
ETAD: Training Action Detection End to End on a Laptop
Supplementary Material

Shuming Liu1, Mengmeng Xu1, Chen Zhao1, Xu Zhao2, Bernard Ghanem1

1King Abdullah University of Science and Technology 2Shanghai Jiao Tong University
{shuming.liu, mengmeng.xu, chen.zhao, bernard.ghanem}@kaust.edu.sa zhaoxu@sjtu.edu.cn

A. Detailed Architecture of ETAD
In this section, we describe the detailed designs of two

modules in ETAD: feature enhancement module and pro-
posal evaluation module. Then, we introduce the loss func-
tion of our model, and more implementation details.

A.1. Feature Enhancement Module

As shown in Fig. 1, feature enhancement module adopts
two LSTM [3] with different aggregation directions to cap-
ture both forward and backward context. The residual con-
nection in the middle can mitigate the effect of forgetting is-
sue brought by the LSTM. Group normalization layer with
group number 16 and ReLU are used after each convolution
layer. We also study its effectiveness by replacing it with a
convolutional network (Conv) and a vanilla transformer. In
Tab. 1 (top), Transformer shows the lowest mAP, since it re-
quires more data to converge and stronger regularization to
optimize. Conv also shows low mAP due to its inability to
capture long-range context. Compared with the above two,
our LSTM-based module shows the best performance.

conv(k=3,c=256)

LSTM(c=256) conv(k=3,c=256)

conv(k=3,c=256)

LSTM(c=256) conv(k=3,c=256)~ ~

c conv(k=1,c=256)

concatenationreverse the temporal order c~

Figure 1. Architecture of feature enhancement module. K, C
stand for kernel size and channel number of corresponding layer.

A.2. Proposal Evaluation Module

The architecture of proposal evaluation module is shown
in Tab. 2. Given a candidate proposal set, we first use the
interpolation and rescaling algorithm in G-TAD [8] as RoI
alignment to extract the proposal features. Then we refine
the proposals with several FC layers from three aspects: (1)
The offset of the predicted start/end boundary. (2) The off-
set of the predicted center/width. (3) The IoU score be-
tween the proposal with the ground truth. What’s more, we

Table 1. Ablation of different feature enhancement modules
(Feat. Layer), and different number of proposal evaluation
modules (#PEM) on ActivityNet-1.3 with TSM-R50.

Feat. Layer #PEM 0.5 0.75 0.9 avg.

Transformer 1 52.75 36.34 7.28 35.34
Conv 1 53.06 36.72 7.32 35.71
LSTM 1 53.52 37.54 6.08 36.10

LSTM 2 54.02 37.84 7.96 36.59
LSTM 3 53.79 37.59 10.56 36.79
LSTM 4 53.26 37.65 9.65 36.57

find adding a branch to classify the proposal startness and
endness is helpful for IoU regression. After one proposal
evaluation module, proposals will be refined by the average
of start/end offset and center/width offset.

To further improve the boundary precision of predicted
actions, we follow the cascade-RCNN [1] to stack three pro-
posal evaluation modules, where the proposals generated by
the first stage are further refined in the second stage and so
forth. We use the increased IoU thresholds for the three
stages, namely 0.7, 0.8, and 0.9. As such, the proposal
boundaries are expected to become more accurate after each
stage, which is also proved in Tab. 1. It is worth mention-
ing that our cascade proposal refinement does not rely on
an additional proposal generation network, which is differ-
ent from [6].

A.3. Loss function.

The loss function of our method consists of boundary
evaluation loss and cascade proposal refinement loss. L is
computed as follows:

L = Lce:bds +
∑

i=1,2,3

(
Li
ce:bdp

+ Li
iou + λLi

rg:secw

)
(1)

where i is the index of the cascade proposal evaluation mod-
ule, and weight λ is set to 10 for balancing the losses.

1

Table 2. The detailed architecture of proposal evaluation mod-
ule. N is the number of candidate action proposals.

Proposal Start/End Offset Regression
layer dim act output size

proposal start/end feature 128× 8×N

FC 512 relu 512×N

FC 128 relu 128×N

FC 128 relu 128×N

FC 128 relu 128×N

FC 1 × 1×N

Proposal Center/Width Regression
layer dim act output size

proposal extended feature 128× 32×N

FC 512 relu 512×N

FC 128 relu 128×N

FC 128 relu 128×N

FC 128 relu 128×N

FC 2 × 2×N

Proposal IoU Regression
layer dim act output size

proposal extended feature 128× 32×N

FC 512 relu 512×N

FC 128 relu 128×N

FC 128 relu 128×N

FC 128 relu 128×N

FC 2 sigmoid 2×N

Lce:bds
in the boundary evaluation module uses batch-

level positive-negative-balanced cross entropy to supervise
the startness or endness of each snippet, which is the same
as proposed in BMN [5]. We use the same loss for Lce:bdp

in proposal evaluation module to compute the cross entropy
of the proposal’s startness and endness. Using Lce:bdp

is
helpful for stabilizing the learning of IoU confidence. Liou

contains a classification loss and a regression loss for the
predicted IoU, which follows [5]. The classification loss
is cross-entropy loss, and the regression loss is L2 loss.
For Lrg:secw, we use the smooth-L1 loss for regressing
start/end offset and center/width offset. We only do regres-
sion on positive samples, and the threshold of positive sam-
ples is gradually improved in the cascaded proposal evalua-
tion module, i.e. 0.7, 0.8, 0.9.

A.4. Implementation Details

Training. In ActivityNet-1.3, we resize the feature se-
quences to a fixed length of 128 snippets. For THUMOS-
14, we sample the features per 4 frames with fps 30, and uti-
lize the sliding window approach with window length 128
and stride 64 for videos to generate training samples.
Inference. To post-process network outputs, we use the
boundary selecting method in [5] to select proposals with
high startness and endness, and use the averaged proposal

boundary generated from three proposal evaluation mod-
ules. Soft-NMS is adopted based on proposal confidence
scores p = ps · pe · piou, where ps and pe are from Lce:bds

standing for the start and end probabilities of a proposal,
and piou is the IoU score of the proposal from Liou.

B. Effectiveness of APS

B.1. APS in End-to-end training

In Fig.4 of the main paper, we compared the perfor-
mance with different APS ratios given pre-extracted fea-
tures. Here, we also evaluate our method with different
APS ratios under end-to-end training. As shown in Tab. 3,
end-to-end training generally improves the detection per-
formance if the APS ratio is larger than 2%, and the perfor-
mance also starts to saturate with larger ratios. However, if
the APS ratio is larger than 10%, the mAP becomes lower.
This is because too many proposals would cause the learn-
ing bias of the training dataset (e.g. large proposals in Ac-
tivityNet). Thus, we choose 6% as the APS ratio by default.

Table 3. Ablations of different APS ratio with end-to-end train-
ing on ActivityNet-1.3 with TSM-R50.

E2E 0.1% 0.2% 2% 4% 6% 10% 20% 100%

✗ 34.59 35.22 35.70 35.93 36.13 36.09 36.07 36.10
✓ 34.50 35.21 36.34 36.41 36.79 36.72 36.66 36.51

B.2. APS during inference

As the default, ETAD only performs APS during train-
ing to reduce the computation cost. In inference, we use all
the predicted proposals for higher detection performance.
However, as a tool for selecting proposals, APS can also
be applied during inference. Based on such motivation, we
adopt grid sampling strategy with APS during inference,
and Tab. 4 shows that APS is also effective for reducing
inference complexity while preserving accuracy. Only the
sampling ratio is smaller than 10%, the mAP starts to de-
crease visibly. We did not conduct APS in inference as
the default, considering that the impact of different APS ra-
tios is rather small for the inference time and the inference
GFLOPs in end-to-end setting.

Table 4. Ablations of different APS ratios during inference on
ActivityNet-1.3 with TSM-R50.

APS Ratio 100% 20% 15% 10% 6%

mAP 36.79 36.77 36.74 36.71 36.51

2

Table 5. Comparison of ETAD with other state-of-the-art methods on HACS with same pre-extracted SlowFast features. Total GPU
memory with batch size 16 is reported.

Methods 0.5 0.75 0.95 Avg. mAP Memory (GB) Training Time

BMN [5] 52.49 36.38 10.37 35.76 12.10 58 min
BMN [5] + TCANet [6] 55.60 40.01 11.47 38.71 12.34 104 min

ETAD (random) 55.71 39.06 13.78 38.77 3.28 50 min
ETAD (grid) 55.49 39.09 14.08 38.76 3.28 50 min
ETAD (block) 51.46 34.26 11.43 34.49 3.28 50 min

Table 6. Comparison of different gradient sampling ratio γ on THUMOS test set. The GPU memory is reported by each video.

Feature Encoder 0.3 0.4 0.5 0.6 0.7 Avg. mAP Memory (GB) Training Time

SlowOnly (γ=0%) 52.45 44.11 34.32 24.84 15.89 34.32 - -
SlowOnly (γ=10%) 59.72 52.74 42.73 32.98 23.02 42.23 1.06 2.08 h
SlowOnly (γ=30%) 60.66 52.87 42.95 33.31 23.38 42.63 1.06 2.25 h
SlowOnly (γ=100%) 60.18 52.93 44.40 33.88 23.76 43.03 1.06 3.09 h

TSM (γ=0%) 52.18 42.80 33.10 24.20 14.05 33.26 - -
TSM (γ=10%) 57.63 48.76 38.12 28.55 18.39 38.28 1.19 2.23 h
TSM (γ=30%) 56.50 49.16 39.17 29.47 19.07 38.67 1.19 2.51 h
TSM (γ=100%) 57.44 48.99 39.55 29.37 18.60 38.79 1.19 3.92 h

C. Results on HACS dataset

We also report the results of ETAD on HACS [9] dataset
based on the pre-extracted SlowFast feature, since this is
a fair comparison with other state-of-the-art methods that
use the same feature. HACS is a recent large-scale tempo-
ral action localization dataset, containing 140K action in-
stances from 50K videos including 200 action categories. In
this dataset, we adopt SlowFast [2] features provided by [6]
and rescale the feature sequences to 224 snippets. The only
training difference from ActivityNet is that we use the learn-
ing rate of 4× 10−4 and batch size of 16 on HACS.

As shown in Tab. 5, ETAD can outperform the baseline
method BMN [5] by a large margin. Compared with state-
of-the-art method TCANet [6], ETAD can also achieve
comparable performance. (1) Particularly, the training time
is visibly reduced from 104 mins to 50 mins, and the GPU
memory decreases from 12.34 GB to 3.28 GB. This further
proves the existence of proposal redundancy in TAD and
the effectiveness of our APS design. (2) ETAD also ex-
ceeds TCANet on the high IoU threshold scenario by 2.5%,
which is similar to ActivityNet-1.3 and THUMOS14. (3)
What’s more, TCANet relays on the proposal generation
result from BMN, while our single model does not need
any extra proposal generation network, suggesting the sim-
plicity of ETAD. (4) At last, we also test different proposal
sampling strategies on HACS and find the results are simi-
lar to those in ActivityNet. Both random sampling and grid
sampling achieve decent performance. Since the block sam-
pling breaks the distribution of different proposals, thus the

detection performance is much worse than others.

D. More results on THUMOS dataset
To further verify the effectiveness of proposed gradi-

ent sampling in SGS, we also test different gradient sam-
pling ratios on THUMOS dataset under end-to-end train-
ing, as shown in Tab. 6. Here, we choose SlowOnly-R50
or TSM-R50 as the feature encoder. In this ablation, since
we are using shorter clip (8 frames per clip), lower resolu-
tion (180×180), and only RGB modality, the performance
is expected to be lower than the state-of-the-art performance
listed in Tab.2 of the main paper.

From the results, we can find that if the gradient sam-
pling ratio γ is 0, i.e. frozen encoder, the performance is not
that promising. However, once we unfreeze the backbone,
the performances are instantly boosted with more than 7%
gains of average mAP using SlowOnly, and more than 5%
gains of average mAP using TSM. This verifies the impor-
tance of end-to-end training again. Besides, with different
sampling ratios, we interestingly find the performances gen-
erally remain at the same level. Such a conclusion is con-
sistent with the ablation results on ActivityNet-1.3 dataset,
further proving that a small portion of snippets is enough
for end-to-end training in TAD and the effectiveness of our
gradient sampling approach.

E. Additional Study of End-To-End Training
In this section, we discuss several factors that are impor-

tant for the video encoder in end-to-end training, such as

3

data augmentation, frozen backbones, frame resolution, and
pretraining. For ablation, we remove the sequential design
for all experiments in this section to reflect the real GPU
memory consumption.
Data augmentation is vital for end-to-end training. One
of the main advantages of end-to-end training is that we can
use data augmentation on original frames, which is not pos-
sible in feature-based settings. As shown in Tab. 7 (top),
we implement random cropping and temporal jittering at
the snippet level as data augmentation. Here, temporal jit-
tering means we shift a random stride of each frame in a
snippet. Compared with not using data augmentation, ran-
dom cropping is very helpful for TAD while temporal jitter-
ing slightly harms the performance. Therefore, we only use
random cropping in our experiment as default.
Partially freeing backbone can have a good trade-off be-
tween computation and performance. It is a common
trick to save the computation by freezing some shallow lay-
ers of video encoder. In this study, we want to know how
the frozen layers affect the detection performance. For a
ResNet-based encoder (e.g. TSM) with four stages, we can
gradually freeze the layers from shallow to deep. Tab. 7
(middle) clearly shows that: 1) End-to-end training is im-
portant for TAD, since the frozen stage of 4, i.e. freeze the
whole backbone, has the lowest mAP compared with oth-
ers. 2) As we freeze fewer encoder layers, detection perfor-
mance will be improved, but the gain becomes smaller, and
the memory consumption also becomes much larger. 3) To
have a good trade-off between memory and performance,
frozen stage 2 is recommended in our experiments.
Higher frame resolution can boost the performance by a
large margin. We also study the impact of the frame resolu-
tion on the detection performance in end-to-end training, as
shown in Tab. 7 (middle). If we freeze the whole backbone,
a higher resolution can boost the mAP from 34.26 to 36.24
(+1.98), which is a significant improvement. If we freeze
fewer encoder layers, the gap of mAP between low frame
resolution and high frame resolution would be smaller, but
still can bring +1.26 gains under frozen stage 2. However,
the memory usage is almost doubled in this case.
Classification pretraining is not necessary if using end-
to-end training. Some other TAD methods are proposed to
finetune the video encoder by the classification task on the
target dataset, then extract features [6]. In our case, if we
finetune the encoder on ActivityNet by action recognition
task, the detection performance would be slightly improved
from 36.79 to 36.92, as shown in Tab. 7 (bottom). Such
a small gain (+0.13) is reasonable, since end-to-end train-
ing can already improve the feature representation from the
target domain. Since classification pretraining also takes a
long time to train, thus it is not necessary to conduct this
pretraining when end-to-end training is adopted.

To summarize, we recommend giving priority to higher

Table 7. Study of different data augmentation, frozen stage,
frame resolution, and pretraining of video encoder in end-to-
end training on ActivityNet-1.3. Note that SGS is not adopted in
the experiments. We report the GPU memory usage per video with
TSM-R50. † means out of memory on a V100 GPU. ‡ means the
encoder is finetuned on ActivityNet by the classification task.

Encoder
Frame

Resolution
Data

Augment.
Frozen
Stage

Average
mAP

Memory
(GB)

TSM 112x112 × 2 35.12 9.1
TSM 112x112 jitter 2 35.17 9.1
TSM 112x112 crop 2 35.53 9.1
TSM 112x112 crop+jitter 2 35.38 9.1

TSM 112x112 crop 4 34.26 4.5
TSM 112x112 crop 3 35.01 4.6
TSM 112x112 crop 2 35.53 9.1
TSM 112x112 crop 1 35.52 17.0
TSM 112x112 crop 0 35.46 25.8

TSM 224x224 crop 4 36.24 17.5
TSM 224x224 crop 3 36.47 17.6
TSM 224x224 crop 2 36.79 34.3
TSM 224x224 crop 1 - OOM†

TSM-FT‡ 224x224 crop 2 36.92 34.3

frame resolution with stronger data augmentation when
with a limited resource budget in end-to-end training. If
necessary, we can further freeze certain layers in the en-
coder to save computation. We believe such a study for
end-to-end training will enlighten the TAD community in
the sense of efficiency and efficacy trade-off.

F. Implementation details of SGS

In this section, we describe the implementation details of
Sequential Gradient Sampling (SGS). As shown in Alg. 1,
SGS can be divided into three stages. First, in sequential-
ized video encoding, the video is chunked (in temporal di-
mension) into multiple micro-batches, and feature of each
micro-batch is sequentially extracted by the video encoder.
Then, the action detector takes the concatenated features,
and further, the parameters are updated by the loss. We
collect the feature gradients and free all the cache in GPU
memory. Last, we sample a portion of feature gradients to
save the computation (e.g. random sampling), and back-
ward the video encoder by a micro-batch. After sequentially
backward all the sampled micro-batches, we accumulate all
the gradients and update the video encoders’ parameter.

G. Details of Feature-guided Sampling

In the paper, we explore two feature-guided sampling
strategies, i.e. farthest point sampling, and determinantal
point process. The motivation of feature-guided sampling

4

Algorithm 1 PyTorch-like Pseudocode of Sequentialized
Gradient Sampling.

frames: Nx3xTxHxW, K: micro_batch size
optimizer.zero_grad()

stage 1: sequentialized video encoding
feats = []
micro_batches = torch.chunk(frames, N//K, dim=0)
for micro_batch in micro_batches:

with torch.set_grad_enabled(False):
feat = self.video_encoder(micro_batch)
feats.append(feat.detach())

feats = torch.stack(feats, dim=0)

stage 2: action detector learning
feats.requires_grad(True).retain_grad()
with torch.set_grad_enabled(True):

pred = self.action_detector(feats)
loss = loss_func(pred, gt)
loss.backward()

feats_grad = copy.deepcopy(feats.grad.detach())

stage 3: sequentialized gradient sampling
sample_idx = torch.randperm(N)[:sample_size]
micro_batches = torch.chunk(frames[sample_idx],

sample_size//K, dim=0)
grads = torch.chunk(feats_grad[sample_idx],

sample_size//K, dim=0)
for micro_batch, grad in micro_batches, grads:

with torch.set_grad_enabled(True):
feat = self.video_encoder(micro_batch)
feat.backward(gradient=grad)

update the parameter
optimizer.step()

is that each data has different features than others, which
means their inherent importance is also different from oth-
ers. Therefore, one can try to leverage the information
inside the data and ensure the most informative or impor-
tant samples are selected. For TAD, we can adopt feature-
guided sampling on the embedding space of samples (e.g.
snippet features, proposal features). The pseudocode can
be found in Alg. 2.

The farthest point sampling (FPS) is a common feature-
guided sampling approach, which has been adopted in many
fields such as point cloud understanding. Given the data
points X ∈ RN×C , where N is the number of total sam-
ples, and C is the dimension number of each sample feature,
FPS selects the new point from the unselected points, and
ensures new point has the farthest distance to the currently
selected data points in the embedding space. The distance
between two different points can be measured by a distance
function, which we use euclidean distance in our case. Such
sampling actually samples the next point in the middle of
the least-known area of the sampling domain, and thus can
guarantee the sampled points are most distinguished from
each other. However, since this sampling process is con-

Algorithm 2 Pseudocode of FPS/DPP sampling strategy.

data: N x C, sampling_ratio: (float) 0˜1.
sampling_strategy: fps or dpp.
import torch_cluster
from dppy.finite_dpps import FiniteDPP

N = data.shape[0]
farthest point sampling
if sampling_strategy == "fps":

index = torch_cluster.fps(data, ratio=
sampling_ratio)

determinantal point process
if sampling_strategy == "dpp":

data = np.float64(data)
sample_num = int(sampling_ratio * N)
likelihood kernel, use eye matrix to increase

the rank
kernel = data.dot(data.T) + 1e-2 * np.eye(N)
DPP = FiniteDPP("likelihood", **{"L": kernel})
index = DPP.sample_exact_k_dpp(size=sample_num)

return the index list of selected samples

ducted iteratively, thus the corresponding time complexity
is O(N2).

We also implement another feature-guided sampling as
the determinantal point process (DPP). DPP measures the
sample probability as a determinant of some kernels. In
our case, we use cosine similarity as the kernel function,
and update the likelihood matrix every iteration. Since our
sampling ratio is fixed, we can use kDPP [4] to approximate
DPP for fast sampling. To meet the requirements of kDPP,
we add an eye matrix filled with small values (e.g. 1e-2)
to ensure the rank of the likelihood matrix is larger than
the sample size. In general, DPP sampling improves the
diversity of sampled data in the embedding space.

(a) FPS (b) DPP

Figure 2. t-SNE visualization of FPS sampling and DPP sam-
pling. The orange dots are snippets inside action and the blue dots
are background snippets. Dots with red outlines are the sampled
snippets.

In our experiments, we find that DPP works always bet-
ter than FPS, as shown in Tab.4 in the main paper. To further

5

analyze these two strategies, we provide the t-SNE visual-
ization [7] of FPS and DPP at the snippet level, as shown
in Fig. 2. In this figure, the yellow points are the action
foreground snippets, and the blue points are the background
snippets. Initially, we can find that these snippets can be
well grouped in different clusters based on their features,
which verifies the necessity of conducting sampling on fea-
ture embedding space. We observe that (1) For points in
the dashed green circle, FPS tends to select extreme points,
while DPP can select samples with a larger variety. (2) For
the point in the purple dash circle, FPS misses such a hard-
negative sample because its distance from other points is
not that big in the embedding space. However, such points
may be informative samples, and DPP successfully selects
this representative sample. Those two findings can explain
the success of DPP for snippet-level gradient sampling.

For DPP and FPS on the proposal level, we notice that
FPS would prefer to focus on small-scale proposals since
these proposal features are more distinguished from each
other in the feature space. Due to a lack of enough learning
of middle and large-scale proposals, FPS behaves badly in
proposal sampling. On the contrary, DPP can sample all
scale proposals and succeed in this case.

H. Qualitative Visualization

In order to provide a more vivid understanding of our
method, we visualize the qualitative predictions of our
method and BMN [5] on ActivityNet for comparison. In
Fig. 3, we plot the ground truth actions of each video (drawn
in black and above the black line), and also the top-20 pre-
dicted proposals by algorithms (drawn in colors and un-
der the black line). The color of the proposal represents
the maximum IoU of this proposal to the ground truth ac-
tions. Therefore, a proposal with lighter color means it has
more overlap with the ground truth, indicating this is a high-
quality proposal.

As demonstrated in the figure, ETAD can generate (1)
more precise proposal boundary. For instance, in the first
and third row in Fig. 3, the boundary of proposals from
ETAD is closer to the real action boundary than BMN. (2)
more reliable proposal confidence. As shown in the first
and second row in Fig. 3, ETAD has fewer false positive
proposals and proves that regressed proposal confidence is
much more reliable than BMN, indicating the advantage of
our method on proposal ranking.

References

[1] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving
into high quality object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
6154–6162, 2018. 1

[2] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. SlowFast networks for video recognition. In
ICCV, 2019. 3

[3] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 1997. 1

[4] Alex Kulesza and Ben Taskar. k-dpps: Fixed-size determinan-
tal point processes. In ICML, 2011. 5

[5] Tianwei Lin, Xiao Liu, Xin Li, Errui Ding, and Shilei Wen.
BMN: boundary-matching network for temporal action pro-
posal generation. In ICCV, 2019. 2, 3, 6

[6] Zhiwu Qing, Haisheng Su, Weihao Gan, Dongliang Wang,
Wei Wu, Xiang Wang, Yu Qiao, Junjie Yan, Changxin Gao,
and Nong Sang. Temporal context aggregation network for
temporal action proposal refinement. In CVPR, 2021. 1, 3, 4

[7] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of machine learning research, 9(11),
2008. 6

[8] Mengmeng Xu, Chen Zhao, David S Rojas, Ali Thabet, and
Bernard Ghanem. G-TAD: Sub-graph localization for tempo-
ral action detection. In CVPR, 2020. 1

[9] Hang Zhao, Zhicheng Yan, Lorenzo Torresani, and Antonio
Torralba. HACS: Human action clips and segments dataset
for recognition and temporal localization. ICCV, 2019. 3

6

Ground Truth

ETAD(ours)BMN

Prediction

Figure 3. Qualitative results of ETAD and BMN on ActivityNet-1.3. The color of the proposal represents the maximum IoU of this proposal
to ground truth actions. We plot the ground truth actions of each video (drawn in black and above the black line), and top-20 predicted
proposals by algorithms (drawn in colors and under the black line).

7

