
Hardware-Aware Pruning for FPGA Deep Learning Accelerators

Jef Plochaet, Toon Goedemé
EAVISE-PSI-ESAT, KU Leuven

Jan Pieter De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
{jef.plochaet, toon.goedeme}@kuleuven.be

Abstract

Pruning has been widely used for deep neural network
optimization and compression. In this paper we propose
a pruning method to accelerate FPGA implementations of
neural networks with the goal of lowering the inference time
as much as possible, while taking into account hardware-
specific constraints. We use the normalized L2-norm as a
measure of filter importance and iteratively prune the net-
work with a predefined pruning stepsize. We extend this
method to also prune around residual connections using the
maximum normalized L2-norm as a representation of im-
portance for a group of connected channels. We introduce
a hardware-aware pruning method for FPGA deep learning
accelerators, adaptively pruning the neural network based
on the size of the systolic array used to calculate the con-
volutions. We validate our methods by pruning a model,
designed for polyp segmentation in colonoscopy videos, on
two different datasets. This results in almost halving the in-
ference time with minimal loss of accuracy on both datasets.
We prove that our two contributions yield an extra 30% in-
crease in processing speed compared to classical L2 prun-
ing.

1. Introduction
Throughout the years, deep learning models have

reached human-level performance on many different appli-
cations, including various medical tasks [19]. These models
can be used by doctors as an aid or second opinion during
medical examinations. In order for people to successfully
cooperate with these models, the neural networks must run
in real time. However, it is not always easy because, ac-
cording to the current trend, neural networks are growing in
size [24]. Using a powerful graphics processing unit (GPU)
could be an option, but this has a financial and environmen-
tal downside. Therefore, using embedded devices is more
feasible. Embedded devices are less powerful, making it
more difficult to achieve real time performance. There ex-
ist various techniques for optimizing neural networks and

decreasing their inference time, such as quantization and
pruning. We focus on the latter.

In this paper we present two pruning strategies where
our goal is to lower the inference time of the network on
an FPGA as much as possible. We prove the effectiveness
of our methods by pruning a neural network designed by
Eelbode et al. [5] for polyp segmentation in colonoscopy
videos. We specifically prune this network for an FPGA
implementation using the nearbAI [4] accelerator. The net-
work consists of two parts, a backbone and a recurrent
head. Currently, we only look at optimizing the back-
bone by means of pruning. Eelbode et al. use the original
Deeplabv3+ [2] architecture with an Xception backbone.

Our proposed method goes as follows. We use the nor-
malized L2-norm to decide what filters are important, the
lowest X% are iteratively pruned. The first novelty we in-
troduce is the ability to prune around residual connections
which, due to their complex channel dimension dependen-
cies, are typically seen as an optimization blocker. We use
the maximum normalized L2-norm as a representation of
importance for a group of connected channels. The cor-
responding channels get pruned when this maximum L2-
norm belongs to the lowest X%. Secondly, we introduce a
hardware-aware pruning method, specifically designed for
FPGA deep learning accelerators. Our method takes into
account how the nearbAI engine processes convolutions and
we adjust our pruning according to the size of the hardware
systolic array.

2. Related Work
Pruning neural networks is a method to remove param-

eters, filters, channels or layers that are unimportant to a
neural network [8]. Resulting in a smaller network (less
parameters) and fewer floating point operations (FLOPs).
These effects of pruning make it possible to run large neu-
ral networks on embedded devices that have less memory
and less computing power.

First, there is an important distinction between unstruc-
tured and structured pruning [8]. Unstructured pruning re-
moves singular neurons throughout the entire network. A

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4482

high compression rate can be achieved with little to no ac-
curacy loss. The disadvantage of unstructured pruning is
that it results in sparse matrices. To actually reduce the in-
ference time, specialized hardware or software is needed.
Structured pruning, on the other hand, removes entire chan-
nels, filters or layers. This allows for a reduction in infer-
ence time without the need of specialized hardware or soft-
ware.

There exist a lot of different neural network pruning
approaches. Vadera and Ameen [23] divide these exist-
ing methods into three categories, similarity and clustering
methods, sensitivity analysis methods and magnitude based
methods.

First, similarity and clustering methods prune weights
that are similar to each other. This is based on the idea that
weights that are similar, are redundant. Theoretically, the
accuracy of the model will be minimally affected by prun-
ing these redundant weights. For example, Ayinde et al. [1]
cluster the different filters in a convolutional layer where the
average similarity is above a certain threshold. From each
cluster they select a random filter as a representative filter
for that cluster. The representative filter is retained and all
other redundant filters in the cluster are pruned.

Second, sensitivity analysis tries to determine the effect
the removal of a weight or filter has on the loss of the net-
work. Weights that have the least effect on the loss will be
pruned. Molchanov et al. [17] uses the first order Taylor
expansion to approximate the change in loss after removing
a parameter or filter. Parameters are pruned when they have
almost no impact on the cost function.

Last, magnitude based methods use the magnitude of the
weights to measure their importance. Li et al. [13] calcu-
late L1-norm of the weights in a filter, removing the filters
with the smallest L1-norm. Molchanov et al. [17] uses the
L2-norm to determine which filters are important, pruning
those with a small L2-norm. He et al. [9] argue that using
norm-based criteria is only possible when the norm devia-
tion within a layer is large enough and the minimum norm is
actually small. They propose using the geometric median.
The geometric median contains the common information of
all filters in a layer. Pruning filters close to the geometric
median has a minimal effect because these filters can be re-
placed by other filters. The disadvantage of the geometric
median approach is that we are unable to compare channels
of different convolutions throughout the network as men-
tioned in [18]. This makes pruning residual connections
difficult.

Most pruning algorithms that deal with residual connec-
tions, only prune the layers within the residual block and
do not prune the residual connections themselves. This is
because pruning residual connections is difficult. Resid-
ual connections connect different layers across the network.
Because of the fact that the dimensions of connected lay-

ers must match for the elementwise operation, such con-
nections enforce that all connected layers are pruned simul-
taneously. Not pruning these residual connections results in
an hourglass structure for the residual block, as mentioned
by Luo and Wu in [15]. They argue that pruning the resid-
ual connections leads to a more accurate model because of
the larger pruning space and can result in a faster model
even though the number of FLOPs remains the same. Luo
and Wu calculate the importance of a channel by remov-
ing that channel and using a proxy dataset to evaluate the
performance change of the network. For residual connec-
tions, they use the same method but remove all connected
channels to determine their importance. Gao et al. [7] group
connected filters and minimize the variance of the weights
within the groups applying variance-regularization during
training. The weights with a normalized L1-norm smaller
than a certain threshold are pruned. Liu et al. [14] use Fisher
information to determine the importance of a channel. They
group different layers that have connected channels. The
channels of grouped layers are pruned simultaneously. The
overall importance of connected channels follows the chain
rule of gradient computation.

Hardware-aware pruning takes into account the specific
hardware that will be used or how the network calcula-
tions are performed. Shen et al. [21] introduce hardware-
aware latency pruning (HALP). They compute a look-up
table containing the latencies of each layer. First, they rank
the neurons according to their importance. Then, they cal-
culate a latency contribution score for each neuron. They
group neurons in order of importance and determine which
neurons to prune using an augmented knapsack solver. Sun
et al. [22] discuss a similar approach to ours. They apply
hardware-aware pruning on 3D convolutions for FPGAs to
match the loop tiling technique. Here, weight tensors are
divided into multiple blocks of the size of the FPGA buffer.
The network is pruned per weight block. We, on the other
hand, select which filters to prune based on the size of the
systolic array. Furthermore, we actually remove the filters
from the architecture while they use an “enable signal” sig-
nal to decide if a block should be skipped. This compresses
the size of the network instead of only improving the infer-
ence time.

3. Method
The goal is to accelerate the network so that we have a

real time FPGA implementation without sustaining a great
loss of accuracy.

Our pruning method is an extension of the methods pro-
posed by Ophoff et al. [18] and Molchanov et al. [17].
Figure 1 shows our pruning pipeline. We start by load-
ing our trained model. Then we calculate the importance
of the individual channels throughout the entire network.
Next we prune the X% least important channels and fine-

4483

tune the network. Unlike [18], we select the network that
achieves the highest accuracy on the validation set and use
this model to start the next pruning iteration. This allows
us to go through more pruning iterations and thus further
compress the model. However, the risk is that we might
slightly overfit on the validation set. Early stopping is im-
plemented during the fine-tuning of the network. When the
model reaches a predefined accuracy increase (α), the fine-
tuning is stopped and we move on to the next pruning itera-
tion. We repeat this process until the network loses a prede-
fined amount of accuracy (β) on the validation set compared
to the original model. The values for α and β are empiri-
cally chosen during the experiments. In our case, we prune
a segmentation model instead of an object detection model
like Ophoff et al. [18]. Because the segmentation of ob-
jects in images is an unbalanced problem, it is not advised
to use pixel accuracy as a metric. Therefore, we use the
Dice score.

Trained model

Prune lowest X%

Fine-tune

Calculate normalized
L2-norm

STOP

Select best model
on validation set

W
hi

le
 (

D
ic

e v
al
 ≥

 D
ic

e s
ta

rt
 -

 β
)

Figure 1. Our pruning pipeline.

To evaluate the importance of the channels in the net-
work, we use the normalized L2-norm (Eq. (1)). Ophoff et
al. [18] show that this is a simple but effective way to cal-
culate the importance of the channels especially on more
constrained datasets. The normalization of the L2-norm al-
lows us to compare channels from different layers across
the entire network.

Importance(wi) =
||wi||2√∑
wj∈W ||wj ||22

(1)

3.1. Pruning Residual Connections

Residual connections are typically seen as optimization
blockers. The pruning of layers around residual connections

is inherently more difficult because we need to prune the
same channels in all the different layers that are involved
in the element-wise operation. The connected filters are
shown in red in Figure 2. Pruning one of these layers re-
quires pruning the same filters in the other layer, which is
typically avoided, such as in [18].

Separable Conv

Separable Conv

Separable Conv

Separable Conv

Separable Conv

Conv

+

+

Separable Conv

Separable Conv

Separable Conv

Separable Conv

+

Separable Conv

+
Separable Conv

++

Figure 2. Illustration of residual connections in Deeplabv3+ [2]
with (left) and without (right) a convolutional block in the skip
connection. Red text shows the connected filters.

However, we propose to build a dependency graph of all
layers in the architecture and prune connected groups simul-
taneously. We compare different channels using the normal-
ized L2-norm. All channels involved in the element-wise
operation have their own importance value. This makes it
more difficult to decide if or when we need to prune these
channels. The decision on when to prune these layers is
especially important for the network we are working with.
Because this model is based on Deeplabv3+ [2], the struc-
ture in Figure 2 (right) is repeated 16 times in the so-called
“middle flow”. This means that 18 layers are connected to-
gether (instead of just 2). Pruning one of these layer means
pruning the same filters in all 18 layers. Our decision on
when to prune these layers could have a major influence on
our pruning results.

According to Luo and Wu [15], pruning these residual
connections enlarges the pruning space, which can lead to
more compression. Their experiments show that it could
also improve inference time even though the multiply accu-
mulates (MACs) are similar to a model where they do not
prune the residual layers.

Our proposed solution is to select the maximum L2-
norm of the corresponding channels as shown in Equa-
tion (2). Here, L contains all the normalized L2-norms of
the connected channels and Lrep is the maximum value in
L.

Lrep = max(L) (2)

We use Lrep as a representation of importance for the con-
nected channels so we can compare these channels to the
other channels throughout the network. The intuition of

4484

×
W

+

×
W

+

×
W

+

×
W

+

×
W

+

×
W

+

×
W

+

×
W

+

×
W

+

×
W

+

×
W

+

×
W

+

O
ut

pu
t c

ha
nn

el
s

N
ou

t

CI

Width Win
Heig

ht H inIn
pu

t c
ha

nn
el

s
N

in

CO

Figure 3. Execution of a 1× 1 convolution using a systolic array of MACs.

this approach is that the maximum normalized L2-norm in-
dicates the most important channel. We will only prune the
connected channels when this maximum value is in the low-
est X%. Otherwise, we may discard channels that contain
important information too quickly at the expense of accu-
racy. If the maximum value is in the lowest X%, all other
connected channels are automatically in the lowest X% as
well. This means that these channels are not important and
can therefore be pruned with a minimal effect on the ac-
curacy. We also experimented with other alternatives, like
using the minimum or average of L as a representation of
importance as will be described in Section 4.2.

3.2. Hardware-Aware Pruning (HAP)

In order to optimize our network even further, we pro-
pose to make this pruning approach hardware-aware. We
use the nearbAI engine [4] from easics [3]. nearbAI is de-
signed to accelerate neural networks for embedded devices
such as FPGAs. Our prior knowledge of how convolutions
are processed by the nearbAI engine allows us to tailor our
pruning specifically for this engine and achieve better prun-
ing results with the aim of achieving the lowest inference
time possible. The engine uses a systolic array of multi-
ply accumulates (MACs). Each MAC has two inputs, the
first input is connected to a weight. The input activations
are shifted from left to right through the systolic array and
are delivered to the second input. Every MAC performs the
multiplication, adds the result of the multiplication to the
result of the element below it and sends that result to the
element above.

Figure 3 shows an example of the execution of a 1 × 1
convolution using a systolic array. Each MAC can execute

a 1× 1 convolution. Bigger convolutions can be seen as the
addition of multiple 1× 1 masks. The input of the convolu-
tion is a tensor with dimensions Win × Hin × Nin, these
are the width, height and input channels, respectively. The
convolution generates Nout output channels. The systolic
array has a size CI × CO.

Imagine the systolic array has 1 column (CO = 1)
and as many rows as there are input channels (CI = Nin).
Pushing one matrix of Win ×Nin through the systolic array
would result in one row of output activations for one output
channel. Now, imagine that the systolic array has as many
columns as output channels (CO = Nout). Pushing the
matrix of size Win × Nin through the systolic array results
in one row of output activations for every output channel.
This process is repeated across the height dimension (Hin)
to calculate the entire output tensor.

Ideally, a systolic array that has as many rows as input
channels (CI = Nin) and as many columns as output
channels (CO = Nout) is used. This would allow for min-
imal routing of the weights during the calculation of a con-
volution. Unfortunately, the size of the systolic array is usu-
ally smaller than Nin × Nout of a convolution. In practice,
nearbAI divides this big “virtual” array of size Nin × Nout

into multiple smaller arrays of fixed size CI × CO. The
different smaller arrays are the different hardware positions
the FPGA has to be programmed in to calculate the convolu-
tion. The time it takes to perform the convolution depends,
among other things, on the number of different positions in
which the hardware has to be programmed.

During pruning we remove filters in the convolutional
layers which reduces the number of output channels. Since
the different hardware positions determine the inference

4485

Pruning
stepsize Residual HAP # Parameters FPGA (ms) Dice val Dice test

Original model 41.3M 85.25 0.6465 0.6252
5 14.7M (÷2.81) 57.51 (÷1.48) 0.5970 0.5474
5 ✓ 13.9M (÷2.97) 53.82 (÷1.58) 0.6058 0.5367
5 ✓ 12.4M (÷3.33) 52.13 (÷1.64) 0.5944 0.5636
5 ✓ ✓ 10.7M (÷3.86) 49.18 (÷1.73) 0.5978 0.5741

2.5 13.3M (÷3.11) 53.82 (÷1.58) 0.5994 0.5696
2.5 ✓ 11.1M (÷3.72) 50.16 (÷1.70) 0.5971 0.5684
2.5 ✓ 10.0M (÷4.13) 49.00 (÷1.74) 0.6050 0.5603
2.5 ✓ ✓ 8.1M (÷5.10) 45.66 (÷1.87) 0.6073 0.5874

Table 1. Pruning results on the private dataset.

time of the convolution, we only get a decrease in inference
time if we can skip an entire hardware position. To skip
entire hardware positions, we propose to prune the filters in
multiples of CO.

The pruning pipeline in Fig. 1 remains the same. We
calculate the importance of the different filters using the
normalized L2-norm. Iteratively, the X% least important
channels, are selected for pruning. Equations (3) and (4)
show our hardware-aware pruning implementation. Here,
Nout is the original number of output channels and Np is
the number of channels of that layer selected for pruning.
In Eq. (3), we calculate the number of output channels af-
ter pruning (N̂out) by finding the nearest multiple of CO
closest to Nout −Np. The number of output channels after
pruning has to be the nearest multiple (N̂out).

N̂out =

⌈
Nout −Np

CO

⌉
× CO (3)

N̂p = Nout − N̂out (4)

In Equation (4), we calculate the number of channels that
will be pruned (N̂p). We select the N̂p least important chan-
nels for pruning. The remainder of the previously selected
channels (Np − N̂p) are retained. Keeping these channels
could result in a small accuracy gain that would allow us to
prune for more iterations and compress the model even fur-
ther. Also, immediately removing these channels does not
lead to a decrease in inference time because we do not skip
an entire hardware position. There is no speed advantage in
removing these channels prematurely. If no multiple of CO
can be reached, we do not prune that layer in that iteration.

4. Results

We evaluate our methods by pruning the network of
Eelbode et al. [5] on two different polyp segmentation
datasets, a private dataset and the SUN Colonoscopy Video
Database [10,16]. The inference times of the different mod-

els are simulated on a Intel Arria 10 660 System on Module
(SoM) [20] using the nearbAI engine.

4.1. Results Private Dataset

Our private dataset consists out of 131619 frames in to-
tal. These frames come from 842 sequences and contain
460 different polyps. The original model trained on this
dataset achieved a 0.6252 dice score on the test set. The in-
ference time of this baseline model simulated on the FPGA
is equal to 85.25 ms.

We run four different experiments for two different prun-
ing stepsizes, 2.5% and 5% per iteration. First, we prune
the original model without pruning the residual connections
and without applying our hardware-aware pruning strategy.
Second, we also prune the residual connections. Next, we
apply our hardware-aware pruning strategy. Finally, we
combine the pruning of the residual connections and our
hardware-aware pruning (HAP) strategy. During HAP we
assume that the nearbAI engine uses a systolic array with
CO = 32 (see Sec. 3.2). This means that after pruning the
resulting output channels will always be a multiple of 32.
Every iteration, we retrain the network for up to 10 epochs.
The α parameter is set to 0.05. We allow up to 5% accuracy
loss on the validation set (β = 0.05). Pruning neural net-
works is a trade-off between the accuracy and compression
of the model. The decision as to what is more important
will depend on the situation. If the accuracy of the model
is more important, increase β and vice versa. In our case
(β = 0.05), we prioritize model compression but try to limit
the accuracy loss by 5% with respect to the original model.

Table 1 gives an overview of the results of the differ-
ent experiments. Our best pruning result compresses the
number of parameters in the model with a factor of 5.1 and
decreases the inference time with a factor of 1.9.

There are several things to notice when viewing these
results. First, slower pruning (lower pruning stepsize) leads
to greater compression. All the models that were pruned
with a pruning stepsize equal to 2.5% have less parameters

4486

Figure 4. Comparison of pruned channels per layer between the regular pruning and residual pruning with a pruning stepsize of 2.5 for the
private dataset.

and a faster inference time compared to their corresponding
models that were pruned with a pruning stepsize equal to
5%. By pruning in smaller steps, the model does not lose
as much accuracy after pruning. This drop in accuracy can
be more easily recovered by retraining compared to when
pruning in larger steps. This allows us to prune more itera-
tions and achieve a greater compression.

Secondly, we also observe that pruning the residual con-
nections results in a better compression and faster inference
time. This is because pruning the residual connections en-
larges the pruning space. In our case, we were able to prune
24 more layers, expanding our pruning space from 49 lay-
ers to 73 layers. Figure 4 shows the difference between
skipping and pruning the residual connections. Here, the
advantage of residual pruning is clear, we are able to sim-
ply prune more layers and parameters. It is also remarkable
that pruning the residual layers results in a slight decrease
in channels in some of the non-residual layers compared to
regular pruning. Pruning the layers around the residual con-
nections led to a 10% and 12% speed-up in inference time
in comparison to the baseline pruning for pruning stepsizes
5% and 2.5%, respectively.

We also notice that our HAP strategy increases the com-
pression even further. By preserving the channels that do
not increase the inference time when removed, we maintain
the validation accuracy longer and can prune for more itera-
tions. This can be thought of as pruning in smaller variable
steps. This stepsize depends on the the number of multiples
of CO that we can prune. Adding the HAP strategy leads to
a 16% speed-up in comparison to the pruning baseline for
both stepsizes.

Finally, we observe that the combination of both pruning
the residual connections and HAP results in the best pruning
results. Resulting in a 25% and 29% decrease in inference

time compared to classical L2 pruning for pruning stepsizes
5% and 2.5%, respectively. Again, this is due to the larger
pruning space and hardware-aware pruning strategy.

The disadvantage of our strategy is that there is a risk to
slightly overfit on the validation set as mentioned in Sec-
tion 3. This hypothesis is confirmed by our results. The
average drop in validation accuracy is 0.0460. This is ex-
pected because we allow for a 0.05 drop (β = 0.05). How-
ever, the average drop in accuracy on the test set is 0.0618,
indicating that we are slightly overfitting on the validation
set. This can be avoided by retraining for a set amount of
epochs after pruning and selecting the final model instead
of selecting the model that performs best on the validation
set.

4.2. Results SUN Dataset

We also performed experiments on the SUN
colonoscopy video database [10, 16]. This dataset
contains 49136 frames taken from 100 different polyps.
The original dataset only contains bounding box anno-
tations, but we use the segmentation masks provided by
Ge-Peng Ji et al. [6,11,12]. Training the unpruned network
on this dataset resulted in a dice score of 0.5183 and 0.5286
on the SUN-SEG-Easy (Unseen) and SUN-SEG-Hard
(unseen) test sets, respectively (see Tab. 2). To enable a
fair comparison, the same training parameters were used as
in [5] by Eelbode et al. Further optimization of the results
could be possible, but is beyond the scope of this paper.

In this case, only a pruning stepsize of 2.5% was used.
Pruning with a stepsize of 5% caused an excessive drop in
validation accuracy that could not be recovered by retrain-
ing the network. Also, when pruning with 2.5% we retrain
the network for a maximum of 25 epochs to recover the ac-
curacy on the validation set after pruning. Parameters α and

4487

Pruning
stepsize Residual HAP # Parameters FPGA (ms) Dice val SUN-SEG-Easy

(Unseen) Dice
SUN-SEG-Hard

(Unseen) Dice
Original model 41.3M 85.25 0.6633 0.5183 0.5286

2.5 12.9M (÷3.20) 53.21 (÷1.60) 0.6196 0.5298 0.5030
2.5 ✓ 9.9M (÷4.17) 49.09 (÷1.74) 0.6130 0.5265 0.5324
2.5 ✓ 10.2M (÷4.05) 49.18 (÷1.73) 0.6210 0.5088 0.5160
2.5 ✓ ✓ 8.2M (÷5.04) 45.71 (÷1.87) 0.6178 0.5187 0.5323

Table 2. Pruning results on the SUN polyp segmentation database.

β still remain 0.05. We also still assume that the nearbAI
engine uses a systolic array where CO = 32.

Table 2 contains our results of the pruning experiments
on the SUN dataset. Similar to the results on the private
dataset, adding residual pruning or HAP produces a better
result compared to the baseline pruning. Likewise, the com-
bination of both the pruning of the residual connection and
HAP leads to the best compression. We achieve a compres-
sion of factor 5.0 and a decrease in inference time of factor
1.9. These results are comparable to the results on the pri-
vate dataset. But, remarkably, we see a slight increase on
the performance on both the test sets. Hence, in this case,
the overfitting phenomenon does not occur. The pruning
even has a regularization effect. Some examples of the re-
sults on the SUN-SEG-Hard (Unseen) test set are shown
in Figure 5. We use the pruned model with residual and
hardware-aware pruning for generating these segmentation
masks.

ca
se

 1
3_

2
ca

se
 2

9_
1

ca
se

 6
8_

6

Input GT Original model Pruned model

Figure 5. Input, ground truth, result of the original model and
result of the pruned model (where we apply residual pruning and
HAP) for three examples of the SUN-SEG-Hard (Unseen) test set.

We also performed experiments on different pruning
strategies for pruning residual connections. In Section 3.1
we mentioned that we propose to use the maximum L2-
norm of the corresponding channels as a representation of
importance. We will only prune the connected channels
when the maximum L2-norm is in the lowest X% (2.5%
in this case). Here, we compare taking this maximum L2-

norm with two variants. First, we use the minimum L2-
norm of the connected channels as a representation of im-
portance. Second, we use the average L2-norm of the cor-
responding channels as a representation of importance. For
these experiments, all pruning parameters remain the same
and only residual pruning is added. We do not use HAP in
this experiment.

#Parameters FPGA (ms)
MIN 33.8M 78.13
AVG 13.2M 52.33
MAX 9.9M 49.09

Table 3. Comparison of using the maximum, minimum and av-
erage L2-norm as a representation of importance for pruning of
corresponding channels in residual connections.

Table 3 shows the results of this comparison. Using
the maximum L2-norm significantly outperforms using the
minimum or average. This proves that our intuition that we
only prune the connected channels when the most important
channel belongs to the least important channels across the
model is correct. When pruning channels using the mini-
mum or average, we remove channels that contain impor-
tant information too fast. As a result, the accuracy on the
validation set drops too quickly and less pruning iterations
are executed. This reduces the compression of the model
and leads to a slower inference time.

5. Conclusion
Our goal was to accelerate deep neural networks for an

FPGA implementation by means of pruning. In this pa-
per, we first introduce a way to prune residual connections
by using the maximum normalized L2-norm of the con-
nected channels as a representation of importance for the
connected channels. The corresponding channels will only
be pruned if the maximum L2-norm is in the lowest X%.
We also propose a method for hardware-aware pruning for
FPGA deep learning accelerators. We adaptively prune the
network based on the size of the systolic array used to cal-
culate the convolutions. We demonstrate the effectiveness
of our methods by pruning a network dedicated to polyp

4488

segmentation. We train and prune this network on two dif-
ferent datasets, a private dataset and the SUN polyp detec-
tion dataset. On both datasets, we almost cut the inference
time in half and compressed the number of parameters of
the original model by a factor of 5, with only a 5% accu-
racy drop. Pruning the residual connections and our pro-
posed HAP approach yielded an extra speed-up of almost
30% compared to classical L2 pruning.

One potential opportunity for future work is to compare
L2-norm pruning with other pruning methods. Another pos-
sibility for future work is to test the effectiveness of our
pruning strategies on different datasets.

Acknowledgements
We thank easics for granting us access to their nearbAI

tool. Furthermore, we thank Tom Eelbode, who provided
the original model and data.

References
[1] Babajide O Ayinde, Tamer Inanc, and Jacek M Zurada. Re-

dundant feature pruning for accelerated inference in deep
neural networks. Neural Networks, 118:148–158, 2019. 2

[2] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
Proceedings of the European conference on computer vision
(ECCV), pages 801–818, 2018. 1, 3

[3] easics. easics. https://www.easics.com/. Accessed
on: 2022-02-20. 4

[4] easics. nearbai. https://www.easics.com/
nearbai/. Accessed on: 2022-02-20. 1, 4

[5] Tom Eelbode, Pieter Sinonquel, Raf Bisschops, and Fred-
erik Maes. Convolutional lstm. Computer-Aided Analysis of
Gastrointestinal Videos, pages 121–126, 2021. 1, 5, 6

[6] Deng-Ping Fan, Ge-Peng Ji, Tao Zhou, Geng Chen, Huazhu
Fu, Jianbing Shen, and Ling Shao. Pranet: Parallel reverse
attention network for polyp segmentation. In International
conference on medical image computing and computer-
assisted intervention, pages 263–273. Springer, 2020. 6

[7] Susan Gao, Xin Liu, Lung-Sheng Chien, William Zhang, and
Jose M Alvarez. Vacl: Variance-aware cross-layer regular-
ization for pruning deep residual networks. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion Workshops, pages 0–0, 2019. 2

[8] Deepak Ghimire, Dayoung Kil, and Seong-heum Kim. A
survey on efficient convolutional neural networks and hard-
ware acceleration. Electronics, 11(6):945, 2022. 1

[9] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi
Yang. Filter pruning via geometric median for deep con-
volutional neural networks acceleration. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 4340–4349, 2019. 2

[10] Hayato Itoh, Masashi Misawa, Yuichi Mori, Masahiro Oda,
Shin-Ei Kudo, and Kensaku Mori. Sun colonoscopy video

database. http://amed8k.sundatabase.org/,
2020. Accessed on: 2022-02-20. 5, 6

[11] Ge-Peng Ji, Yu-Cheng Chou, Deng-Ping Fan, Geng Chen,
Huazhu Fu, Debesh Jha, and Ling Shao. Progressively nor-
malized self-attention network for video polyp segmenta-
tion. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 142–152.
Springer, 2021. 6

[12] Ge-Peng Ji, Guobao Xiao, Yu-Cheng Chou, Deng-Ping Fan,
Kai Zhao, Geng Chen, and Luc Van Gool. Video polyp seg-
mentation: A deep learning perspective. Machine Intelli-
gence Research, 19(6):531–549, 2022. 6

[13] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. arXiv
preprint arXiv:1608.08710, 2016. 2

[14] Liyang Liu, Shilong Zhang, Zhanghui Kuang, Aojun Zhou,
Jing-Hao Xue, Xinjiang Wang, Yimin Chen, Wenming Yang,
Qingmin Liao, and Wayne Zhang. Group fisher pruning for
practical network compression. In International Conference
on Machine Learning, pages 7021–7032. PMLR, 2021. 2

[15] Jian-Hao Luo and Jianxin Wu. Neural network pruning with
residual-connections and limited-data. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1458–1467, 2020. 2, 3

[16] Masashi Misawa, Shin-ei Kudo, Yuichi Mori, Kinichi Hotta,
Kazuo Ohtsuka, Takahisa Matsuda, Shoichi Saito, Toyoki
Kudo, Toshiyuki Baba, Fumio Ishida, et al. Development
of a computer-aided detection system for colonoscopy and
a publicly accessible large colonoscopy video database (with
video). Gastrointestinal endoscopy, 93(4):960–967, 2021. 5,
6

[17] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,
and Jan Kautz. Pruning convolutional neural networks for re-
source efficient inference. arXiv preprint arXiv:1611.06440,
2016. 2

[18] Tanguy Ophoff, Cédric Gullentops, Kristof Van Beeck, and
Toon Goedemé. Investigating the potential of network opti-
mization for a constrained object detection problem. Journal
of Imaging, 7(4):64, 2021. 2, 3

[19] Sanjay Purushotham, Chuizheng Meng, Zhengping Che, and
Yan Liu. Benchmarking deep learning models on large
healthcare datasets. Journal of biomedical informatics,
83:112–134, 2018. 1

[20] reflex ces. Arria ® 10 soc som. https://www.
reflexces.com/modules/intel- arria- 10-
soc/achilles-som. Accessed on: 2022-02-27. 5

[21] Maying Shen, Hongxu Yin, Pavlo Molchanov, Lei Mao,
Jianna Liu, and Jose M Alvarez. Halp: hardware-aware la-
tency pruning. arXiv preprint arXiv:2110.10811, 2021. 2

[22] Mengshu Sun, Pu Zhao, Mehmet Gungor, Massoud Pedram,
Miriam Leeser, and Xue Lin. 3d cnn acceleration on fpga
using hardware-aware pruning. In 2020 57th ACM/IEEE De-
sign Automation Conference (DAC), pages 1–6. IEEE, 2020.
2

[23] Sunil Vadera and Salem Ameen. Methods for pruning deep
neural networks. IEEE Access, 10:63280–63300, 2022. 2

4489

[24] Pablo Villalobos, Jaime Sevilla, Tamay Besiroglu, Lennart
Heim, Anson Ho, and Marius Hobbhahn. Machine learn-
ing model sizes and the parameter gap. arXiv preprint
arXiv:2207.02852, 2022. 1

4490

