · 64 = 576, considering the kernel size and the hidden
dimension of one weight filter. During the transition from
stage 1 to stage 2, there will be an average pooling layer
in the residual with a kernel size of 2 × 2 with a stride of
2 × 2, which can be seen as an information aggregation of
4 neighboring patches if we ignore the element-wise divi-
sion involve in average pooling. Therefore, the element-
wise representational capability would be multiplied by
4, so the current total element-wise representational capa-
bility of the model up to this point can be calculated as
(18, 742 + 576 · 3) · 4 = 81, 880, considering the number
of convolutional layers in that stage. For stage 2 in ResNet-
34, each convolutional layer would have an element-wise
representational capability of 3 · 3 · 128 = 1, 152. Af-
ter the transition from stage 2 to stage 3, the current total
element-wise representational capability of the model up to
this point can be calculated as (81, 880 + 1, 152 · 4) · 4 =
345, 952. For stage 3 in ResNet-34, each convolutional
layer would have an element-wise representational capabil-

ity of 3 · 3 · 256 = 2, 304. Therefore, after the transition
from stage 3 to stage 4, the current total element-wise rep-
resentational capability of the model up to this point can be
calculated as (345, 952 + 2, 304 · 6) · 4 = 1, 439, 104. For
stage 4 in ResNet-34, each convolutional layer would have
an element-wise representational capability of 3 · 3 · 512 =
4608. After the feature map is finished getting processed
in stage 4, there will be a global average pooling layer that
aggregates all the information from the remaining patches
before getting processed at the final classifier layer. For
a 224 × 224 input image, the feature map resolution at
stage 4 of ResNet-34 will be 7 × 7, so the total element-
wise representational capability of the fully binary ResNet-
34, R(ResNet-34), up until the final classifier layer, will be
(1, 439, 104 + 4, 608 · 3) · 49 = 71, 193, 472.

References
[1] Maxim Berman, Hervé Jégou, Vedaldi Andrea, Iasonas

Kokkinos, and Matthijs Douze. MultiGrain: a unified im-
age embedding for classes and instances. arXiv e-prints, Feb
2019. 1

[2] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. RandAugment: Practical automated data augmen-
tation with a reduced search space. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition workshops, pages 702–703, 2020. 1

[3] Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten
Hoefler, and Daniel Soudry. Augment your batch: Im-
proving generalization through instance repetition. In 2020
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8126–8135, 2020. 1

[4] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q
Weinberger. Deep networks with stochastic depth. In Com-
puter Vision–ECCV 2016: 14th European Conference, Am-
sterdam, The Netherlands, October 11–14, 2016, Proceed-
ings, Part IV 14, pages 646–661. Springer, 2016. 1

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1

[6] Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-
Ting Cheng. ReActNet: Towards precise binary neural net-
work with generalized activation functions. In European
Conference on Computer Vision (ECCV), 2020. 1

[7] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu,
and Kwang-Ting Cheng. Bi-Real Net: Enhancing the per-
formance of 1-bit cnns with improved representational ca-
pability and advanced training algorithm. In Proceedings of
the European conference on computer vision (ECCV), pages
722–737, 2018. 1, 2

[8] Ilya Loshchilov and Frank Hutter. Decoupled weight de-
cay regularization. In International Conference on Learning
Representations, 2019. 1

[9] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch:



An imperative style, high-performance deep learning li-
brary. Advances in neural information processing systems,
32, 2019. 1

[10] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Herve Jegou. Training
data-efficient image transformers: distillation through atten-
tion. In International Conference on Machine Learning, vol-
ume 139, pages 10347–10357, July 2021. 1

[11] Ross Wightman. Pytorch image models. https:
//github.com/rwightman/pytorch- image-
models, 2019. 1

[12] Yixing Xu, Xinghao Chen, and Yunhe Wang. BiMLP:
Compact binary architectures for vision multi-layer percep-
trons. In Advances in Neural Information Processing Sys-
tems, 2022. 1

[13] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. CutMix: Regu-
larization strategy to train strong classifiers with localizable
features. In Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 6023–6032, 2019. 1

[14] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In International Conference on Learning Representa-
tions, 2018. 1

[15] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and
Yi Yang. Random erasing data augmentation. In Proceedings
of the AAAI conference on artificial intelligence, volume 34,
pages 13001–13008, 2020. 1

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

	. Architecture details
	. Experimental settings
	. Calculation of representational capability
	. Fully-binary DeiT-S
	. Fully-binary ResNet-34


