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1. Appendix
This appendix provides additional ablation studies and

analyses using the VisDrone dataset.

1.1. Impact of hyperparameters in the crop labeling
algorithm

In this section, we analyzed the impact of different hy-
perparameters in the crop labeling algorithm. Subsequently,
we observed that they can be easily tuned.

1.1.1 Impact of N in the crop-labeling algorithm

When we performed iterative merging, we set the number
of merging steps N=2. In this section, we empirically ver-
ify the impact of other possible N values. Table 1 shows
the comparison. When N=1, we have too many small noisy
crops. The optimal quality crops are obtained when N = 2.
When N = 3, the number of crops reduces, and crops tend to
grow significantly to cover many background regions. Thus
we see a reduction in performance. A visualization of the
crops shows further evidence regarding the quality of crops
when iterative merging is used in the crop-labeling. Figure
1 shows the comparison when crop-labeling is performed
with different iteration values N . When N = 1, regardless
of whether we scale the boxes by pixel or a scaling factor,
we get too many small crops often containing a few objects,
violating our quality constraints. It is also producing crops
around large objects in the image. N = 2 gives the best qual-
ity crops, optimal in number according to the object density,
and encloses mostly the small objects. N = 3 enlarges the
crops so much covering background regions, also very large
crops are getting filtered out (fig 1 first row, third column).
This establishes that our crop labeling algorithm is respect-
ing the specified quality constraints.

1.1.2 Impact of the θ on the Crop Labeling Algorithm.

In Table 2, we studied the impact of the θ parameter in the
crop labeling algorithm. From the results, it can be observed

N # crops AP AP50 AP75 APs APm APl

1 62677 31.26 54.55 31.50 23.83 40.78 50.07
2 14018 33.02 57.87 33.09 25.74 42.93 41.44
3 2227 31.14 55.22 30.88 23.99 40.26 40.43

Table 1. Impact on performance of the number of iterative merging
steps N used the density crop labeling algorithm (results in %).

θ Value # crops AP AP50 AP75 APs APm APl

0.1 14018 33.02 57.87 33.09 25.74 42.93 41.44
0.2 12652 32.80 57.62 32.82 25.50 42.43 43.56
0.3 10222 32.66 57.25 32.70 25.57 42.33 44.10
0.4 7551 32.08 56.69 31.84 24.26 42.47 43.99
0.5 4836 31.48 55.87 31.13 24.23 41.10 38.19

Table 2. Impact on performance of the overlap threshold θ in the
density crop labeling algorithm (results in %).

that a small value of the θ is preferred. The bounding boxes
of the small objects exhibit low IoU values, hence maxi-
mum connections are observed for low values of θ. A large
value for the overlap parameter θ affects the performance
significantly. This is expected, as we increase the thresh-
old, the connections in the crop labeling algorithm reduce,
and hence the number of density crops discovered also re-
duces. This will subsequently move towards the baseline
case where no density crops are used both at the train and
test time.

1.1.3 Impact of π in the crop-labeling algorithm

We used a maximum size limit for the crops to ignore over-
sized crops. The size parameter π in the crop-labeling algo-
rithm represents the ratio of the area of the crop to that of the
image and allows us to ignore those crops whose area ratio
is above a threshold. This parameter serves only to filter out
unusually big crops spanning a big portion of the image and
requires minimal tuning. Table 3 shows the results in the
case of the VisDrone dataset. As we can see, there are few
crops growing significantly when using a 2-stage iterative
merging. So setting π = 0.3 provides the best quality crops
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(a) 1-stage pixel (b) 1-stage factor (c) 2-stage (d) 3-stage

Figure 1. Comparison of different crop-labeling algorithms. (a) 1-stage with scaling by pixel (b) 1-stage with scaling by a scaling factor.
(c) our 2-stage iterative merging. (d) 3-stage iterative merging. 1-stage merging is producing too many crops even grouping larger objects
in the image; some crops contain very few objects. 2-stage merging produces the optimal number of crops by mostly enclosing small
objects in the image. 3-stage merging is producing very few crops, often spanning to large areas in the background regions. Sometimes the
crops are even disappearing due to the size constraint limiting the crop size (eg: col 4 in the first row).

π # crops AP AP50 AP75 APs APm APl

0.1 11574 32.23 56.27 32.32 24.53 42.49 41.64
0.2 13732 32.74 57.44 32.56 25.64 42.39 41.26
0.3 14018 33.02 57.87 33.09 25.74 42.93 41.44
0.4 14018 33.02 57.87 33.09 25.74 42.93 41.44

Table 3. Impact on performance of the maximum crop size π used
the density crop labeling algorithm (results in %).

on average.
From these experiments on the hyperparameters of the

crop labeling algorithm (π, θ,N ), we can observe one thing
in common; it is easy to tune their values. N takes discrete
values between(1, 3]. θ should be ideally small (< 0.2) to
have connections between scaled boxes. It is not sensible
to use crops above 50% of the size of the image. The max-
imum crop size should be at least 10% of the image, else
we won’t get many crops. So π should be something in
between [0.1, 0.5).

1.2. Impact of different backbones

Table 4 compares the result of our approach with
ResNet-101 and ResNet-50 [2] backbones. The trend is
similar. For ResNet-101 also, the result without high-
resolution features P2 is close to that of with P2, thus we

Settings AP AP50 AP75 APs APm APl FPS
Without P2
Baseline R-50 29.48 51.68 29.55 22.33 38.66 39.30 26.31
Baseline R-101 30.98 54.74 30.55 22.84 41.06 42.30 23.79
CZ Det. R-50 33.02 57.87 33.09 25.74 42.93 41.44 11.64
CZ Det. R-101 33.91 59.07 33.87 26.14 44.64 45.03 10.01
With P2
Baseline R-50 30.81 55.06 30.68 23.97 39.19 41.17 18.25
Baseline R-101 31.41 55.47 31.29 23.97 40.56 43.83 16.48
CZ Det. R-50 33.22 58.30 33.16 26.06 42.58 43.36 8.44
CZ Det. R-101 34.36 59.65 34.55 26.96 44.23 42.14 6.18

Table 4. The performance of Baseline and CZ Detectors with the
R-50 and R-101 backbones using Faster RCNN [3] (results in %).

are getting a significant boost even when high-resolution
features are not used. This illustrates the advantages of us-
ing density crops over sparse convolutions on high resolu-
tion features for small object detection as proposed in [4].
Figure 2 shows additional detection results on both Vis-
Drone and DOTA datasets along with the high-quality den-
sity crops predicted by the detector.

To understand whether our approach is creating any dras-
tic changes in the learning dynamics of the baseline de-
tector, we analyzed the error distribution of the detectors
trained with our approach and the baseline training using
TIDE [1]. Figure 3 shows the results. It is evident that



Figure 2. Additional detection results: The first row shows detection on the DOTA images, the second row shows detection on the VisDrone
images. Red boxes in each image shows the confident crops detected.

(a) Baseline (b) With density crops

Figure 3. Error analysis: Baseline vs With density crops. Error
types are: Cls: localized correctly but classified incorrectly, Loc:
classified correctly but localized incorrectly, Both: both cls and
loc error, Dupe: duplicate detection error, Bkg: detected back-
ground as foreground, Miss: missed ground truth error.

learning a new class ”density crop” with augmented crops
and two-stage inference is not introducing any significant
change in the behavior of the detector. The only change we
observed is the reduction of the localization error, thus not
altering any other aspects of the detector. Thus our method
keeps the detector intact and only improves the performance
of small object detection leveraging density crops.
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