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Abstract

The fusion of multi-source data with different spatial and
spectral resolutions is a crucial task in many remote sens-
ing and computer vision applications. Model-based fusion
methods are more interpretable and flexible than pure data-
driven networks, but their performance depends greatly on
the established fusion model and the hand-crafted prior.
In this work, we propose an end-to-end trainable model-
based network for hyperspectral and panchromatic image
fusion. We introduce an energy functional that takes into
account classical observation models and incorporates a
high-frequency injection constraint. The resulting optimiza-
tion function is solved by a forward-backward splitting al-
gorithm and unfolded into a deep-learning framework that
uses two modules trained in parallel to ensure both data ob-
servation fitting and constraint compliance. Extensive ex-
periments are conducted on the remote-sensing hyperspec-
tral PRISMA dataset and on the CAVE dataset, proving the
superiority of the proposed deep unfolding network qualita-
tively and quantitatively.

1. Introduction

Image fusion consists in gathering all relevant informa-
tion from multiple images, which can be acquired by dif-
ferent devices, to usually produce a single one with bet-
ter properties, such as high spatial and spectral resolutions.
Due to the growing availability of satellite missions and
cameras that capture multiple aspects of our everyday life,
multi-source data fusion became an important technique
for details recovery. A plethora of applications rely on
the relevance of the image details for various downstream
tasks such as Earth and environment monitoring [15,32,35],
surveillance [11, 21] or medical applications [20, 26].

In the literature, pansharpening, which consists of the fu-
sion of a multispectral image (MS) and a panchromatic one
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Figure 1. General scheme of the proposed hypersharpening
method. After the generation of the observed images, the data
fitting terms and the high-frequency injection constraint are ex-
tracted and construct the minimization function. The algorithmic
steps are unfolded into a deep learning framework.

(PAN), has been widely investigated [10, 36, 37]. With the
growing availability of hyperspectral (HS) sensors, hyper-
sharpening, where HS data is used instead of the MS one,
became a common method for hyperspectral spatial resolu-
tion enhancement [25, 27]. The fusion of HS and MS im-
ages has recently witnessed a growing interest [7, 34].

The growing popularity of deep learning (DL) has lead
to an increase in fusion techniques [8, 18, 19, 28, 41]. How-
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ever, in most cases, the architecture of DL methods is often
not intuitive and is based solely on empirical justifications,
which might cause problems such as vanishing gradient and
not properly learning the scale difference between PAN and
MS/HS images.

In this paper, we propose a deep unfolding model-driven
method for hypersharpening, i.e., the fusion of a HS image
and a PAN image. We focus on satellite imagery, but we
show that our model is applicable to other types of computer
vision datasets. The main contributions of this work can be
summarized as follows:

• We introduce a new model-based method for hyper-
sharpening using a high-frequency details injection
constraint that extracts geometry and fine details from
the PAN data and injects them in the fused image.

• The model is formulated as the minimization of an
energy functional that is optimized using a forward-
backward splitting algorithm. The solution is unfolded
into a DL framework with a loss function that accounts
for the high-frequency details injection constraint.

• The performance of our deep unfolding network is
tested on images captured by the recent PRISMA mis-
sion1 and on the CAVE database [42], and compared to
that of traditional, recent model-based and end-to-end
learned fusion algorithms.

The rest of the paper is organized as follows. In section
2, we review the state of the art (SOTA) on the fusion of data
with different spatial and spectral resolutions. Section 3 in-
troduces the proposed deep unfolding network. Its perfor-
mance is exhaustively evaluated in Section 4 on PRISMA
and CAVE datasets. An ablation study showing the poten-
tial of the high-frequency details injection module is also
included. Conclusions are drawn in Section 5.

2. Related work
2.1. Classical methods

Hypersharpening and pansharpening methods are a sub-
branch of HS/MS image fusion. Both of them use the
PAN image and increase the spatial resolution of either
the MS image for pansharpening or the HS one for hyper-
sharpening while perserving their spectral content. Thus
in hypersharpening the number of spectral bands is much
higher that in pansharpening. Most of the methods used
for pansharpening could be easily adapted to hypersharp-
ening. A way to classify traditional pansharpening meth-
ods is to group them in three main categories: varia-
tional methods [4, 9, 12], component-substitution (CS) al-
gorithms [2, 13, 14] and multi-resolution analysis (MRA)
techniques [1, 3].

1https://www.asi.it/en/earth-science/prisma

The CS methods are based on the fact that a spectral
transformation is applied to the MS or HS image, and then,
the spatial component is substituted with the PAN image.
CS algorithms encompass Intensity Hue Saturation [14],
Principal Component Analysis [13] and Gram-schmidt [2].
Regarding the MRA techniques, they rely on the extraction
of spatial details, throughout a decomposition of the PAN
image, which are injected in the MS bands [1, 3]. CS and
MRA methods can suffer from spectral and spatial distor-
tion during the details injection process which is linked to
the choice of transformation and the type of decomposition
of the PAN image.

As to the variational methods, they make the assump-
tion that the PAN and the MS or the HS images are, respec-
tively, a spectral and spatial degradation of the unknown
image. From this, the fusion problem is formulated as the
minimization of an energy function using some prior knowl-
egde [4, 9, 12]. The main drawback of the variational-based
methods is the computational complexity due to the opti-
mization process. Regarding the CS and the MRA methods,
they can suffer from either spectral or spatial distortions be-
cause the extracted details depend on the chosen transfor-
mation and decomposition.

2.2. Deep learning based methods

In the last decade, a growing number of DL based
pansharpening and hypersharpening methods, with various
CNN architectures, were suggested in the literature and
showed promising performances [8,18,19,28,41]. The MS
or HS image and the PAN one are fed to the neural network
and go through a succession of convolutional layers where
the features and fine details are extracted, during this pro-
cess the weights of the network are updated in order to fit
the desired output.

The pioneer in this field was PNN [28] with a CNN-
based architecture for the pansharpening task. PNN was
built on the CNN-based model for super-resolution [8] and
it is composed of three convolutional layers which makes it
a basic neural network. In [19] the authors suggested the
DiCNN network for learning the details from the PAN im-
age and injects them in the pre-interpolated MS one in an
end-to-end manner. Another network called PanNet [41],
built upon the PNN architecture [28], used a ResNet [18]
structure in order to improve the performance of the CNN
model. Most of the DL based methods upsample the low-
resolution input image to the size of the PAN one during the
high-frequency feature extraction phase which introduces
spectral distortions and does not make proper use of the in-
formation present in the low-resolution image.

2.3. Unfolding and model-driven based models

Most of the DL based methods for the fusion task in gen-
eral are intuitively constructed with no justification behind
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the use of the network’s structure. Also, when a CNN-
based model does not provide the desired output, deepening
it does not necessarily improve the results and most of the
time leads to issues such as higher computational complex-
ity, gradient disappearance, etc.

New model-based networks which are based on algo-
rithm unfolding [31], made their entrance in the literature
and proved very efficient in terms of performance. The idea
of model-based methods is the formulation of an optimiza-
tion function constructed with data observation models and
priors about the desired output. The steps of the optimiza-
tion algorithm are unfolded into a DL framework.

MHF-net [39] suggested a model-based HS/MS fusion
network adaptable to hypersharpening tasks. The authors
harnessed the low-rank property of the HS image in order
to reduce the spectral distortion and unfolded the algorithm
into convolutional layers. Another model-based network
GPPNN [40] has two optimization problems, one for the
PAN part and another one for the MS part. The two prob-
lems were solved separately and the unfolded networks ate
stacked alternatively for the pansharpening task. The com-
mon factor between these model-based pansharpening and
fusion mehtods is that the formulated optimization prob-
lem contains only the data-fitting terms that are extracted
from the observation model and a regularizer to account for
the ill-posedness of the optimization problem. Hence, the
constructed network does not have the possibility to extract
non-linear complex features from the data at hand.

3. Proposed unfolded hypersharpening method
Let U ∈ RN×C be the target high-resolution HS image

with N = Nx · Ny ∈ Z>0 pixels and C ∈ Z>0 spectral
bands, H ∈ Rn×C the low-resolution HS image with n =
Nx

l ·Ny

l ∈ Z>0 pixels, where l ∈ Z>0 is the sampling factor,
and P ∈ RN×1 is the high-resolution PAN image. In this
setting, it is assumed that P contains the high frequencies,
i.e. the geometry of the scene being observed.

3.1. Hypersharpening model

The observation models [29, 30] relating H and P with
U are generally given by

H = DBU+ ηh,

P = US+ ηp,
(1)

where B ∈ RN×N is the low-pass filter modeling the point
spread function of the HS sensors, D ∈ Rn×N is the l-fold
downsampling operator, S ∈ RC×1 is the spectral response
of the PAN sensor, and ηh and ηp are assumed to be addi-
tive, white Gaussian noise.

Usually, the linear operators B, D and S can be obtained
by registration and radiometric calibration. But, even when
they are known, inferring U from (1) is an ill-posed inverse

problem and additional priors are thus required. One can
tackle the ill-posedness in the variational framework by in-
troducing a regularization term R(U) promoting smooth-
ness of the solution. Then, U can be estimated by solving
the following minimization problem:

min
U

1

2
∥DBU−H∥2 + γ

2
∥US−P∥2 + µR(U), (2)

where ∥ · ∥ stands for the classical Frobenius norm and
γ, µ > 0 are trade-off parameters balancing the contribu-
tion of each term to the full energy.

The difference in the spatial resolution between the HS
observation H and the PAN data P has to be captured ac-
curately. A common approach consists in upscaling H to
match the target resolution, but this might cause spectral
distortions due to aliasing and impact the reconstruction of
the fused image, specially when the sampling factor is rela-
tively large. In order to avoid such issues while recovering
the geometry of the scene, we introduce a constraint that
injects the high-frequency details of P to the fused result.

On the one hand, the high frequencies of the fused image
can be estimated as U− H̃, where H̃ ∈ RN×C is the result
of upscaling H by bicubic interpolation. On the other hand,
the high frequencies of the scene are given by P−P̃, where
P̃ ∈ RN×1 contains the low frequencies of the PAN data.
To get P̃, we first apply the spatial degradation described
in (1) to P and obtain a low-resolution image which is then
upsampled by bicubic interpolation. We finally impose the
high-frequency details injection constraint:

Uij − H̃ij =
H̃ij

P̃i

(Pi − P̃i), (3)

where H̃ij

P̃i
is a modelation coefficient that takes into account

the energy levels of each spectral band. It is straightforward
to see that (3) can be rewritten as

P̃col ◦U = Pcol ◦ H̃, (4)

where ◦ denotes the Hadamard (entrywise matrix) product
and Pcol, P̃col ∈ RN×C are the replication of P and P̃ to C
columns, i.e., P col

ij = P col
ik for all j, k ∈ {1, . . . , C}.

Before adding (4) to the energy, we also exploit the low-
rankness prior structure along the spectral mode of the high-
resolution HS image [33,39,44]. Accordingly, let us assume
that U can be linearly represented by P and an unknown
matrix V ∈ RN×(r−1), where r = rank(U) > 1, i.e.,

U = PX+VY (5)

with coefficient matrices X ∈ R1×C and Y ∈ R(r−1)×C

to be learned. Therefore, the observation models (1) can be
replaced by

H = DB (PX+VY) + η, (6)
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where η denotes the noise, and the high-frequency details
injection constraint (4) becomes

P̃col ◦ (PX+VY) = Pcol ◦ H̃. (7)

Putting it all together, the proposed fusion model is

min
V

µR(V) +
1

2
∥DB (PX+VY)−H∥2

+
λ

2
∥P̃col ◦ (PX+VY)−Pcol ◦ H̃∥2,

(8)

where λ, µ > 0 are trade-off parameters and R is an arbi-
trary regularization term that will be learned. Note that we
have applied the regularization on V instead of U to pre-
serve the geometry of P in (5).

3.2. Forward-backward splitting algorithm

To solve (8), first note that the function

F (V) =
1

2
∥DB (PX+VY)−H∥2

+
λ

2
∥P̃col ◦ (PX+VY)−Pcol ◦ H̃∥2

(9)

is differentiable, thus we may use the forward-backward
splitting method [5, 6] to compute the solution. The basic
idea is to combine an explicit step of descent in the smooth
function F with an implicit step of descent in µR:

Vk+1 = proxτµ

(
Vk − τ∇F (Vk)

)
, (10)

where τ > 0 is the stepsize parameter, k the iteration num-
ber, and proxτµ the proximity operator of µR, i.e.,

proxτµ(V̂) = argmin
V

1

2τ
∥V − V̂∥2 + µR(V). (11)

Since (11) behaves as a denoising energy of V̂, it can be
replaced by a denoising network.

The final updating rule (10) is obtained by computing the
differential of the smooth function F :

∇F (V) = B⊤D⊤ (DB (PX+VY)−H)Y⊤

+ λ [P̃col ◦ (P̃col ◦ (PX+VY)−Pcol ◦ H̃)]Y⊤.
(12)

The steps of the updating rule (12) are now unfolded into a
DL framework.

3.3. Algorithm unfolding

The steps of the optimization algorithm (12) that solve
the fusion problem (8) can be decomposed into four steps as
highlighted in the left side of Figure 2. In the first step, the
unknown image is represented with a linear decomposition
involving the PAN data. Afterwards, two parallel steps con-
sist of computing the terms related to the observation model

and the high-frequency details injection, respectively. Fi-
nally, the last step consists of applying the proximal opera-
tor in order to update the variable of the minimization prob-
lem. Each one of these four steps are converted into a DL
framework.

In this framework, we use the tensor formulations for
all images to keep their spatial structure. Furthermore, we
introduce the following operators:

• The operator Convbin−→bout
takes a tensor with bin

bands and outputs a result with bout bands.

• The operator dSampnin−→nout
downsamples an input

spatially from nin to nout pixels. It is composed of
a blurring convolutional operator followed by a down-
sampling operation by a scale factor of nin

nout
.

• The operator uSampnin−→nout
spatially upsamples an

input from nin to nout pixels.

• The operator pMult(A,B) carries out a point-wise
multiplication between the tensors A and B.

• The operator ProxNet stands for the proximal oper-
ator and it is replaced by a ResNet [18] as suggested
in [39].

The proximity operator of R can be equivalently defined
as a resolvent operator [5], i.e., proxτµ = (Id + τµ∂R)

−1,
therefore, it is typically close to the identity. This is one of
the reasons why we use a residual network to encode the
proximity operator. The second main reason is that these
networks are easier to train because they only need to learn
a small offset from the identity.

The right side of Figure 2 shows the corresponding op-
erations in the DL framework of the hypersharpening algo-
rithm. The four blocs highlighted in Figure 2 are the main
components of the complete network illustrated in Figure 3
where we could see three main stages. Each stage is com-
posed of the blocks detailed in Figure 2 and at each epoch
all three stages are executed, then, the estimated result is fed
to the loss function.

Algorithmic Steps Deep Learning

U(k) = PX+V(k)Y

F(k) = DBU(k) −H

J(k) = B⊤D⊤F(k)Y⊤

L(k) = P̃col ◦U(k) −Pcol ◦ H̃
T(k) = λ(P̃col ◦ L(k))Y⊤

V(k+1) = Proxτµ(V
(k) − τ(J(k) +T(k)))

U = Conv1→C(P) + Conv(r−1)→C(V)

F = dSampN→n(U)−H
J = ConvC→(r−1)(uSampn→N (F))

L = pMult(P̃ col,U)− pMult(P col, H̃)

T = ConvC→(r−1)(pMult(P̃ col,L))

V = ProxNet(V − τ(J + T ))

Figure 2. Relationship between the steps of the optimization algo-
rithm and the modules of the deep unfolded network.
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Figure 3. The unfolded network of the hypersharpening algorihtm using a high-frequency injection module. The network is composed of
three stages, each one of these stages follows the unfolding steps detailed in Figure 2.

3.4. Training details

The proposed deep unfolding network is trained using
the following loss function:

L = ∥Û(k) −U∥2 + α∥F(k)∥2 + β∥L(k)∥2, (13)

where Û(k) is the estimated fused image at each epoch,
F(k) and L(k) are respectively taken from observation-
fitting and high-frequency details injections steps, and α
and β are trade-off parameters. The first term of the loss
function is an L2 norm between the solution proposed
by the network and the reference. The second term ac-
counts for the residual error from the observation model and
the last term represents the error when violating the high-
frequency details injection module.

Our model is trained in a PyTorch framework, using an
Nvidia A100 GPU, during 4000 epochs for the PRISMA
dataset and 3000 for the CAVE dataset. We use an Adam
optimizer with a learning rate of 10−3 and a batch size of 8
images. The trade-off parameters α and β were optimized
and set to 10−3. The images of both PRISMA and CAVE
datasets were normalised by dividing on 216 − 1 and no
augmentation techniques were applied.

4. Experiments
We conducted multiple experiments and compared the

performances of our algorithm with the pure DL methods
MSDCNN [45] and DiCNN [19], the deep unfolding net-
works MHFnet [39] and GPPNN [40], and classical fusion
methods such as PCA [22], Brovey [16], GS [23], GSA [2],
IHS [17] and SFIM [24].

For an objective comparison with the SOTA, we used
the following qualitative metrics: PSNR (Peak Signal to
Noise Ratio), which measures the reconstruction of the im-
age quality with respect to noise, ERGAS (Erreur Relative

Globale Adimentionnelle de Synthèse) and SSIM (Struc-
tural Similarity Index Measure), which measure the general
quality of the fused image, and DD (Distortion Degree) and
SAM (Spectral Angle Mapper), which measure the spec-
tral reconstruction quality of the output image. We refer the
reader to [43] for more details about the above indices.

Our model was tested on the recent PRISMA dataset and
on the CAVE database [42]. For the simulation of the obser-
vation images we followed the Wald protocole [38]. For the
experiments on PRISMA, the spatial downsampling opera-
tor B and the spectral degradation operator S were provided
by the PRISMA mission engineers. Regarding the exper-
iments on CAVE, the spatial and spectral operators were
taken from available resources in the research community.

4.1. Experiments on PRISMA dataset

The PRISMA mission1 was launched in 2019 by the Ital-
ian Space Agency (ASI), and to the best of our knowledge,
it is the first mission that provides public HS and PAN
data of the same region and presents substantial potential
for fusion and resolution enhancement. The HS data has
a spatial resolution of 30 m and contains 240 bands that
cover the VNIR (Visible and Near Infra-Red ) range: 400-
1010 nm and the SWIR (Short Wave- length Infra-Red))
one: 20–2505 nm. The PAN data contains one single band
at a spatial resolution of 5 m. We selected and down-
loaded 20 large-scale scenes of PRISMA images through-
out the PRISMA mission’s portal2. The downloaded HS
images have an original size of 1000 × 1000 × 240, each
one of the scenes was cropped into non-overlapping tiles
of 128 × 128 × 240. Given that the SWIR bands are not
covered by the spectral response of the PAN sensor, only
the first 66 bands were considered which resulted in tiles

2Prisma portal: https://prisma.asi.it
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Ground truth HS GSA IHS Brovey SFIM

GS MHFnet DiCNN GPPNN MSDCNN Ours

Figure 4. Visual comparison of the fusion approaches on an image of the PRISMA dataset. We display the 35th, 45th and the 57th bands in
place of the RGB channels. The proposed deep unfolding network successfully combines the geometry of the PAN image with the spectral
information of the HS data, while all other results are affected by blur, color artifacts and spatial distortions. Our method is also able to
recover both large structures, such as the circular ground contours, and the finest ones, such as roads and small building structures.

of 128 × 128 × 66, from each tile a new HS and PAN
images were generated following the Wald protocol [38]
and using the spectral and spatial responses provided by
PRISMA mission engineers. The chosen downsampling
factor for the PRISMA dataset is 12, thus, from each tile
of 128× 128× 66, an HS image of 11× 11× 66 and PAN
image of the size 128× 128 were considered for the hyper-
sharpening process.

For the training process 640 tiles from PRISMA scenes
were used and 128 tiles were utilized for the validation step.
The training and the validation dataset were from different
regions in order to test the model’s ability to generalize to
unseen regions.

Table 1 displays the average of the quality measures
obtained for each fusion method over all images of the
PRISMA dataset. The best results are in bold and the sec-
ond best ones are underlined. We observe that the proposed
deep unfolding network significantly outperforms all the
others with respect to all metrics. Interestingly, the pure
DL approaches DiCNN and MSDCNN give better quan-
titative results than the unfolding networks GPPNN and
MHFnet, while our method clearly outperforms all of them.
This proves the suitability of the proposed hypersharpening
model (8) among deep unfolding strategies, providing a sig-
nificant increase in terms of spectral and spatial qualities.

Table 1. Average of the quality measures over all images of the
PRISMA dataset. The methods are divided into classical, pure DL
and deep unfolding categories. The best results are in bold and
the second best ones are underlined. We observe that the proposed
deep unfolding network significantly outperforms all the other fu-
sion methods with respect to all quantitative metrics.

ERGAS ↓ PSNR ↑ SSIM ↑ DD ↓ SAM ↓

PCA 376.06 15.70 0.3990 0.1333 35.41
Brovey 92.86 27.68 0.9180 0.0309 4.69
Bicubic 225.81 23.40 0.8303 0.0420 4.64
GS 92.14 27.75 0.9181 0.0308 4.78
GSA 186.01 23.98 0.8706 0.0399 4.67
IHS 101.00 26.78 0.8882 0.0346 7.20
SFIM 208.91 23.95 0.8801 0.0392 4.67

DiCNN 41.44 33.38 0.9520 0.0145 3.70
MSDCNN 43.10 33.07 0.9496 0.0153 4.06

GPPNN 253.18 20.99 0.8453 0.0700 7.92
MHFnet 45.29 32.69 0.9402 0.0157 4.13
Ours 15.31 42.17 0.9900 0.0078 1.59

Figure 4 displays the fused images obtained by each
technique putting the 35th, 45th and the 57th bands in place
of the RGB channels. All SOTA methods are affected by
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Ground truth HS GSA IHS Brovey SFIM

GS MHFnet DiCNN GPPNN MSDCNN Ours

Figure 5. Visual comparison of the fusion approaches on CAVE dataset, we use the 28th, 13th and the first bands in place of the RGB
ones. DL methods like DiCNN, MSDCNN and MHFnet suffer from blurring and others suffer from spectral artifacts visible on the left
highlighted parts, also GPPNN did not manage to recover the spectral information. Our deep unfolding network gives the best visual result
in terms of spectral consistency and geometry retrieval.

blur, color artifacts and spatial distortions, giving rise to
fused images which are not visually pleasant. On the con-
trary, our deep unfolding approach is able to correctly pre-
serve the spectral information from the HS data while in-
jecting the geometry from the PAN image. Furthermore,
we observe that the proposed method is able to recover large
structures, such as the circular ground contours, as well as
the finest ones, such as roads and small building structures.

4.2. Experiments on CAVE dataset

We test our network on the CAVE dataset [42] which is
composed of 32 scenes with the original size 512×512×31.
From each scene crops of 128 × 128 × 31 were extracted
and used to generate a new HS images of size 11 × 11 ×
31 and PAN images of size 128 × 128 following the Wald
protocol [38] and using a downsampling factor of 12.

Table 2 displays the average of the quality measures over
all images of the CAVE dataset. The best results are in bold
and the second best ones are underlined. The proposed fu-
sion method significantly outperforms the other techniques
in terms of all the metrics. Figure 5 shows the hypersharp-
ening results of our networks and of the SOTA methods.
We notice that DL methods like DiCNN, MSDCNN and
MHFnet suffer from blurring, other techniques suffer from
spectral artifacts visible on the left highlighted parts and

Table 2. Average of the quality measures over all images of the
CAVE dataset. The methods are divided into classical, pure DL
and deep unfolding categories. The best results are in bold and
the second best ones are underlined. Our deep unfolding network
outperforms all the others with respect to all quantitative metrics.

ERGAS ↓ PSNR ↑ SSIM ↑ DD ↓ SAM ↓

PCA 262.32 18.4060 0.6759 0.0951 22.2876
Brovey 67.12 30.0125 0.9533 0.0231 5.3162
Bicubic 92.81 27.1778 0.9009 0.0278 4.5678
GS 83.97 28.0502 0.9208 0.0285 6.8994
GSA 73.38 29.3597 0.9296 0.0230 6.1939
IHS 78.53 28.7951 0.9340 0.0272 6.4508
SFIM 110.20 25.8364 0.9134 0.0271 6.0997

DiCNN 92.70 27.1756 0.9009 0.0278 4.5602
MSDCNN 46.50 33.9718 0.9655 0.0144 4.3489

GPPNN 508.38 15.7420 0.6478 0.1068 24.7192
MHFnet 81.25 28.4226 0.9274 0.0278 6.6751
Ours 40.06 34.7503 0.9695 0.0134 4.3110

GPPNN did not manage to recover the spectral information.
Our deep unfolding network gives the best visual result in
terms of spectral consistency and geometry retrieval which
shows the importance of the high-frequency injection mod-
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Ground truth Pan DiCNN MSDCNN No HF module Ours

Figure 6. Visual comparison on a PRISMA crop for the ablation study. The SOTA methods and our network without the high-frequency
(HF) injection module have a poor reconstruction of the colors and, for instance, fail in detecting the white road appearing in the left-hand
crop. On the contrary, the full proposed deep unfolding network is able to reconstruct the spatial and spectral information of the scene.

ule in copying the accurate information from the HS and
PAN images.

4.3. Ablation study

In this part we tested the importance of the introduced
high-frequency (HF) details injection module. For this pur-
pose, we trained the model only with the observation-fitting
term on the same training and validation dataset used for
the suggested fusion method on PRISMA dataset. The rea-
son behind using PRISMA dataset is because it has a much
lower resolution than CAVE thus it is more challenging to
recover high-frequency details such as the contours and the
fine geometrical information.

Figure 6 shows the result on a PRISMA image that con-
tains both high-frequency details such as roads and uniform
structure such as green fields. The results were compared
to the best SOTA methods in terms of objective perfor-
mances. We can see that, on the highlighted parts on the left,
the result produced by the model without high-frequency
module “No HF module”) and the fused images from the
SOTA methods, failed in detecting the little white road, that
crosses the bushes, except ours that reconstructed it accu-
rately. Also, all the fused images had a poor reconstruction
of the colors in multiple parts of the image whereas our re-
sult recovered the colors with minimal artifacts.

The visual observation are confirmed by the objective re-
sults showed in Table 3, where our method outperforms all
the others. We can conclude that the high-frequency injec-
tion module has a crucial role in recovering the texture and
the fine geometrical details of the fused images.

5. Conclusions
In this paper we proposed a novel model-based neural

network for hypersharpening. The model takes advantage
of the observation data and uses a high-frequency details
injection term. The algorithmic steps obtained from the res-
olution of a minimization problem are unrolled into a DL

Table 3. Quality measures on a PRISMA crop for the ablation
study. The best results are in bold and the second best ones are
underlined. The proposed deep unfolding network outperforms
all the others. The indices also prove the relevance of the high-
frequency details injection module in the fusion process.

ERGAS ↓ PSNR ↑ SSIM ↑ DD ↓ SAM ↓

DiCNN 41.44 34.70 0.9562 0.0126 4.04
MSDCNN 43.36 34.46 0.9546 0.0132 4.39
No HF 46.51 33.78 0.9481 0.0141 4.59
Ours 20.89 41.27 0.9905 0.0063 2.39

framework. The experiments were conducted on two types
of datasets. On the recent remote-sensing PRISMA dataset
the hypersharpening model proved its ability in recovering
the fine details. We also tested the performance of the sug-
gested network on the CAVE dataset which has a higher
spatial resolution and the results were competitive with re-
spect to the SOTA methods, which shows the generalizabil-
ity of the model to different resolutions. We also empha-
sized the importance of the introduced high-frequency de-
tails injection module in reconstructing the fine spatial and
spectral details in an ablation study.
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