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Abstract

In this supplementary material we provide more details
about the hypersharpening algorithm, the implementation
of the unfolded network along with information about the
deep-learning settings and additional visual and objective
results.

1. The fusion algorithm and unfolded network
The steps of the optimization algorithm that solves the

fusion problem (8) of the main paper is detailed in Algo-
rithm 1, these steps are then unfolded into a deep learning
framework. The unfolded network shown in Figure 3 of the
main paper is composed of three main stages and each stage
follows the four steps described in Figure 2 of the main pa-
per. In the initialization stage, the variable V, with respect
to which the minimization is carried out, is initialized with
zeros. This implies that in the first iteration the unknown
fused image U is computed as the 1× 1 convolution of the
image P which conserves the spatial size and increases the
spectral one to C channels. In the middle stage, the output
of the previous one along with the input data P are fed to
the linear decomposition module. The result, along with the
input image H are passed to both the observation-fitting and
the high-frequency injection modules in parallel which pro-
duces the input to the last stage. In the latter, the output of
the linear decomposition module goes through a ProxNet
module in order to produce an estimate of the fused im-
age which, along with the outputs of the data-fitting and the
high-frequency injection modules, are fed to the loss func-
tion.

The module ProxNet is a residual network composed
of three stages, each stage is a sequence of a convolu-
tion, batch normalization and a ReLu activation function as
highlighted in Figure 3 of the main paper. The operator

Algorithm 1: Fusion optimization algorithm
Input: Observation data: P and H, high-frequency

injection terms: Pcol and P̃col,
hyper-parameters: λ, µ, τ > 0

1 for k← 0 to niters do

2 • Linear decomposition
3 U(k) = PX+V(k)Y

4 • Observation fitting

5 F(k) = DBU(k) −H

6 J(k) = B⊤D⊤F(k)Y⊤

7 • High frequencies injection

8 L(k) = P̃col ◦U(k) −Pcol ◦ H̃
9 T(k) = λ(P̃col ◦ L(k))Y⊤

10 • Updating rule

11 V(k+1) = Proxτµ
(
V(k) − τ

(
J(k) +T(k)

))
12 end

Output: V

dSampnin−→nout
downsamples an input spatially from nin

to nout pixels. In the case of PRISMA dataset, the down-
sampling factor was chosen to be 12. In order to preserve
as many details as possible, the downsampling was decom-
posed into three sub-downsamplings of factors two, three
and two. For each sub-downsampling operation, a convolu-
tion was applied to respect the Shanon-Nyquist condition.
Regarding the operator uSampnin−→nout

, it spatially up-
samples an input from nin to nout pixels. This operator is
delicate and could lead to a loss of fine details if not handled
carefully. Thus, just like the downsampling operator, the
upsampling opeartions took place in three sub-upsampling
ones with factors of two, three and two. Each one of the
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Figure 1. Visualization of the data splitting for training and vali-
dation. (a) is the original HS 1000x1000x66 image and (b) shows
the splitting into tiles of 128x128x66.

(a) (b)

Figure 2. The spatial and spectral responses used for HS and PAN
data generation from the PRISMA mission. (a) is the spatial low-
pass filter applied before downsampling and (b) is the spectral re-
sponse of the PAN sensor.

sub-upsampling operations is represented with a transposed
convolutional layer followed by a succession of, convolu-
tion, batch normalisation and ReLu in order to ensure a
maximum preservation of details and a smooth transition
to higher resolutions, a final convolution is applied to the
output.

2. Implementation details
The implementation of the hypersharpening code was

carried out using PyTorch, the parameters α and β were op-
timized using the PyTorch library Ray Tune and they were
both set to 10−3 for the PRISMA and the CAVE datasets.
The images of both datasets were normalised by dividing
on 216− 1 because they are encoded on 16 bits and no aug-
mentation techniques were applied.

The transposed convolutional filters in the hypersharpen-
ing code were initialized using a zero-mean Gaussian dis-
tribution with a standard deviation of 0.1. The operation
1x1 Conv in the initialization stage (Figure 3 of the main
paper) was initialized using:

I = (P̂2)−1P̂⊤Ũ, (1)

where I is the solution of the following least square prob-

Table 1. Average of the quality measures over the fours images
from the PRISMA dataset displayed in Figure 3. The methods
are divided into classical, pure DL and deep unfolding categories.
The best results are in bold and the second best ones are under-
lined. We observe that the proposed deep unfolding network sig-
nificantly outperforms all the other fusion methods with respect to
all quantitative metrics.

ERGAS ↓ PSNR ↑ SSIM ↑ DD ↓ SAM ↓

PCA 357.21 16.06 0.3014 0.1290 35.26
Brovey 81.57 28.91 0.9174 0.0270 4.86
Bicubic 235.36 22.93 0.7674 0.0460 4.90
GS 81.01 28.97 0.9176 0.0269 4.90
GSA 210.21 23.26 0.7733 0.0449 4.86
IHS 98.13 27.15 0.8845 0.0326 7.55
SFIM 193.68 24.21 0.8753 0.0379 4.81

DiCNN 45.26 33.07 0.9364 0.0156 4.28
MSDCNN 46.65 32.86 0.9347 0.0160 4.51

GPPNN 259.94 21.23 0.8351 0.0683 7.28
MHFnet 48.60 32.50 0.9290 0.0169 4.69
Ours 19.48 40.39 0.9887 0.0070 2.07

lem:

min
I
∥P̂I− Ũ∥, (2)

and P̂ and Ũ are stacks, along the spatial dimension of PAN
and reference images from the training set.

3. More results on PRISMA
In this section we include more results with the PRISMA

dataset in order to show the ability of our unfolded net-
work in recovering relevant spatial and spectral details, even
when the observed images have a low-spatial resolution due
to the downsampling factor which is 12 in our case. We start
from the original HS data with the size of 1000×1000×66
which has a spatial resolution of 30 m, then, the image is
split into non-overlapping tiles of 128 × 128 × 66 as high-
lighted in Figure 1. From each tile a new HS and PAN im-
ages are generated following the Wald protocole [1] and us-
ing the spatial and spectral responses, shown in Figure 2,
provided by the engineers from the PRISMA mission.

In Figure 1 we show the result of the proposed unfolded
fusion network on various images from the PRISMA dataset
using the 35th, 45th and the 57th bands in place of the RGB
channels and we compare the performances of our result
to the best three SOTA methods in terms of objective met-
rics. We can notice that, visually, our result looks similar to
the ground truth and does not contain artifacts. On the con-
trary, all the SOTA methods, starting from the top row to the
bottom, either contain artifacts like the MHFnet method in
the second row, or they do not recover relevant geometrical



details like the green pond in the case of DiCNN and MS-
DCNN in the last row. Whenever the SOTA methods failed
to reconstruct a spatial or spectral information our method
managed to recover it, which shows the important role of
the high-frequency details injection module.

In Table 1 we display the average of the quality mea-
sures over the four images displayed in Figure 1. The best
results are in bold and the second best ones are underlined.
We notice that the result of the proposed unfolding network
significantly outperforms all the SOTA methods, especially
the deep-unfolding ones, in terms of all the quality mea-
sures. The second best method is DiCNN which is a pure
DL approach. These measures show the superiority of our
deep-unfolding method in recovering the spatial and spec-
tral details from an objective perspective.
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Figure 3. Visual comparison of the fusion approaches on four images from the PRISMA dataset. We display the 35th, 45th and the 57th
bands in place of the RGB channels. The proposed deep unfolding network successfully combines the geometry of the PAN image with
the spectral information of the HS data, while all other results are either affected by color artifacts like the MHFnet in the second row or
do not detect accurately some relevant geometrical details like DiCNN and MSDCNN in the last row starting from top to bottom.


