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Output size BinaryViT

Stage 1 H
4 × W

4


C1 = 64
R1 = 8
N1 = 1
E1 = 8

× 3

Stage 2 H
8 × W

8


C2 = 128
R2 = 4
N2 = 2
E2 = 8

× 4

Stage 3 H
16 × W

16


C3 = 256
R3 = 1
N3 = 4
E3 = 4

× 8

Stage 4 H
32 × W

32


C4 = 512
R4 = 1
N4 = 8
E4 = 4

× 4

Table 1. Architectural settings for BinaryViT where Ci is the base
hidden dimension, Ri is the reduction ratio of the Bi-SR-MHA,
Ni is the number of heads in the attention, and Ei is the expansion
ration of the FFN in Stage i.

1. Architecture details
Table 1 shows the architectural settings of the BinaryViT.

We designed the pyramid architecture in this way such that
we still match the number of parameters of the DeiT-S
model [10] and for the ReAcNet method [6] to be com-
patible with the transition from the 2nd to the 3rd stage.
If the third stage has a base channel dimension of 320, we
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wouldn’t be able to apply the concatenate operation prop-
erly as in [6], since 320 is not divisible by 128.

2. Experimental settings
We train the binary ViT from scratch mainly following

the hyperparameters from DeiT [10], using PyTorch [9] and
we train the model with Adam [5, 8] optimizer for 300
epochs with a batch-size of 512, a weight-decay of 0.0,
warmup-epochs of 0, and with an initial learning rate of
5e-4 for the cosine learning rate decay scheduler. Also,
we do not train with any data augmentation such as Rand-
Augment [2], random erasing [15], stochastic depth [4],
CutMix [13], Mixup [14], and repeated augmentation [1,3].
However, we still use Random Resize Cropping and hori-
zontal flipping. For knowledge distillation, we use a full-
precision DeiT-S [10] as our teacher model. Our optimizer
and scheduler are from the Timm library [11] and our train-
ing loop/pipeline is based on the DeiT repository [10].

3. Calculation of representational capability
Following [7, 12], we quantify the element-wise repre-

sentational capability as the number of possible absolute
values that each element in a tensor can have. We calculate
the element-wise representational capability of these mod-
els by calculating the element-wise representational capa-
bility of the tensor that will be the input for the classifier
layer or the final layer, following the steps from [7, 12] and
we assume the first layer has binary weights only for sim-
plicity.

3.1. Fully-binary DeiT-S

Following [7], for fully-binary DeiT-S, for the first layer,
each output element can have a value range from [0,
195,840], since P ·P ·C ·max(x) = 16·16·3·255 = 195, 840
where P is the patch size, C is the number of channels,
and max(x) = 255 is the max value an input image can
hold. If we want to have a zero mean, then the range
would be [-97,920, 97,920]. Therefore, the current repre-
sentational capability at that point is 97,920. From [7], nor-
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malization wouldn’t affect the representational capability,
since normalization is just an element-wise affine transfor-
mation. For each binary fully connected layer in the at-
tention, for the query, key, value, and in the final projec-
tion layer, the element-wise representation capability for
each of these layers is D = 384 which is the base hid-
den dimension for DeiT-S. For the matrix multiplication
between the binarized attention probability and the bina-
rized value matrix, the element-wise representation capa-
bility for this is N = 196 which is the sequence length
for DeiT-S throughout the whole model. For the FFN, it
would be 4 · D = 4 · 384 = 1, 536 for each binarized
fully connected layer in the FFN. If we calculate the total
element-wise representational capability of the fully-binary
baseline ViT with DeiT-S backbone, R(DeiT-S), it would be
(384 ·4+196+4 ·384 ·2) ·12+97, 920 = 153, 216, consid-
ering the total number of fully connected layers per trans-
former block, and the total number of transformer blocks in
DeiT-S.

3.2. Fully-binary ResNet-34

Following [7], for fully-binary ResNet-34, for the first
layer, each output element can have a value range from [0,
37,485], since K1 ·K1 ·C ·max(x) = 7 ·7 ·3 ·255 = 37, 485
where K1 is the kernel size of the first convolutional layer.
If we want to have a zero mean, then the range would be [-
18,742, 18,742]. Therefore, the current representational ca-
pability at that point is 18,742. After the first convolutional
layer, the feature map goes through max-pooling which has
no effect on the element-wise representational capability of
the model. ResNet-34 has 4 stages with each stage con-
taining different feature map resolutions and hidden dimen-
sions. For stage 1 in ResNet-34, each convolutional layer
would have an element-wise representational capability of
3 · 3 · 64 = 576, considering the kernel size and the hidden
dimension of one weight filter. During the transition from
stage 1 to stage 2, there will be an average pooling layer
in the residual with a kernel size of 2 × 2 with a stride of
2 × 2, which can be seen as an information aggregation of
4 neighboring patches if we ignore the element-wise divi-
sion involve in average pooling. Therefore, the element-
wise representational capability would be multiplied by
4, so the current total element-wise representational capa-
bility of the model up to this point can be calculated as
(18, 742 + 576 · 3) · 4 = 81, 880, considering the number
of convolutional layers in that stage. For stage 2 in ResNet-
34, each convolutional layer would have an element-wise
representational capability of 3 · 3 · 128 = 1, 152. Af-
ter the transition from stage 2 to stage 3, the current total
element-wise representational capability of the model up to
this point can be calculated as (81, 880 + 1, 152 · 4) · 4 =
345, 952. For stage 3 in ResNet-34, each convolutional
layer would have an element-wise representational capabil-

ity of 3 · 3 · 256 = 2, 304. Therefore, after the transition
from stage 3 to stage 4, the current total element-wise rep-
resentational capability of the model up to this point can be
calculated as (345, 952 + 2, 304 · 6) · 4 = 1, 439, 104. For
stage 4 in ResNet-34, each convolutional layer would have
an element-wise representational capability of 3 · 3 · 512 =
4608. After the feature map is finished getting processed
in stage 4, there will be a global average pooling layer that
aggregates all the information from the remaining patches
before getting processed at the final classifier layer. For
a 224 × 224 input image, the feature map resolution at
stage 4 of ResNet-34 will be 7 × 7, so the total element-
wise representational capability of the fully binary ResNet-
34, R(ResNet-34), up until the final classifier layer, will be
(1, 439, 104 + 4, 608 · 3) · 49 = 71, 193, 472.
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