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Abstract

In recent years, the success of large-scale vision-
language models (VLMs) such as CLIP has led to their
increased usage in various computer vision tasks. These
models enable zero-shot inference through carefully crafted
instructional text prompts without task-specific supervision.
However, the potential of VLMs for generalization tasks in
remote sensing (RS) has not been fully realized. To address
this research gap, we propose a novel image-conditioned
prompt learning strategy called the Visual Attention Pa-
rameterized Prompts Learning Network (APPLeNet). AP-
PLeNet emphasizes the importance of multi-scale feature
learning in RS scene classification and disentangles vi-
sual style and content primitives for domain generaliza-
tion tasks. To achieve this, APPLeNet combines visual
content features obtained from different layers of the vi-
sion encoder and style properties obtained from feature
statistics of domain-specific batches. An attention-driven
injection module is further introduced to generate visual
tokens from this information. We also introduce an anti-
correlation regularizer to ensure discrimination among the
token embeddings, as this visual information is combined
with the textual tokens. To validate APPLeNet, we curated
four available RS benchmarks and introduced experimen-
tal protocols and datasets for three domain generalization
tasks. Our results consistently outperform the relevant liter-
ature and code is available at https://github.com/
mainaksingha01/APPLeNet

1. Introduction
Remote Sensing (RS) images play a vital role in numer-

ous applications, including those mentioned in [15, 44, 60,
67]. Traditional deep learning models have proven effective
in recognizing complex RS images, outperforming ad-hoc
machine learning techniques. However, these models tend
to perform poorly in terms of generalization when faced
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Figure 1. Performance overview of the proposed APPLeNet
compared to state-of-the-art CLIP-based methods. It is shown
that APPLeNet has better generalization capability irrespective of
the complexity and size of the datasets in base-to-new class and
across-domain generalization tasks.

with domain shifts. For example, Fig. 1 illustrates this is-
sue, where a model (ERM [56]) trained on images from the
PatternNet [25] dataset exhibits sub-optimal performance
when applied to images from the RSICD [32] dataset, cap-
tured by two sensors with divergent spatial characteristics.

To combat such changes in data distributions between
training (source) and test (target) domains, researchers have
investigated domain generalization (DG) [23,69,70] and do-
main adaptation (DA) [8, 10, 45, 49, 52, 53]. DA follows a
transductive setup, where the source and target domains are
available simultaneously during training, while DG deals
with a more realistic scenario, where a model trained on the
source domain is applied to novel target domains during in-
ference. Despite its success in computer vision literature,
DG has yet to be thoroughly explored in RS.

From another perspective, few-shot learning (FSL)
methods [4,9,18,42,68] have emerged as a beneficial solu-
tion for alleviating the deep learning models’ abundant data
dependency for visual recognition, including in RS. FSL
for different modalities, including multi-spectral and hyper-
spectral, has been introduced in RS [1,31,34,62]. However,
these models are developed solely on image data and are
suboptimal regarding the semantic richness of the embed-
ding space learned by the feature extractors. As reported by
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these works, this significantly affects the FSL performance,
and zero-shot transfer to novel tasks is not possible by FSL.

Large-scale pre-trained vision-language models
(VLMs), such as CLIP [40], ALIGN [19], Florence [64],
LiT [66], or Foundation models [2], have recently shown
promising results in generalizing to various downstream
target domain tasks in a zero-shot manner with minimal
supervision from a different source domain. These mod-
els align image-text pairs in a shared embedding space
using a contrastive learning approach, making prompt
engineering a critical aspect of VLMs. However, manual
prompt engineering is non-trivial, and prompt learning has
received much attention to adapt CLIP for a target task.
To address the generalization deficiency of the baseline
prompt learning technique CoOp [72] and subsequent
studies [12, 71, 75] proposed to supplement the textual
prompt embeddings with visual information extracted
from CLIP’s frozen vision encoder. However, while these
models are validated on natural image classification, we
aim to explore their potential for scene recognition from
optical RS images. This task is highly challenging due to
the divergent spectral and spatial artifacts that characterize
these images.

Although pre-trained CLIP [40] is highly effective, it
falls short when evaluated on different domains, such as RS,
as evidenced by the zero-shot CLIP’s performance in Fig. 1.
While prompt learning approaches like [12,71,72] improve
on the performance of baseline CLIP, they are sub-optimal
for cross-domain and cross-dataset generalization. These
approaches have three critical issues: i) they only consider
visual features from the deepest layer and combine them
with prompt token embeddings, ignoring low and mid-level
features essential for optical RS scene classification where
object scales are small, and texture plays a significant role
in the classification task, ii) they add the same visual infor-
mation to all token embeddings, causing redundancy, and
iii) existing approaches fail to disentangle domain features
from content features, which is likely to aid in DG.

Drawing from these discussions, this paper seeks to ad-
dress two critical research questions: i) How can we effec-
tively utilize CLIP’s vision backbone to extract multi-scale
visual content and style information for RS scenes to learn
credible prompt tokens? and ii) How can we guarantee that
the learned prompt tokens contain non-redundant informa-
tion? We believe that tackling these issues together would
result in more comprehensive and versatile prompts for op-
tical RS scenes, as demonstrated in Fig. 1.
Our proposed APPLeNet: To address these challenges,
our proposed approach, APPLeNet, makes three key con-
tributions. Firstly, we utilize the intermediate blocks of
CLIP’s vision encoder to extract multi-scale visual con-
tent information. Secondly, we calculate the average fea-
ture representation for a batch of samples from a given do-

main to obtain style primitives for that domain. We lever-
age the concept of batch-norm statistics of feature embed-
dings from a CNN, which carry domain-specific knowl-
edge [29]. We combine the content and style features us-
ing an attention-based novel injection block to generate dy-
namic image-conditioned visual tokens combining visual
content and style properties. Finally, these tokens are added
element-wise to the learnable text token embeddings to gen-
erate the prompts.

Thirdly, we introduce an anti-correlation regularizer to
promote discrimination among prompt tokens. This reg-
ularizer penalizes high correlation among token embed-
dings. As a result, APPLeNet achieves more generalizable
prompts than existing methods such as [12,71,72]. Notably,
APPLeNet demonstrates strong performance even with ex-
tremely limited training data and is effective in different do-
main generalization scenarios with domain and label shifts.

We highlight our major contributions as,
[-] We propose a solution to the few-shot optical RS scene
recognition and generalization problem by using pre-trained
CLIP and introducing lightweight injection blocks in a
model we call APPLeNet. The key innovations of AP-
PLeNet are leveraging multi-scale visual content and style
information from CLIP’s vision encoder to learn prompt to-
kens and an anti-correlation regularizer that ensures the dis-
tinctiveness of the learned tokens.
[-] To validate our approach, we conduct extensive experi-
ments on four optical RS image classification benchmarks
and test for three essential and challenging generalization
tasks: base-to-new class, cross-dataset, and single-source
multi-target. We also introduce experimental protocols for
these tasks, which have not been widely studied in RS.

Our experimental results demonstrate that APPLeNet
outperforms the relevant literature substantially for all tasks
by at least 2% in mean classification scores.

2. Related Works
FSL in general and in RS: Broadly speaking, existing few-
shot learning (FSL) methods can be divided into transfer-
learning based [50, 63], meta-learning based [9, 16], and
metric-learning based [48, 51] approaches, respectively.
Transfer learning fine-tunes the base model on each novel
task but can underperform if the base and novel classes
are from drastically different distributions. Alternatively,
meta-learning-based supervised FSL approaches [24, 43]
have gained attention because they can learn more general-
izable features through episodic training. Metric-learning-
based methods like matching networks [57], prototypical
networks [48], and relation networks [51] focus on similar-
ity optimization in a learnable fashion in episodes.

While all these approaches find their applicability in
few-shot learning RS data, meta-learning-based algorithms
[1, 24] have been predominantly explored [40, 65]. How-
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Figure 2. APPLeNet is composed of a text encoder ft, an image encoder fv , and an injection block designed for multi-scale visual
feature refinement. The fv produces multi-level visual content features, and the batch statistics µ for a domain as the style features, that are
passed through a residual attention-based injection block. These features are then sent to individual projector networks {hm}Mm=1 to derive
the visual tokens {υm}Mm=1. The visual tokens are added to the learnable text token embeddings {cm}Mm=1 and, together with the class
embeddings, are forwarded to ft. To reduce redundancy among the tokens, we introduce a novel Context Redundant Penalizing (CRP) loss
(LCRP) among the context vectors in {cm}Mm=1. The model is trained using a multi-task loss that comprises the contrastive loss between
the image and prompt embeddings and the CRP regularizer.

ever, these models are prone to training class bias. One
solution to tackle this is through uncertainty optimization,
together with the FSL objective [34].
Domain generalization: Deep learning models often face
the challenge of domain shift between training and test
distributions, which makes Domain Generalization (DG)
a critical task for learning generalizable features from the
training set that can be applied to any novel domain dur-
ing inference. DG has three variants: single-source DG,
multi-source DG, and heterogeneous DG [13, 21, 30, 39,
58, 59, 73]. Initially, DG techniques focused on learning
domain-invariant representations by considering data from
multiple source domains through Domain Adaptation (DA)
objectives [20, 26, 27, 43]. Other approaches explored self-
supervised learning [3], ensemble learning [61], domain-
specific networks [33], and meta-learning [35]. However,
training deep learning models for DG with limited samples
may affect performance. Researchers have used augmen-
tation methods [28, 73], and generative models [21, 74] to
augment the source domains with diversified style primi-
tives. However, DG for Remote Sensing (RS) image classi-
fication has received limited attention to date [36, 69].

In contrast to existing FSL works in RS, which are
trained from visual feature extractors, we are interested in
leveraging the semantic superiority of CLIP-based founda-
tion models for various target domain generalization tasks
from a few source domain training samples.
Prompt learning for CLIP: Prompt learning is a widely
used technique in natural language processing (NLP) [37],
which has recently made its way into the computer vision
field. The main goal of prompt learning is to leverage pre-

trained language models, such as BERT [6], to provide valu-
able information for downstream tasks through prompts.
Recent research has focused on automating the prompt gen-
eration process to eliminate manual interventions. One such
approach is AutoPrompt [46], which explores tokens with
the most significant gradient changes in the label likelihood.
CoOp [72] optimizes prompts by fine-tuning CLIP for few-
shot image classification. CoCoOp [71] proposes learning
conditional prompts based on image features, partially im-
proving CoOp’s generalization capability.

In contrast, CLIP-Adapter [12] proposes fine-tuning fea-
ture adapters in both visual and language branches. Pro-
Grad [75] follows a similar approach to CoCoOp and ex-
plicitly ensures that the network remembers the knowledge
learned from the foundation model. In [47], consistency
among multiple views of the same image is used as super-
vision for prediction.

However, while [71, 75] utilize visual information to im-
prove prompts, they do not account for low to mid-level vi-
sual properties and visual style information in the prompt.
Additionally, the learned tokens may contain redundant in-
formation. In contrast, our proposed APPLeNet addresses
these issues and proposes a more comprehensive prompt
learning strategy that is well-suited for handling RS scenes.

3. Proposed Methodology

Let Ds = {Di
s}ni=1 denote n source domains, each

with input data xi ∈ X i and corresponding label space
yi ∈ YSeen. It is important to note that the probabil-
ity distribution of each domain, P (Di

s), may differ for all
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i ∈ 1, · · · , n. During training, we use the labels YSeen from
Ds, while during testing, we use YUnseen from a target test
domain Dt with P (Dt) ̸= P (Di

s), ∀i ∈ 1, · · · , n. For base-
to-new class generalization, we set YSeen ∩ YUnseen = ∅.
In contrast, for domain generalization (DG), we consider
single-source DG and assume that the label sets for both do-
mains are identical (YSeen∩YUnseen = YSeen∪YUnseen).

Before presenting our proposed APPLeNet, we briefly
introduce some important baselines, such as CLIP [40],
CoOp [72], and CoCoOp [71].

3.1. Relevant baselines

CLIP: CLIP [40] is a remarkable foundational model that
learns an embedding space by seamlessly integrating visual
and semantic knowledge. The model comprises two en-
coder heads: a visual encoder fv (either ResNet [14], or
ViT [7]) for processing input images x, and a text encoder
ft (BERT [6]) that considers the corresponding text prompt
ty structured as "a photo of [CLS]y" where [CLS]y]
denotes the word embeddings for the class y. By means of
contrastive training on a dataset of 400 million image-text
pairs, CLIP strives to maximize the similarity between the
image and the correct class prompt embeddings.
CoOp: CoOp [72] offers a solution to the issue of prompt
engineering by replacing the manually created prompts with
those generated through learning. This is achieved by uti-
lizing a set of M learnable context vectors c1, c2, · · · , cM
that have the same dimensionality as the word embeddings
and optimizing them through back-propagation. It’s im-
portant to note that M is a hyperparameter that deter-
mines the context length and may differ between tasks.
For any given class y, the prompt can be represented as
ty = {[c1], [c2], · · · , [cM], [CLSy]}.
CoCoOp: Despite the effectiveness of prompt learn-
ing, CoOp is susceptible to the domain-shift prob-
lem. CoCoOp [71] conditions prompt learning on vi-
sual features to mitigate this issue. This is achieved
by introducing a meta-network that generates M meta-
tokens, denoted as π. These meta-tokens are con-
catenated with context vectors to create prompts ty =
{[c1(x)], [c2(x)], · · · , [cM(x)], [CLSy]}, where cm(x) =
cm + π(x), cm is the mth text token. During CoCoOp’s
training, both the meta-network and context vector parame-
ters are updated simultaneously.
Important insight: There have been various
prompt learning techniques developed after CoOp and Co-
CoOp, such as [22, 75]. However, these methods neglect
two crucial factors in generalization tasks: the utilization of
multi-scale feature composition from CLIP and the incor-
poration of visual style primitives into the prompts. These
factors are particularly important in cases where there is a
sudden change in style between source and target domains.
The frozen image encoder (fv) can be leveraged to encode

style, while multi-scale content features can encode low,
mid, and high-level visual properties, making them more
transferable across categories.

3.2. Our Proposed APPLeNet

Our paper introduces a new method called APPLeNet
(Attention-Parameterized Prompt Learning Network) that
leverages CLIP’s visual backbone to extract multi-scale vi-
sual features and style features (mean µ of a batch of fea-
tures from fv) to improve text token learning. APPLeNet,
depicted in Figure 2, is composed of several critical compo-
nents. First, it includes CLIP’s frozen vision (fv) and text
(ft) encoders. Additionally, it features a novel trainable In-
jection Block (IB), indicated as Bϕ, with learnable parame-
ters ϕ. This block emphasizes concatenated embeddings of
style and multi-level visual features. Moreover, APPLeNet
comprises M learnable linear layers that generate M visual
tokens {υm}Mm=1 given the outputs from B. These visual to-
kens are then combined with the corresponding text tokens
{cm}Mm=1 which is further appended with the class token
[CLSy] to generate prompt ty . In the following sections,
we elaborate on each component of APPLeNet.
Encoding style and multi-scale content features into
prompts: To incorporate the multi-scale visual features
from fv into B, we propose using global average pool-
ing (GAP) to collapse the spatial dimensions of each
channel. This produces f̂ l

v(x) ∈ RC×1, where f l
v ∈

RW×H×C represents the output responses from the lth

layer. Here, (W,H) represents the spatial dimensions of
the feature maps. Using this approach, we define F̂ (x) =

[f̂1
v (x); · · · ; f̂L

v (x)] as the concatenated multi-scale fea-
tures obtained from all the L encoder layers of fv , where
[; ] denotes feature concatenation.

Furthermore, the average feature statistics corresponding
to the batch of features from a domain act as the indicator
for the style primitives. In this regard, let µi = fv(X

i)
represent the style for the ith domain.

Together we produce F (x) = [F̂ (xi);µi], which cap-
tures both multi-scale content and the style information.
Injection block: The attention modules within B are de-
noted by Aq(·), where q ∈ 1, · · · ,Q. For the first attention
block (q = 1), we denote the attended output features as
O1 = F (x) ⊙ A1 ⊕ F (x). These features are then fed as
input to A2 and so on, as follows:

Oq =

{
[F (x)⊙Aq(F (x)) + F (x)], if q = 1

[Oq−1 ⊙Aq(Oq−1) +Oq−1], otherwise
(1)

We subsequently pass OQ through M light-weight projec-
tor networks {hm}Mm=1 which generate M visual tokens
{υ1, · · · , υM}: υm = hm(OQ). We add the mth visual to-
ken embedding with the mth textual token embedding cm:
to obtain the mth prompt token embedding c′m = cm+υm.
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The generated prompt is represented as:

ty = {[υ1 + c1], · · · , [υM + cM], [CLSy]} (2)

3.3. Training and Inference

We adopt a multi-task approach to train APPLeNet us-
ing two loss functions. The first one is the supervised con-
trastive loss, denoted as Lce, which ensures proper mapping
between the visual feature representation fv(x) and the tex-
tual feature representation ft(ty). This loss is formulated
based on the cross-entropy approach.

In addition, we introduce a context redundancy penaliz-
ing loss, denoted as LCRP. This loss ensures that the token
embeddings in the set c1 + v1, · · · , cM + vM do not carry
redundant information. This helps the model learn a diverse
set of tokens. In this regard, the prediction probability for x
to belong to the label y is denoted by,

p(y|x) = exp(sim(fv(x), ft(ty(Bϕ(x)))/τ))∑|Y|
k=1 exp(sim(fv(x), ft(tk(Bϕ(x)))/τ))

(3)

‘sim’ denotes the cosine similarity, and τ is the tem-
perature hyper-parameter. The cross-entropy loss (Lce) is
computed between the prediction probabilities of each in-
put image and their corresponding class labels as follows:

Lce = argmin
Bϕ,{hm}

E
(x,y)∈P(Ds)

−
YSeen∑
k=1

yklog(p(yk|x)) (4)

Simultaneously, we seek to decorrelate pairwise the to-
ken embeddings using LCRP as,

LCRP = argmin
Bϕ,{hm}

E
(x,y)∈P(Ds)

∣∣c′j(x) · c′l(x)− I
∣∣ ,

∀j, l ∈ {1, 2, · · · ,M}, j ̸= l, c′j = cj + vj

(5)

Hence, the total loss (Ltotal) is computed as:

Ltotal = argmin
Bϕ,{hm}

[Lce + λ ∗ LCRP] (6)

Where λ is the weighting hyper-parameter. In the infer-
ence stage, we compute the cosine similarity between the
images xt ∈ Dt and prompt embeddings for all the classes
in YUnseen. The class with a high probability value is se-
lected.

ŷt = argmax
y∈YUnseen

p(y|xt) (7)

4. Experimental evaluations
Dataset descriptions: Our experimental evaluation in-
volves four datasets: PatternNet [25], RSICD [32], RE-
SISC45 [5], and MLRSNet [38].

PatternNet comprises 38 classes, with each class con-
taining 800 images of size 256 × 256 pixels. RSICD in-
cludes 30 classes and a total of 10,000 images, each with a
size of 224 × 224 pixels. Notably, each class has a different
number of images.

RESISC45 consists of 45 classes, with each class con-
taining 700 images of size 256 × 256 pixels. MLRSNet
comprises 46 classes and a total of 109,161 images, each
with a size of 256 × 256 pixels.

Furthermore, we extend our work to generate learnable
prompts in the single-source multi-target domain general-
ization setup. In this regard, we curate new versions (v2)
of the above-mentioned datasets, where we consider the 16
overlapping classes from all four datasets. Details are men-
tioned in the supplementary text.
Architecture Details: In all our experiments, Bϕ comprises
two attention modules, each followed by a linear layer. Our
attention module is inspired by SE-Net [17] and has two
linear layers, each followed by ReLU and Sigmoid activa-
tion functions, respectively. However, we can accommodate
more attention blocks in B, if required. Further, each hm is
designed as a single dense layer, which converts Bϕ(x) into
dimensions equal to the text embeddings.
Training and evaluation protocols: We train APPLeNet
for 50 epochs using the stochastic gradient descent (SGD)
optimizer [41] with an initial learning rate of 2e−4 and a
warm-up fixed learning rate of 1e−7 during the first epoch
to prevent explosive gradients. We keep ViT-B/16 as the
image encoder backbone, use 16 training samples (i.e.,
shots) from each class, and create a batch size of 4 and
λ (Eq. 6) to be 0.1 for model training. We initialize the
text prompts from the embeddings of "a photo of a
[CLS]" which means the context length is four. This fol-
lows the previous literature [71, 72]. We execute the model
using three seeds and report the average top-1 accuracy.

4.1. Comparison with the state-of-the-art methods

In this section, we discuss the performance of APPLeNet
with respect to the methods from the literature for the three
DG tasks, as mentioned: i) Base-to-new class generaliza-
tion, where the training and test classes are disjoint. ii)
Cross-dataset generalization, where the model is trained
on one dataset and evaluated on novel datasets with domain
and label shifts. iii) Single source multi-target DG, where
the model is trained on a source domain and evaluated on
multiple novel domains under the closed-set setting.
Baselines: We evaluated the performance of APPLeNet
compared to existing methods from the prompting literature
using CLIP. As a baseline, we used Zero-shot CLIP [40]. In
addition, we explored other approaches, such as ERM [56],
which involves a trainable linear model on top of CLIP.
We also tested a state-of-the-art DA technique, DANN [11],
in combination with the CLIP features. Finally, we exam-
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Table 1. Comparison of APPLeNet with state-of-the-art methods for base-to-new (B2N) class generalization task. We indicate the
validation accuracy for the Base and New classes. H denotes the harmonic mean used to generalize the trade-off performance between the
base and new classes. Best results are shown in bold.

PatternNet RSICD RESISC45 MLRSNet Avg. of allMethod Base New H Base New H Base New H Base New H Base New H
CLIP [40] 63.67 64.37 64.02 54.61 55.33 54.97 56.32 55.38 55.85 51.43 51.92 51.67 56.51 56.75 56.63
CoOp [72] 91.62 62.23 74.12 92.52 56.08 69.83 89.04 55.75 68.57 75.21 53.64 62.62 87.10 56.93 68.85
CLIP-Adapter [12] 82.15 63.26 71.48 78.93 55.44 65.13 81.67 56.23 66.60 71.64 53.19 61.05 78.60 57.03 66.10
CoCoOp [71] 92.39 63.34 75.16 93.18 58.67 72.00 89.78 57.18 69.86 76.32 52.75 62.38 87.92 57.99 69.88
ProGrad [75] 92.65 62.48 74.63 93.44 58.15 71.69 90.13 57.89 70.50 75.96 52.23 61.90 88.05 57.69 69.70
APPLeNet 94.89 65.57 77.55 95.26 60.71 74.16 91.24 60.46 72.73 78.53 56.41 65.66 89.98 60.79 72.56

ined prompt learning techniques, including CoOp [72], Co-
CoOp [71], CLIP-Adapter [12], and ProGrad [75].

Base-to-New (B2N) class generalization: Table 1 presents
the experimental results for B2N class generalization on the
four RS datasets, where the harmonic mean (H) between
the classification accuracies of the Base and New classes is
computed. For all the datasets, we randomly and equally di-
vide the datasets into two groups to define the source (with
the base classes) and the target (with the novel classes) do-
mains. Compared to the CLIP’s zero-shot approach, AP-
PLeNet achieves better generalization scores, with a consid-
erable margin of 33.47% on seen classes and 4.04% on un-
seen classes over all datasets (on average). We also compare
APPLeNet with referred context optimization-based meth-
ods, where it outperforms CoOp and CoCoOp on the Pat-
ternNet [25], RSICD [32], RESISC45 [5], and MLRSNet
[38] datasets by 3.4%, 4.3%, 4.2%, and 3.0%, and 2.4%,
2.2%, 2.9%, and 3.3%, respectively. In PatternNet, AP-
PLeNet consistently beats CoCoOp by huge margins of
5.8%, 5.2% and 6.4% in river, storage tank and tennis court
classes. Among all the referred methods, only CoCoOp and
ProGrad show the second and third-best performance scores
on generalizing the unseen classes over all RS datasets.

Cross-Dataset (CD) generalization: Table 2 presents the
results of our evaluation of APPLeNet on the CD setup.
In this regard, we train the model on the PatternNet [25]
dataset (source domain) and report zero-shot inference re-
sults on the remaining RS datasets (target domains). Our
APPLeNet outperforms the source and target classifica-
tion performance by significant margins of 26.5% and
13.9%, respectively, compared to zero-shot (CLIP) and
non-learnable prompt (CLIP-Adapter) methods. Besides,
APPLeNet outperforms CoCoOp by 1.3%, 1.4%, and 2.1%
for the unseen RS domains, namely RSICD [32], RE-
SISC45 [5], and MLRSNet [38] datasets, respectively. Also
APPLeNet beats CoCoOp by 3.6%, 5.2%, 5.4% and 4.7%
in desert, mountain, port and school of RSICD dataset. Fi-
nally, AppLeNet is better than ProGrad than at least 2.5%
on all the target tasks. Based on these results, our results es-
tablish that APPLeNet successfully narrows the generaliza-
tion gap between a single source and multiple targets with
domain and label shifts in the CD transfer technique.

Single source multi-target domain generalization (DG):

Table 2. Comparison of APPLeNet with state-of-the-art meth-
ods for cross-dataset generalization with PatternNet dataset as the
source domain and remaining RS datasets as the target domains.
We use the accuracy metric as the performance measure. Best re-
sults are shown in bold.

Source TargetMethod PatternNet RSICD RESISC45 MLRSNet
CLIP [40] 61.72 43.25 48.56 45.13
CoOp [72] 85.23 42.53 49.34 44.50
CLIP-Adapter [12] 74.27 42.57 49.07 44.17
CoCoOp [71] 85.95 43.61 49.53 44.72
ProGrad [75] 86.14 41.25 48.26 44.12
APPLeNet 88.17 44.87 50.97 46.83

We tested the generalization performance of our proposed
APPLeNet on a Single-Source Multi-Target (SSMT) DG
setup. Unlike the CD setting discussed earlier, we only con-
sidered the common classes across all datasets since SSMT
is a closed-set setting. We trained the model on the Pattern-
Netv2 dataset and evaluated it on the remaining datasets.
The comparison results with the state-of-the-art (SOTA)
methods and APPLeNet are presented in Table 3.

The results show that ProGrad outperformed other refer-
enced prompting techniques by at least 0.6%, while AP-
PLeNet surpassed all of them by a minimum margin of
2.4% on the MLRSNetv2, 1.6% on RSICDv2, and 1.4%
on RESISC45v2 (target domains), respectively. APPLeNet
beats CoCoOp in beach, forest, and river classes with a
huge margin of 5.5%, 4.8% and 5.9% on average over the
target datasets. Notably, APPLeNet effectively transferred
the learned classification information from the PatternNetv2
to classes such as desert, sparse residential, and river to the
RESISC45v2 and outperformed the SOTA methods by at
least 5.7%.

Regarding the source domain classification task, AP-
PLeNet achieved a performance of 88.17%, which was bet-
ter than the second-best by 2.03%.

4.2. Ablation analysis

t-SNE visualization: In Figure 3, we present a t-SNE
[54] visualization of the image embeddings generated by
APPLeNet and compare them with CoCoOp [71] on the
MLRSNetv2 dataset for the SSMT-DG task. The visual-
ization clearly demonstrates that APPLeNet can accurately
cluster each class, while the cluster points of many classes
get overlapped in CoCoOp. This confirms the discrim-
inability of APPLeNet.
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Table 3. Comparing APPLeNet with state-of-the-art methods for
single-source multi-target domain generalization on our released
(2nd version) benchmark RS datasets. We use the accuracy metric
as the performance measure. Best results are shown in bold.

Source TargetMethod PatternNetv2 RSICDv2 RESISC45v2 MLRSNetv2
ERM [56] 73.69 61.40 61.59 61.13
CLIP [40] 78.04 72.15 75.42 67.78
DANN [11] 93.56 75.49 76.18 70.53
CoOp [72] 94.25 76.50 77.87 70.97
CLIP-Adapter [12] 92.36 79.17 79.76 71.04
CoCoOp [71] 94.41 79.33 80.43 71.67
ProGrad [75] 95.18 77.46 80.65 72.29
APPLeNet 96.63 81.03 82.23 74.03

Figure 3. t-SNE plots [55] for the image feature extracted
from the Meta-Net of CoCoOp and the Injection Block (IB)
of APPLeNet for the SSMT domain generalization task on the
MLRSNetv2 dataset. The legends represent the class labels.

Sensitivity to the variation in the number of shots: We
evaluate the performance of our proposed APPLeNet by
varying the number of shots from 1 to 32 for the B2N class
generalization task and compare it with the state-of-the-art
(SOTA) prompting techniques, as shown in Table 4. In this
setting, we use a context length of 4, place the class to-
ken at the end, use ViT-B/16 as the visual feature backbone,
and use a unified context vector. As CLIP is a zero-shot
approach, we exclude it and only consider few-shot-based
prompting methods to compare and show results on the Pat-
ternNet dataset.

We are able to outperform the benchmark prompt
learning-based methods by at least 0.8%, 2.4%, and 1.6%
for 8, 16, and 32 shots, respectively.

Table 4. Comparison of APPLeNet with state-of-the-art methods
on varying the number of shots for the B2N class generalization
task with PatternNet dataset. Harmonic mean (H) of base and new
classes is considered for comparison, as well as to depict the gen-
eralization trade-off. Best results are shown in bold.

Method 1-shot 4-shots 8-shots 16-shots 32-shots
CoOp [72] 70.33 71.61 72.17 74.12 74.58
CLIP-Adapter [12] 69.75 69.95 70.37 71.48 71.64
CoCoOp [71] 71.85 73.61 74.53 75.16 74.39
ProGrad [75] 73.67 72.05 73.16 74.63 75.56
APPLeNet 72.44 72.46 75.28 77.55 77.13

Sensitivity to the position of the class token and the
prompt initialization strategy: In this experiment, we in-
vestigate the effect of the position of the class token in the
learnable context vectors in [1,M] on the performance of
APPLeNet in the B2N class generalization task. We ex-
periment with three different positions for the class token:

PatternNet RSICD RESISC45 MLRSNet55
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Figure 4. Classification performance on changing position of the
class tokens in APPLeNet, i.e., ‘Front’,‘Middle’, and ‘End’ for the
B2N class generalization task on the four RS datasets. We consider
the harmonic mean (H) of base and new classes for comparison.
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Figure 5. Classification performance of APPLeNet by varying
the context length (M) for the B2N class generalization on Pattern-
Net dataset and compared with the SOTA methods. The harmonic
mean (H) of base and new classes are considered for comparison.
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Figure 6. Performance of APPLeNet with different layers of ViT-
B/16 and RN50 backbones to extract multi-scale features on Pat-
terNet dataset. Harmonic mean (H) of base and new classes are
shown as accuracy.

Table 5. Ablation of different types of initialization of context
vectors in APPLeNet. Harmonic mean (H) of base and new classes
are considered for comparison. Best results are shown in bold.

Context Vectors PatternNet RSICD RESISC45 MLRSNet
manual initialization 77.55 74.16 72.73 65.66
random initialization 81.61 68.58 70.80 61.45
no initialization 67.90 69.57 69.42 59.16

“front”, “middle”, and “end”, while generating the learn-
able prompts.

We plot the harmonic mean between the base and new
classes for all the RS datasets in Figure 4. Our results show
that positioning the class token at the ”end” of the context
vector consistently improves the performance of APPLeNet
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on the B2N class generalization task, with at least a 3.9%,
2.3%, and 2.5% improvement on PatternNet, RESISC45,
and MLRSNet datasets, respectively, compared to position-
ing the token at the “front” or “middle”. However, on the
RSICD dataset, we observe no significant difference in per-
formance for the different class token positions.

Finally, we consider three different prompt initialization
strategy to check their efficacy in Table 5 for B2N Gen-
eralization. It highlights that manual initialization from
"a photo of a" outperforms the random initialization
and no initialization strategies significantly for the target
datasets. Interestingly, the random initialization outper-
forms other on the source domain evaluation.
Sensitivity analysis of APPLeNet to context lengths
(M): During test-time prompt generation, we varied the
context length (M) and experimented with four different
context lengths: 1, 4, 8, and 16. To maintain consistency,
we initialized the tokens randomly. Our results, illustrated
in Figure 5, show that APPLeNet outperforms the respec-
tive state-of-the-art methods by 0.7%, 2.4%, and 0.4% for
context lengths 1, 4, and 16, respectively. Additionally, we
found that APPLeNet achieved the best performance with
M = 4 among all the context length settings.
Sensitivity to the multi-scale features: In this study, we
aimed to assess the sensitivity of APPLeNet to visual con-
tent features obtained from multiple layers of fv . We uti-
lized two CLIP vision backbones based on ResNet-50 and
ViT and increased the number of feature layers in calculat-
ing F̂ (x). As shown in Figure 6, incorporating more visual
embedding layers to extract content features yielded im-
proved performance, with a monotonically increasing trend.
It is worth noting that all experiments included considera-
tion of the style feature µ.

To further highlight the importance of the injection block
for intelligent multi-scale feature aggregation, we compare
APPLeNet with the multi-scale version of CoCoOp [71].
Specifically, we passed F̂ (x) to the meta-network (π) to de-
vise the Multi-Scale (MS) - CoCoOp (see Table 6). For
APPLeNet, we considered three variants where we only
pass the multi-scale content features F̂ (x), the style fea-
tures µ, and F (x) to the injection block B. Our results
clearly demonstrate that our multi-scale feature aggrega-
tion approach outperforms MS-CoCoOp significantly. Ad-
ditionally, the results highlight the benefits of considering
style primitives.

Table 6. Ablation of multi-scale features’ sensitivity in CoCoOp
and APPLeNet. Harmonic mean (H) of base and new classes are
considered for comparison. Best results are shown in bold.

Context Vectors PatternNet RSICD RESISC45 MLRSNet
MS-CoCoOp 75.83 72.31 69.92 62.64
APPLeNet (with MS) 77.34 73.96 72.51 65.02
APPLeNet (with µ) 76.04 72.19 69.53 63.95
APPLeNet (with MS & µ) 77.55 74.16 72.73 65.66

Effect of CRP loss (LCRP): Table 7 shows the results

of ablating LCRP in Equation 6 over two loss functions,
namely CRP loss (LCRP) and cross-entropy loss (Lce). In-
terestingly, we observed that our APPLeNet model achieved
an average improvement of approximately 1−3% across all
datasets on the B2N generalization task in the presence of
LCRP. This result justifies the significant role of LCRP in
ensuring the distinctiveness in [c′1,· · ·,c′M] so that they do
not convey redundant information.

Table 7. Ablation of APPLeNet with and without CRP (LCRP)
loss in Equation 6. Harmonic mean (H) of base and new classes
are considered for comparison. Best results are shown in bold.

APPLeNet PatternNet RSICD RESISC45 MLRSNet
without LCRP 75.34 72.89 71.63 62.15
with LCRP 77.55 74.16 72.73 65.66

Ablation with number of attention modules: We con-
ducted an ablation study on the injection block (IB) of
our APPLeNet by varying the number of attention modules
(AMs) for the single-source multi-target domain generaliza-
tion task. The results are presented in Table 8. We found
that APPLeNet with three AMs outperformed the others
on the source domain (PatternNetv2 dataset). However, IB
with two AMs reported the best performance for the target
domains, with at least a numerical improvement of 0.1%. It
is possible that IB with three AMs suffers from a vanishing
gradient problem due to its multiple sigmoid output layers
and overfits the data.

Table 8. Analysis of the number of attention modules (AMs)
used in the injection block for single-source multi-target domain
generalization task. We use accuracy metrics as the performance
measure. Best results are shown in bold.

No. of AMs
Source Target

PatternNetv2 RSICDv2 RESISC45v2 MLRSNetv2
0 93.33 76.81 80.92 72.60
1 95.94 79.61 81.42 73.56
2 96.63 81.03 82.23 74.03
3 96.77 78.85 78.21 73.92

5. Takeaways
This paper presents a novel approach, APPLeNet, for

prompt learning in CLIP based foundation model for solv-
ing three challenging DG tasks in RS. We acknowledge
the challenges associated with processing remote sensing
scenes, and thus, we propose leveraging the frozen vision
backbone of CLIP to generate multi-scale visual content
features and batch statistics to generate style properties au-
tomatically. We combine visual and learnable text tokens
for prompt learning, but since adding visual information can
introduce redundancy, we present an anti-correlation regu-
larizer to ensure token distinctiveness.

Our study is the first to extensively evaluate the DG
paradigm in remote sensing, and we introduce new bench-
marks with comprehensive experimentation. We hope our
findings will inspire further research on foundational mod-
els for remote sensing applications.
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