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1. Introduction
• We present the detailed description of the datasets used

in validating the proposed novel APPLeNet, in section
2. Furthermore, we present the curated dataset for do-
main generalization (DG) setup.

• In section 3, we first discuss the performance of our
proposed APPLeNet and the referred SOTA prompting
techniques by changing the visual backbone of the pre-
trained CLIP. Secondly, we study the effect of the types
of context vectors, i.e., unified context (UC) and class-
specific context (CSC) in the APPLeNet.

• In Figure 1, we show the tSNE [7] plots for the outputs
of the meta-net of the CoCoOp and injection block (IB)
of the APPLeNet on the three mentioned benchmark
RS datasets.

2. Datasets
We experiment with the proposed APPLeNet on four dif-

ferent remote sensing benchmark datasets; PatternNet [3],
RSICD [4], RESISC45 [1], and MLRSNet [5]. The detailed
descriptions are as follows:
PatternNet [3] includes 38 classes and each class has 800
images of size 256 × 256 pixels. The images are large-
scale high-resolution images collected from Google Earth
imagery based on US cities for remote sensing image re-
trieval.
Remote Sensing Image Captioning Dataset (RSICD) [4]
includes 30 classes and total number of 10, 000 images of
size 224 × 224 pixels. Each class has a different number
of images. This dataset also has five sentence descriptions
per image, usually used for auto-image captioning applica-
tions. Nevertheless, here we have used only the images, as
the captions are learnable in our approach.
Remote Sensing Image Scene Classification (RESISC45)
[1] dataset includes 45 classes and each class has 700 im-
ages of size 256 × 256 pixels. The spatial resolution of its
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images varies largely, ranging from 20 cm to more than 30
m.
Multi-label High Spatial Resolution Remote Sensing
Dataset (MLRSNet) [5] includes 46 classes and a total
number of 109, 161 images of size 256 × 256 pixels. Each
class has around 2000 images and varying spatial resolu-
tion from 0.1-1m. This dataset is mainly used for image
retrieval, segmentation, and classification.

We also extend our work on generating learnable
prompts on the single-source multi-target domain general-
ization setup. To do so, we release the new version of the
above-stated datasets.

Table 1. Details of datasets, used for B2N, CD, SSMT Do-
main Generalization techniques.

Dataset for
B2N and CD Details Dataset for

SSMT-DG Details

PatternNet [3] 38 classes and
30.4K total images PatternNetv2 16 common classes:

baseball, beach,bridge
dense residential area,

desert, field, forest, harbor,
intersection, meadow,

overpass, parking, railway,
river, sparse residential

area, stadium and
storage tank

RSICD [4] 30 classes and
10K total images RSICDv2

RESISC45 [1] 45 classes and
31.5K total images RESISC45v2

MLRSNet [5] 46 classes and
109K total images MLRSNetv2

Table 2. Ablation of APPLeNet with different context vectors on
the PatternNet and RSICD datasets. H denotes the harmonic mean
used to generalize the trade-off performance between the base and
new classes. Best results are shown in bold.

Context
PatternNet RSICD

Base New H Base New H
UC 94.89 65.57 77.55 95.26 60.71 74.16
CSC 88.83 63.91 74.34 92.61 60.13 72.92

3. Ablation Studies
Sensitivity to the types of context vectors: We compare
two types of context vectors used for generating learnable
prompts: unified context (UC) and class-specific context
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Table 3. Comparison of APPLeNet with state-of-the-art methods on SSMT image classification task on the RS datasets. We
use the accuracy metric as the performance measure. The best results are shown in bold.

ResNet-50 ResNet-101 ViT-B/16 ViT-B/32
Method Source Target Source Target Source Target Source Target

PNv2 RSv2 REv2 MNv2 PNv2 RSv2 REv2 MNv2 PNv2 RSv2 REv2 MNv2 PNv2 RSv2 REv2 MNv2
CLIP [6] 59.41 57.50 52.58 49.68 65.58 64.86 71.27 63.60 78.04 72.15 75.42 67.78 77.34 72.66 74.88 66.86
CoOp [10] 92.15 65.27 65.71 62.66 92.37 75.43 74.67 70.45 94.25 76.50 77.87 70.97 93.38 77.31 80.31 71.32
CLIP-Adapter [2] 76.70 66.71 65.37 63.17 82.37 77.13 78.05 71.63 92.36 79.17 79.76 71.04 87.50 79.93 82.26 71.47
CoCoOp [9] 92.83 67.84 70.60 63.77 91.10 77.70 77.17 71.56 94.41 79.33 80.43 71.67 93.89 79.83 81.93 72.34
ProGrad [11] 89.51 65.61 66.28 62.26 89.64 75.93 76.55 69.71 95.18 77.46 80.65 72.29 94.37 78.54 79.34 72.21
APPLeNet 94.53 69.90 68.83 65.80 95.03 79.23 77.63 72.15 96.63 81.03 82.23 74.03 96.23 80.97 83.15 73.56
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(a) RSICDv2 (b) RESISC45v2 (c) MLRSNetv2

Figure 1. t-SNE plots [8] between the image feature extracted from the meta-net of CoCoOp (1st row) and the injection block (IB) of
APPLeNet (2nd row) for the SSMT domain generalization task on the three benchmark RS datasets. The legends represent the class labels.

(CSC). The performance of SOTA methods and our pro-
posed APPLeNet on the B2N class generalization task is
evaluated using both types of context vectors. The results
of the ablation study are presented in Table 2. We observe
that the UC setup outperforms the CSC setup in terms of
the harmonic mean (H) between the base and new classes.
Specifically, on the PatternNet and RSICD datasets, the UC
setup outperforms the CSC setup by 3.2% and 1.2%, re-
spectively.

Change in visual encoder backbone: We conducted
experiments to investigate the effect of different vision
backbones of the pre-trained CLIP in generating text-
prompts and extracting visual features for the cross-data
generalization task. We used ResNet-50, ResNet-101,
ViT-B/16, and ViT-B/32 as visual backbones, and com-
pared their performance to APPLeNet, zero-shot CLIP,
and other referred prompt learning techniques. The exper-

imental results, shown in Table 3, indicate that APPLeNet
outperforms all the other methods in the few-shot setting
by a significant margin. Specifically, APPLeNet achieves
better classification scores (average) of 1.0% and 1.6%
on ResNet-50 and ViT-B/16 CLIP’s visual backbones,
respectively. We also conducted an ablation study with
other visual backbones such as ResNet-101 and ViT-B/32,
which can be found in the supplementary materials.

t-SNE visualization: In Figure 1, we present a t-SNE
[7] visualization of the image embeddings generated by
APPLeNet and compare them with CoCoOp [9] on the
RSICDv2, RESISC45v2, and MLRSNetv2 datasets for the
SSMT-DG task. The visualization clearly demonstrates that
APPLeNet can accurately cluster each class, while the clus-
ter points of many classes get overlapped in CoCoOp. This
confirms the discriminability of APPLeNet.
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