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Our Drone Real-world Navigation Metric Depth Obstacle Alarm

Figure 1. We deploy our efficient stereo depth estimation model, Edge-based Self-Supervised Stereo Matching Network (ES3Net), to our
self-made drone equipped with a ZED 2 stereo camera (red framed) and an NVIDIA Jetson TX2 (red circled) for drone obstacle avoidance
and navigation [4]. The unit of depth map is meter.

Abstract

Efficient and accurate depth estimation is crucial for
real-world embedded vision applications, such as au-
tonomous driving, 3D reconstruction, and drone naviga-
tion. Stereo matching is considered more accurate than
monocular depth estimation due to the presence of a ref-
erence image, but its computational inefficiency poses a
challenge for its deployment on edge devices. Moreover,
it is difficult to acquire ground-truth depths for supervised
training of stereo matching networks. To address these
challenges, we propose Edge-based Self-Supervised Stereo
matching Network (ES3Net), which efficiently estimates ac-
curate depths without ground-truth depths for training. We
introduce dual disparity to transform an efficient supervised
stereo matching network into a self-supervised learning
framework. Comprehensive experimental results demon-
strate that ES3Net has comparable accuracy with stereo
methods while outperforming monocular methods in infer-
ence time, approaching state-of-the-art performance. More
specifically, our method improves over 40% in terms of
RMSElog, compared to monocular methods while having
1500 times fewer parameters and running four times faster
on NVIDIA Jetson TX2. The efficient and reliable estima-
tion of depths on edge devices using ES3Net lays a good
foundation for safe drone navigation.

† Hsiao-Chieh Wen is now with MediaTek Inc., Hsinchu, Taiwan.
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Figure 2. The comparison between model performance (δ < 1.25)
and complexity on KITTI 2012 [11]. Our ES3Net outperforms
SOTA self-supervised monocular methods [14, 15, 28–30, 33, 40],
achieving significant improvements across multiple evaluation
metrics while reducing model complexity by nearly 1500 times
and running four times faster on NVIDIA Jetson TX2, comapred
to DepthHints [40].

1. Introduction

Depth estimation receives growing attention owing to
its numerous applications in the fields of autonomous driv-
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ing [20, 27, 42], obstacle avoidance [10], 3D environment
reconstruction [13,44], and drone navigation [32], in which
real-time responses are critical. However, edge computing
devices such as mobile phones, VR headsets, and drones
have limited hardware resources and battery life. To en-
able real-time operations on such devices, it is crucial to de-
velop both accurate and efficient depth estimation models.
As shown in Figure 1, our motivation is to estimate accurate
depth on the edge device (NVIDIA Jetson TX2) for appli-
cations such as obstacle avoidance and drone navigation.

Accurate depth estimation is important for obstacle
avoidance applications, allowing autonomous vehicles and
drones to detect and avoid obstacles, reducing the risk of
collisions and ensuring the safety of operations. The two
mainstream approaches for depth estimation are monocu-
lar and stereo methods. Monocular depth estimation net-
works [14, 15, 28–30, 33, 40] are trained to estimate depths
from a single image using the visual depth cues [19]. How-
ever, as these approaches rely on cues from a single im-
age, they cannot reliably obtain metric depths. In contrast,
stereo matching methods [5, 15, 21, 34, 38, 43, 47] estimate
disparities between two cameras with calibrated camera pa-
rameters and obtain accurate and reliable results of metric
depths. Nevertheless, these approaches suffer from high
computational costs, which are not affordable for edge de-
vices. Particularly, the typical approach for stereo depth es-
timation is the cost-volume method, which extracts features
of stereo images through a convolutional neural network
(CNN) and constructs a cost volume for the computation
of disparity, resulting in high computation requirements.

Another challenge when training a depth estimation
model for real-world applications is to obtain ground-
truth depths for supervised learning. In this context, self-
supervised learning of depth estimation provides a com-
pelling and flexible alternative to traditional supervised
learning methods. It offers a solution to the limitation
of supervised learning and provides a promising approach
for depth estimation. Godard et al. [15] proposed self-
supervised learning via geometry supervision of stereo im-
age pairs instead of ground truth depths to learn how to es-
timate depths without strong supervision. The model must
simultaneously estimate the left and right disparities with
stereo pair to satisfy left-right consistency which geometri-
cally supervises the model training.

To address the aforementioned challenges, we extend
the lightweight architecture proposed in [2] and reduce the
training cost with left-right consistency [15] by introducing
dual disparity without modifying the cost volume. Our ap-
proach achieves high-quality results in quasi-real-time, as
shown in Figure 2, without requiring ground-truth depths
or incurring additional computational costs. In summary,
contributions of this work include:

• We propose a new Edge-Based Self-Supervised Stereo

Matching Network (ES3Net), which is trained in self-
supervised manner and can provide an effective solu-
tion for rapid and precise estimation of depths from
stereo images. To the best of our knowledge, our pro-
posed method is the first to achieve the high-speed
self-supervised stereo depth estimation for edge com-
puting. In addition to computational efficiency, our
method is advantageous as it requires the fewest model
parameters.

• Compared to the state-of-the-art (SOTA) self-
supervised monocular method, our method signifi-
cantly improves performance according to various
evaluation metrics, including absolute relative er-
ror (AbsRel), squared relative error (SqRel), root
mean squared error (RMSE), and root mean squared
error of the logarithm (RMSElog), by 46.39%, 58.67%,
48.36%, and 41.94%, respectively. In addition, our
method provides a reduction of model complexity by
almost 1500 folds while running over four times faster
on the NVIDIA Jetson TX2.

• The comprehensive experiments on multiple tasks
have demonstrated that our method performs equally
or better than its task-specific counterparts using the
existing self-supervised stereo estimation methods,
without leveraging optical flow.

2. Related Works

2.1. Stereo Matching in Depth Estimation

Cost-volume-based models have been the mainstream
approach for stereo matching in depth estimation in re-
cent years. Chang et al. [3] construct a 4D cost volume
by concatenating left and right-view feature maps as well
as 3D hourglass networks to estimate disparity. In wake
of the high computational cost of PSMNet [3], Chang et
al. [2] propose a real-time architecture that comprises an
efficient backbone and attention-aware feature aggregation.
Xu et al. [41] propose sparse points based representation for
intra-scale cost aggregation to improve efficiency of self-
supervised stereo matching. Wang et al. [37] take the L1

distance between the left and right-view feature maps and
propounded a cascaded 3D CNN architecture for undertak-
ing disparity estimation. In this work, we employ diverse
techniques to construct the cost volume and evaluate mul-
tiple architectures in order to demonstrate the robustness of
our proposed model trained by self-supervised learning.

2.2. Self-supervised Depth Estimation

In recent years, self-supervised depth estimation has
been extensively studied given the advantage of not re-
quiring large ground-truth data as supervision. Godard et
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al. [15] treat depth estimation as a form of image recon-
struction. Designed to estimate left-to-right as well as right-
to-left disparities, their network utilizes the left-right dispar-
ity consistency loss to enforce consistency between both es-
timations. Zhong et al. [48] integrate self-supervised learn-
ing by image reconstruction with cost-volume stereo match-
ing and RNN-based network. Lai et al. [21] bridge stereo
and optical flow estimation with a two-stream architecture
using spatiotemporal correspondences. Wang et al. [38]
unify optical flow and stereo estimation in a self-supervised
two-branch network. Chi et al. [6] use a hybrid loss func-
tion with shared encoders and separate decoders to enhance
joint stereo and depth estimation. While existing methods
depend on joint networks for stereo and optical flow esti-
mation, or collaborative stereo and depth features, our pro-
posed method eliminates the need for any additional net-
work for joint estimation, reducing computational cost and
simplifying the architecture.

2.3. Self-Supervised Lightweight Depth Estimation

As the usage of mobile and edge devices continues to
rise, there is a growing demand for lightweight models. In
previous related works, various monocular methods have
been demonstrated to be effective to achieve self-supervised
learning. Watson et al. [40] and Tosi et al. [33] obtain proxy
labels with semi-global matching (SGM) [18] and then use
proxy labels as alternative ground truths. Poggi et al. [28]
and Poggi et al. [29] focus on efficient feature extractor and
stacked depth estimators with pyramidal structure. Overall,
these methods have demonstrated promising results in self-
supervised monocular depth estimation. Although state-of-
the-art methods have improved depth estimation accuracy,
they still face limitations because the obtained depths are
only relative. To the best of our knowledge, our proposed
method is the first to deploy a self-supervised stereo match-
ing network to edge computing.

2.4. Efficiency of Disparity Computation

To train a depth estimator using geometry supervision,
the model must estimate the left and right disparity from
a stereo pair in a manner that satisfies left-right consis-
tency. The CBMV [1] constructs the cost volume with a
bi-directional search to estimate the disparity at the expense
of memory penalty by doubling the size of the cost volume.
Rahnama et al. [31] propose a two-stage depth estimation
architecture by combining R3SGM [26] and ELAS [12]
methods. The first stage entails estimating the disparity
with R3SGM [26]; then, the right disparity is flipped and
left-right consistency is performed in order to derive the
left view disparity. The second stage involves removing
the outliers from the disparity with ELAS [12]. However,
their depth estimation is premised on traditional methods,
which cannot be considered a deep learning approach. The
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Figure 3. Illustration of the strategies for disparity estimation. Our
approach with dual disparity is to estimate the right disparity with
the same model for the purpose of estimating the left disparity.

proposed dual transform overcomes this issue with minimal
additional cost.

3. Methods
We propose ES3Net, a network architecture for stereo

depth estimation in embedded edge computing. We dis-
cuss our choice of dual disparity transformation and com-
bine three losses to improve self-supervised learning.

3.1. Dual Disparity

The right disparity Dr of stereo image pair is required
in order to train our model with left-right consistency loss
(Section 3.3). We introduce its dual disparity D∗

r to effi-
ciently estimate the right disparity Dr with the same model
f for the left disparity Dl. That is, the left disparity Dl is
estimated by model f as follows:

Dl = f(Il, Ir) , (1)

where Il and Ir denote the left and right images, respec-
tively.

To estimate the right dual disparity D∗
r , we apply the

dual transform T (such as horizontal flip and 180-degree
rotation) that maps image pairs to the dual space, as shown
in the right part of Figure 3. We define T as a self-inverse
congruent transformation such that the right dual disparity
D∗

r is computed from the right disparity D∗
r = T (Dr) and

vice versa (Dr = T (D∗
r)). Similarly, the dual counterpart

for every image I is computed as I∗ = T (I). Therefore,
the right dual disparity D∗

r is estimated by the same model
f for the left disparity Dl as follows:

D∗
r = f(I∗r , I

∗
l ) . (2)
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Figure 4. The overall structure for self-supervised depth estima-
tion losses, including Lrec: Reconstruction Loss, Lsm: Smooth-
ness Loss, and Llr: Left-Right Consistency Loss.

As recommended in [23, 49], we use horizontal flip as the
dual transform T . The flipped right disparity becomes the
left disparity of the flipped right image and the flipped left
image, as shown in Eq.(2). Therefore, we are able to use a
single model to estimate both the left and right disparities.
By doing so, the left disparity model is capable of estimat-
ing the right disparity. The dual disparity can be used to
regularize the model with left-right consistency loss.

3.2. Overall Architecture

We present a simple technique for producing a dispar-
ity map of the right view by means of a geometry trans-
form process. This method enables us to train the stereo-
matching model end-to-end through self-supervised learn-
ing without requiring any additional parameters.
4D Cost Volumes: Congruent with the approach of PSM-
Net [3], we create a cost volume by combining the fea-
ture maps of the left view and their corresponding fea-
ture maps of the right view across each disparity level in
the stereo image. This leads to a 4D cost volume for
each stereo image, with dimensions of H ×W ×D × 2F
(height× width× disparity range× feature size).
Backbone: We select for the RealtimeStereo backbone [2]
due to its advantages in mitigating computational chal-
lenges and accelerating training. RealtimeStereo features
an attention-aware feature extraction method that leverages
a number of stacked blueprint separable convolutions [17]
to extract features with reduced computational cost, in ad-
dition to an attention-aware feature aggregation module to
augment the representational capacity of features. We adopt
the aforementioned method to construct the cost volume
from the left-view feature maps and their corresponding
right-view feature maps. Cost aggregation is then applied
to regularize the cost volume and estimate the disparity, us-
ing the original stacked 3D hourglass architecture for 4D
cost volume. Lastly, we utilize a cascaded architecture of
3D CNNs for estimating coarse-to-fine disparities.
Coarse-to-Fine Disparity: The multi-scale architecture of

PSMNet [3] is designed to extract features for all image
levels and to improve semantic and context information in
a coarse-to-fine manner. However, the photometric objec-
tive for geometry supervision can lead to adverse effects on
accuracy in self-supervised learning due to the interpola-
tion blur problem [22] at different scales. To obviate this
predicament, we adopt a single-scale architecture for train-
ing our backbones, PSMNet [3] and RealtimeStereo [2], us-
ing the final outputs of stacked hourglass 3D CNNs.

To elaborate on our method, we first make an initial es-
timation of a rough disparity map. We then use this map as
input to iteratively refine the disparity estimation, resulting
in a more accurate and precise map. After a similar strategy
as proposed in [2], we begin by computing the complete
disparity map at a lower resolution and subsequently calcu-
lating the disparity residuals at a higher resolution. This ap-
proach enables our model to reduce the search range, lead-
ing to a significant speedup in processing time. As a result,
our self-supervised stereo-matching algorithm, which em-
ploys a lightweight CNN, is highly efficient, significantly
lowering computational costs, and is capable of running in
real-time on edge devices.

Summing up, our proposed pipeline is quite flexible and
not confined to backbones [2, 3], 3D/4D cost volumes [3,
41], or single/multi-scale approaches [3, 22].

3.3. Self-Supervised Depth Estimation Losses

To learn disparity estimation through self-supervised
learning, we extended the cost-volume-based stereo depth
estimation model with geometry supervision, incorporating
losses inspired by Godard et al. [15]. They are Lrec: Recon-
struction Loss, Lsm: Smoothness Loss, and Llr: Left-Right
Consistency Loss. The overall structure for self-supervised
depth estimation losses is shown in Figure. 4.
Reconstruction Loss: In this work, we follow the recon-
struction loss proposed by Godard et al. [15]. Inspired
by [45], they used a combination of L1 loss [46] [16] and
Structural Similarity (SSIM) [39] as their image reconstruc-
tion loss. Our model forms a reconstructed left-view image
Ĩl by warping the right-view image Ir with the left disparity
map Dl. We then compute the reconstruction loss Ll

rec for
the left-view image by calculating the difference between
the input image Il and the reconstructed image Ĩl.

Ll
rec =

1

N

∑
i,j

(
α
1− SSIM(Il(i, j), Ĩl(i, j))

2

+ (1− α)∥Il(i, j)− Ĩl(i, j)∥
)
,

(3)

where N denotes the number of pixels, (i, j) represent the
pixel coordinates, and α signifies the weight between L1

loss and SSIM, which is 0.85 in this work. The reconstruc-
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tion loss Lr
rec for the right-view image can be calculated in

a similar way.
Smoothness Loss: We adapt the approach proposed in [36]
to encourage both smoothness and edge preservation of the
disparity map. Our algorithm uses the second-order deriva-
tive of the disparity map in the calculation of the smooth-
ness loss. Given that depth discontinuities often appear on
the image gradient, we utilize the image gradient to weight
the smoothness loss, thus:

Ll
sm =

1

N

∑
i,j

(
∥∂2

xDl(i, j)∥e−β∥∂xIl(i,j)∥

+∥∂2
yDl(i, j)∥e−β∥∂yIl(i,j)∥

)
,

(4)

where ∂D denotes the disparity gradient, ∂I denotes the
image gradient, and β denotes the edge-weighted hyperpa-
rameter. The smoothness loss Lr

sm for the right disparity
Dr can be calculated in a similar way. By minimizing the
smoothness loss, our proposed method is able to align the
disparity map with the edge structure of the input image
while ensuring the smoothness of the disparity map.
Left and Right Consistency Loss: In this work, we aim to
improve the accuracy of disparity maps and balance the per-
formance of left and right estimation by ensuring the consis-
tency between the left and right-view disparity maps. Fol-
lowing [21] [15] [35], we reconstruct the disparity map pair
by warping them with each other and then comparing them
with the original disparity maps to calculate the L1 left-right
consistency loss:

Llr =
1

N

∑
i,j

(∥Dl(i, j)−W (Dr(i, j), Dl(i, j))∥

+∥Dr(i, j)−W (Dl(i, j), Dr(i, j))∥) ,
(5)

where W represents the warping function. By doing so,
we ensure that the left-view disparity map and the right-
view disparity map are in consonance with each other, and
improve the overall accuracy of the result.

4. Experiments and Analysis
We evaluate the ES3Net against SOTA depth estimation

methods on KITTI 2012 [11] and 2015 [25]. The assess-
ment of computational efficiency is based on the number
of frames processed per second (FPS) on the NVIDIA Jet-
son TX2 board. The board comes with a GP10B GPU and 2
CPUs, including a dual-core Denver 2 CPU and a quad-core
ARM Cortex A57 2035Mhz. The maximum performance
mode (Max-N) is enabled for this evaluation.

4.1. Datasets and Setting

We train our models on the Scene Flow [24] and KITTI
raw dataset [11], and evaluate them on the train splits of
KITTI 2012 [11] and KITTI 2015 [25].

Scene Flow dataset [24] comprises more than 35,000
stereo image pairs with ground truths.
KITTI raw dataset [11] is a real-world dataset containing
over 42,000 stereo image pairs in various scenarios such as
city, residential, road, campus, and person.
KITTI 2012 [11] contains 194 training stereo image pairs
with ground truths and 195 testing stereo image pairs with-
out ground truths.
KITTI 2015 [25] contains 200 training stereo image pairs
with ground truths and 200 testing stereo image pairs with-
out ground truths.

We follow the quantitative evaluation protocol of Mon-
odepth [15] and evaluate all experimental results for each
set by selecting 194 and 200 stereo image pairs with ground
truths from the KITTI 2012 training set [11] and KITTI
2015 training set [25], respectively. We evaluate model per-
formance not only on the scale-invariant metrics introduced
by Eigen et al. [9] but also on the D1-all disparity error [11].

4.2. Implementation Details

PSMNet [3] in self-supervised learning setting: We did
not follow the standard training settings on self-supervised
learning for PSMNet [3] because of the considerable com-
putation cost in the training procedure. Instead, we used the
same configuration of PSMNet [3] to train our models from
scratch on the Scene Flow dataset [24] before fine-tuning
them on KITTI 2015 [25].
RealtimeStereo [2] in self-supervised learning setting:
We follow the same training settings of most SOTA self-
supervised learning methods for RealtimeStereo [2]. No-
tably, the RealtimeStereo [2] is trained on the KITTI raw
dataset [11] with a learning rate of 0.0005. For the first 15
epochs of training, only the reconstruction loss is engaged.
The smoothness and left-right consistency losses are added
in the following 52 epochs. Within the training processes,
the input images are randomly cropped to 288×576.

4.3. Comparison with SOTA Models

As shown in Tables 1 and 2, we compare the ES3Net
against other self-supervised SOTA depth estimation meth-
ods with respect to accuracy and efficiency. To begin with,
we conducted a comparative analysis between the ES3Net
and other existing models [5, 15, 43, 47], using the KITTI
2015 dataset [25]. To ensure a fair comparison, we excluded
the optical-flow-based estimator from our evaluation due
to the absence of its efficiency scores. To demonstrate the
computational efficiency and effectiveness of the proposed
method, we compared the performance of our method with
those of SOTA self-supervised monocular depth estimation
methods [14, 15, 30, 33, 40], in addition to a lightweight
method [28, 29], using the KITTI 2012 dataset [11].
Quantitative comparison for Stereo Models: Table 1
shows that under the existing self-supervised estimation
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Method AbsRel ↓ SqRel ↓ RMSE ↓ RMSElog ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

EPC [43] 0.109 1.004 6.232 0.203 0.853 0.937 0.975
Zhong et al. [47] 0.075 1.726 4.857 0.165 0.956 0.976 0.985
Godard et al. [15] 0.068 0.835 4.392 0.146 0.942 0.978 0.989
Lai et al. (Stereo-only) [21] 0.078 0.811 4.700 0.174 0.918 0.965 0.983
Chi et al. (Stereo-only) [5] 0.063 0.662 4.312 0.140 - - -
UnOS (Stereo-only) [38] 0.060 0.833 4.187 0.135 0.955 0.981 0.992
ES3Net 0.063 0.754 4.096 0.139 0.947 0.978 0.989

Table 1. Quantitative comparison with SOTA stereo-matching methods with reference to the KITTI 2015 dataset [25]. Bold-face and blue
numbers indicate the first and second places, respectively.

Method Training Input Size AbsRel ↓ SqRel ↓ RMSE ↓ RMSElog ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ Params FPS

DepthHints [40] I+K 1024×320 0.097 0.733 4.445 0.186 0.889 0.962 0.981 35M 2.13
MonoResMetach [33] CS+K 1280×384 0.098 0.711 4.433 0.189 0.888 0.960 0.980 43M 2.58
MonoDepth [15] CS+K 512×256 0.124 1.076 5.311 0.219 0.847 0.942 0.973 31M 4.88
3Net [30] CS+K 512×256 0.117 0.905 4.982 0.210 0.856 0.948 0.976 48M 3.69
MonoDepth2 [14] I+K 640×192 0.109 0.873 4.960 0.209 0.864 0.948 0.975 15M 17.24
PyD-Net [28] CS+K 512×256 0.146 1.291 5.907 0.245 0.801 0.926 0.967 1.9M 34.57
PyD-Net2 [29] CS+K 640×192 0.127 1.059 5.259 0.218 0.834 0.942 0.974 0.7M 46.73

ES3Net (Stereo) K 1248×384 0.045 0.303 2.299 0.108 0.958 0.984 0.993 0.023M 9.1

Table 2. Quantitative comparison with state-of-the-art monocular methods on the KITTI 2012 dataset [11] reveals that our method achieves
excellent results without having to undergo additional training data. Here, ”K” denotes training on the KITTI raw dataset [11], ”CS”
represents training on the Cityscapes dataset [7], and ”I” signifies pre-training on the ImageNet dataset [8]. Bold-face and blue numbers
indicate the first and second places, respectively. All the performance of SOTA methods are directly taken from [29] using the Eigen
split [9], while our ES3Net is trained on KITTI raw dataset [11] and evaluated on KITTI 2012 training split [11]. The images are padded
to 1248 × 384 to be adapted to our network.

methods, our ES3Net performs at par or better than its task-
specific counterparts without optical flow on those evalu-
ation metrics with minimal parameter size (less than one
thousand times) and high-speed (faster than ten times) (See
Table 3). Moreover, our method can also be implemented
on the embedded system NVIDIA Jetson TX2 (FPS≈ 9.1)
for drone navigation and collision avoidance using limited
computing resources.
Quantitative Comparison with Monocular Models: We
conducted a further investigation into the trade-off between
accuracy and speed between monocular methods and our
proposed method. Table 2 presents a clear superiority of
our method over DepthHints [40], which is currently the
SOTA in monocular depth estimation. Our method achieves
remarkable improvements in all evaluated metrics, includ-
ing AbsRel, SqRel, RMSE, and RMSElog, with gains of
46.39%, 58.67%, 48.36%, and 41.94%, respectively. Fur-
thermore, our method achieves a speed-up of over four
times and a model complexity reduction of almost 1500
folds on the NVIDIA Jetson TX2. Although PyD-Net2 [29]
achieves a higher frame rate (46 FPS), this comes at the
expense of a significant drop in accuracy compared to our
method, with a 64.57% decrease in AbsRel. Furthermore,
our method achieves a model complexity reduction of over

20 folds compared to PyD-Net2 [29]. It is for this reason
that our method is particularly well-suited for not only the
embedded system but also wearable devices.
Qualitative Results: Figure 5 demonstrates the qualitative
performance of our proposed method, in contrast to Godard
et al. [15]. Although the competing methods were unsuc-
cessful in producing the desired outcomes, our approach
(third row) effectively estimated the position of the road
railings. Furthermore, our method (first and second rows)
outperformed the other methods in accurately identifying
the shapes of vehicles and tree trunks. As per these find-
ings, our approach has a distinct advantage in accurately
predicting the position of objects, such as the road surface,
which sets it apart from other methods.

4.4. Runtime Analysis on Different Architectures

Fig. 2 plots the comparison between the model parameter
and δ < 1.25 metrics for many evaluated models. It can
be observed that our ES3Net (red star in Fig. 2) achieves
outstanding complexity-accuracy performance compared to
other SOTA models.

Table 3 shows that our ES3Net achieves either the first
or second place in performance among all metrics in the
stereo matching methods on KITTI 2015 [25]. Additionally,
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Input Ground Truth Godard et al. [15] Ours

Figure 5. Comparison of disparity estimation results regarding the KITTI 2015 dataset using the methods proposed by Godard et al. [15]
and our ES3Net.

Method AbsRel ↓SqRel ↓RMSE ↓RMSElog ↓ Params FPS

Stereo Method:
Godard et al. [15] 0.068 0.835 4.392 0.146 31.6M -
Lai et al. [21] 0.078 0.811 4.700 0.174 58.4M -
Chi et al. [5] 0.063 0.662 4.312 0.140 > 31.6M -
UnOS [38] 0.060 0.833 4.187 0.135 - -
ES3Net (Stereo) 0.063 0.754 4.096 0.139 0.023M 9.1

Monocular Method:
DepthHints [40] 0.097 0.733 4.445 0.186 35M 2.13
MonoResMetach [33] 0.098 0.711 4.433 0.189 43M 2.58
MonoDepth [15] 0.124 1.076 5.311 0.219 31M 4.88
3Net [30] 0.117 0.905 4.982 0.210 48M 3.69
MonoDepth2 [14] 0.109 0.873 4.960 0.209 15M 17.24
PyD-Net [28] 0.146 1.291 5.907 0.245 1.9M 34.57
PyD-Net2 [29] 0.127 1.059 5.259 0.218 0.7M 46.73
ES3Net (Stereo) 0.045 0.303 2.299 0.108 0.023M 9.1

Table 3. Quantitative comparison with SOTA methods. We ob-
tained the runtime and parameter counts by processing images on
a single NVIDIA Jetson TX2. Bold-face and blue numbers indi-
cate the first and second places, respectively.

Method D1-all ↓AbsRel ↓SqRel ↓RMSE ↓RMSElog ↓

180◦ Rotation 8.687 0.064 0.778 4.106 0.140
Horizontal Flip 8.514 0.063 0.754 4.096 0.139
Zhong et al. [47] 8.321 0.064 0.833 3.952 0.136

Table 4. Quantitative results with dual transformation and cost-
volume formation methods on the KITTI 2015 [25].

these methods could not run on Jeston NVIDIA TX2 suc-
cessfully due to the model complexity and limited computa-
tional cost. However, our ES3Net could perform SOTA per-
formance for edge computing purposes. Notwithstanding
that some monocular methods [14, 28, 29] can run in real-
time (> 15 FPS) on NVIDIA Jeston TX2, their absolute
relative errors are higher than 0.1, thus indicating that our
ES3Net outperforms them by over 55%. Even when com-
pared to the SOTA method DepthHints [40], our ES3Net
consistently outperforms it across all evaluation metrics.

We highlight three advantages of our ES3Net: (1) it
achieves SOTA performance in comparison to stereo as well

as monocular methods, making it a feasible choice for depth
estimation tasks; (2) it can run in quasi-real-time on embed-
ded systems like the NVIDIA Jetson TX2, enabling the in-
tegration of a stereo matching model for edge computing;
and (3) it has a small parameter size, making it practical to
deploy the model on wearable devices.

4.5. Ablation Study of Dual Disparity

We conducted the experiment to compare cost-volume
formation method [47] and different dual transformations,
such as horizontal flip and 180◦ rotation. Table 4 shows
that the findings of all metrics as well as qualitative results
(see Fig. 6) are relatively similar regardless of the form of
the cost-volume. Consequently, we selected the flip, which
has data augmentation benefits [15, 49], given that our dual
disparity in the proposed method.

4.6. Comparisons of Single and Multi-scale

The Multi-scale in PSMNet [3] is designed to enhance
the receptive field to extract information at the whole image
level, thus enhancing the semantic and context information
in a coarse-to-fine manner. However, when we adopted re-
construction loss for geometry supervision, we observed a
decrease in accuracy due to pixel misalignment at different
level scales [22]. We conducted several ablation studies on
KITTI 2015 in order to verify the rationality and cogency of
our method [25] so as to evaluate the impact on implemen-
tation in varying settings within a self-supervised manner.
We analyzed 1) training with different backbones [2, 3]; 2)
different construction methods of cost volume; and 3) sin-
gle and multi-scale. Table 5 shows the ablation study of
accuracy improvements when single scale is adopted. De-
spite making changes to any condition of 1) or 2), we were
still able to focus on 3) to improve accuracy. As a result, the
single scale method outperformed the multi-scale method in
all metrics.
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Architecture Method D M D1-all ↓ AbsRel ↓ SqRel ↓ RMSE ↓ RMSElog ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

PSMNet [3] Horizontal Flip ✓ ✓ 9.917 0.1081 2.1120 4.856 0.191 0.932 0.962 0.975
PSMNet [3] Horizontal Flip ✓ 9.211 0.0929 1.6325 4.505 0.169 0.939 0.968 0.981
RealtimeStereo [2] Zhong et al. [47] ✓ 9.401 0.097 2.244 5.555 0.198 0.934 0.967 0.980
RealtimeStereo [2] Zhong et al. [47] 8.321 0.064 0.833 3.952 0.136 0.950 0.981 0.990
RealtimeStereo [2] 180◦ Rotation ✓ ✓ 9.153 0.070 0.999 4.504 0.151 0.942 0.976 0.988
RealtimeStereo [2] 180◦ Rotation ✓ 8.687 0.064 0.778 4.106 0.140 0.946 0.978 0.989
RealtimeStereo [2] Horizontal Flip ✓ ✓ 8.523 0.070 1.129 4.439 0.138 0.946 0.977 0.988
RealtimeStereo [2] Horizontal Flip ✓ 8.514 0.063 0.754 4.096 0.139 0.947 0.978 0.989

Table 5. Quantitative results with RealtimeStereo [2] and PSMNet [3] as the backbone on the KITTI 2015 [25]. ”M” represents multi-scale
architecture and ”D” represents dual disparity.

Multi

Input Image
Single

Multi

Input Image
Single

Multi

Input Image
Single

180◦ Rotation Zhong et al. [47] Horizontal Flip

Figure 6. We compared the disparity estimation findings of the self-supervised RealtimeStereo [2] using the strategies including 180◦

Rotation, Zhong et al. [47], and Horizontal Flip. Additionally, we conducted a qualitative performance comparison using single and multi-
scale architectures.

5. Conclusions

We introduce ES3Net, a novel approach for efficient and
accurate self-supervised stereo depth estimation with fast
inference speed and small amount of model parameters.
Our proposed method outperforms SOTA self-supervised
monocular methods in terms of accuracy, achieving sub-
stantial improvements across multiple evaluation metrics
while reducing model complexity by approximately 1500
times and speeding up over four times. Moreover, com-
pared to existing self-supervised stereo estimation methods,
ES3Net achieves comparable performance in terms of accu-
racy.

Our work represents the pioneering application of self-
supervised stereo matching in embedded vision, addressing
the challenges of computational inefficiency and the lack of
ground-truth depths. Our results demonstrate the potential

of self-supervised stereo-matching as a valuable tool for en-
hancing safety and functionality in real-world applications
of embedded vision. We also deployed ES3Net to our drone
to estimate absolute depth values for obstacle avoidance and
navigation, showcasing its real-world applicability.
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