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Abstract

The task of face anti-spoofing (FAS) is to determine
whether the captured face from a face recognition system
is live or fake. Current methods which are trained with
existing fake faces ignore the generalization and perform
poorly on unseen attacks. To tackle this problem, a novel
Attack-agnostic Face Anti-spoofing framework is proposed.
Different from previous methods that can be treated as a
defense system, we regard face anti-spoofing as a unified
framework with the attack and defense systems and opti-
mize the defense system against unseen attacks via adver-
sarial training with the attack system. Concretely, the attack
system consists of two modules: an Adversarial learning-
based Attack Pattern Generation (Adv-APG) module and a
Supervised learning-based Attack Pattern Drift (Sup-APD)
module. The Adv-APG module generates a series of spoof-
ing samples by recombining a live face with known attack
patterns in a generative way. The Sup-APD module pulls
the generated spoofing samples in a supervised way to an
unknown domain that makes the defense system ineffective.
The defense system is free to choose and compatible with
our attack system. Extensive experiments are conducted
by using three different defense architectures to verify that
the proposed attack system can improve the performance on
both seen- and unseen attacks on multiple datasets.

1. Introduction
Face Presentation Attack Detection (PAD) is a technol-

ogy for defending the face recognition system from mali-
cious attacks, such as print attack, replay attack, or mask.
It has become an increasingly critical concern [4,27,34,56]
recently due to its wide applications in financial payment,
phone unlocking, and face surveillance. However, the gen-
eralization of unseen attacks is still a challenging problem,

*Contact person

Figure 1. Comparison of two anti-spoofing systems. Left: the
traditional anti-spoofing system that only considers the defense
unit. Right: the proposed framework unifies the attack and de-
fense units. Note that these samples are from the OULU-NPU
dataset [3].

which has not been perfectly solved by these algorithms.
Some early temporal-based face PAD works attempt to

detect the evidence of liveness (e.g., eye-blinking), which
requires a constrained human interaction. However, these
methods become vulnerable if someone presents a replay
attack or a print attack with cut eye/mouth regions. Other
works are based on static texture analysis [21]. However,
these algorithms are not accurate enough because of the
use of handcrafted features, such as LBP [5], HoG [50]
and GLCM [39], that do not necessarily capture the most
discriminative information associated with the data. Re-
cently, CNN-based face PAD methods [22, 25, 33, 56] and
challenges [23, 28, 30] have shown impressive progress due
to the excellent performance of deep neural networks and
the availability of large datasets [3, 26, 33, 58–60]. With
the maturity of 3D printing technology, face mask has be-
come a new type of PA to threaten face recognition systems’
security. Compared with traditional 2D Presentation At-
tacks (PAs), face masks are more realistic in terms of color,
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texture, and geometry structure, making it easy to fool a
face PAD system designed based on coarse texture [49]
and facial depth information [33]. Fortunately, some works
have been devoted to 3D mask attacks, including design
of datasets [9, 13, 31] and algorithms [11, 31, 32, 44]. Al-
though these methods achieve near-perfect performance in
intra-database experiments, they are still vulnerable when
facing unseen attacks and cross-database experiments.

Fake faces that are forged from spoof mediums intro-
duce special texture differences compared with a live face,
such as color distortions, specular highlights, Moiré pat-
terns, and so on. Based on this observation, both tradi-
tional methods (extracting features with handcrafted oper-
ators, e.g., LBP [5]) and deep CNN methods (extracting
features by utilizing deep networks) focus on the texture
differences to distinguish the live faces from spoofing sam-
ples. We regard these existing texture differences in one
dataset as known attack patterns (or clues). Two limita-
tions severely hinder their performance when facing unseen
attacks. First, the lack of live faces (ground truth) that are
strictly aligned with fake faces makes face anti-spoofing be-
comes a very challenging problem. One model might mis-
take the face subject, pose, expression, or background as a
clue to separate the live face from a fake one, but not the
faithful attack clue [33]. Second, the attack clues in the
training set are known and limited in prior works. While in
a real-world face recognition scene may encounter a wide
variety of attack clues that are unknown and unpredictable.
One model trained on these datasets is very easy to remem-
ber the limited attack clues, which leads to poor general-
ization. Therefore, how to obtain strictly aligned sample
pairs (i.e., live-fake faces) and how to introduce unknown
attack clues in the training time are effective ways to solve
the above deficiencies.

Essentially, face anti-spoofing is a unified system of at-
tack and defense. However, as shown on the left in Fig. 1,
the previous works [21, 49, 56] try to make the defense
system capable of fighting only the attack clues that have
been seen at the training time, but rarely consider how to
strengthen the weakest zone of the defense system from the
perspective of the attack system. This work is established
based on an attack system and introduces unseen fake faces
plus the seen fake faces during the training time. As shown
on the right in Fig. 1, these introduced fake faces are not
only strictly aligned with live faces but also contain unseen
attack clues that can attack the weakest zone of the defense
system. Therefore, the generalization of our model is im-
proved through the adversarial optimization of these two
subsystems to alleviate the bias of the model on the fixed
attack clues. To sum up, the contributions are summarized
below:

• It is an attempt to address face anti-spoofing by using
a unified framework composed of both attack and de-

fense systems. The latter can be alternately optimized
against unseen attacks via adversarial training with the
proposed attack system.

• Two novel modules, namely Adv-APG and Sup-APD,
are proposed in the attack system. The Adv-APG mod-
ule generates a series of spoofing samples by recom-
bining a live face with known attack clues, while the
Sup-APD module pulls the generated spoofing sam-
ples to an unknown domain along the direction of dis-
abling the defense system.

• Extensive experiments demonstrate that the proposed
attack system has pushed the state-of-the-art perfor-
mances on several benchmarks, especially for unseen
attacks.

2. Related work

2.1. Attacks

Face spoofing (e.g., presentation attacks) is the typical
physical attack to deceive the face recognition systems,
where attackers present faces from spoof mediums, such
as a photograph, screen, or mask, instead of a living hu-
man [52]. According to the spoof mediums, we can roughly
classify the existing attacks into 2D [3,26,33,58] and 3D at-
tacks [8, 9, 31].

Replay-Attack [5] and CASIA-FASD [61] are two
widely used datasets in the face anti-spoofing community.
The attack clues in the former are introduced by electronic
screens, while the latter is introduced by an additional print-
ing device. Recently, with the widespread application of
face recognition in mobile phones, there are also some
datasets recorded by replaying face video with a smart-
phone, such as Replay-Mobile [7], OULU-NPU [3], and
SiW [33]. CelebA-Spoof [60] introduces rich attribute an-
notation information, which can be used as an auxiliary
task to improve the generalization of the model in vari-
ous attacks. With the cost reduction of multi-spectral sen-
sors and the popularity of use scenarios, some new sensors
have been introduced to provide more possibilities for face
PAD methods. Holger et al. [44] uses multi-spectral short
wave infrared (SWIR) imaging to ensure the authenticity of
a face even in the presence of partial disguises and masks.
Zhang et al. [58] collects a CASIA-SURF dataset with 3
modalities (i.e., RGB, Depth, and NIR) using Intel Re-
alSense SR300 camera, and proposes a multi-modal multi-
scale fusion method for face anti-spoofing. Similarly, work,
Liu et al. [26] introduces a CASIA-SURF CeFA dataset,
covering 3 ethnicities, 1, 607 subjects. As attack techniques
are constantly upgraded, some new types of attacks have
emerged. Such as a large-scale HiFiMask [31] dataset has
been collected. Specifically, it consists of a total amount of
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54, 600 videos which are recorded from 75 subjects with 7
kinds of sensors.

Although the imaging quality of spoofing samples is
increasing high (i.e., resolution from 320 × 240 [5] to
1, 920 × 1, 080 [33]), imaging devices (i.e., containing 6
mobile phones in OULU-NPU [3]) and spoofing mediums
(i.e., including 4 display devices in SiW [33]) are more and
more diverse, the attack clues are still very limited. Since
an anti-spoofing system may encounter a wide variety of
spoof types, even unpredictable attacks. It is impractical to
accurately model all possible attack clues during the model
training, but it is necessary to simulate as much as possi-
ble the effective attack clues for the defense system. As
compared to the above existing attacks, we design an attack
system that continuously produces spoofing samples that ef-
fectively attack the weak zone of the defense system.

2.2. Defenses

The essence of face anti-spoofing is a defensive mea-
sure for face recognition systems and has been studied for
over a decade. Early works were mainly based on color
texture [2, 5] and motion analysis [37, 47]. The former is
based on the consideration that the fake face is different
from the live face in texture details, such as color distor-
tions, and specular highlights, due to the intervention of
spoofing mediums. However, these algorithms are not ac-
curate enough because of the use of handcrafted features,
such as LBP [5], HoG [39], and SURF [1]. The latter ana-
lyzes the attack samples as static or non-rigid motion com-
pared with live faces from the perspective of motion. Un-
fortunately, these methods become vulnerable if someone
presents a replay attack or a print attack with cut eye/mouth
regions.

Instead of using pre-defined features such as LBP and
HOG, CNN-based methods [49] design a unified framework
of feature extraction and classification in an end-to-end
manner. However, they treat face anti-spoofing as a binary
classification task, and will highly depend on the liveness-
unrelated cues, such as color distortion, shape deformation,
or background information. Intuitively, the live faces in
any scene have consistent face-like geometry. Inspired by
this, another work [33, 48, 56] leverages the physical-based
depth information instead of binary classification loss as su-
pervision, which are more faithful attack clues in any do-
main. Liu et al. [33] design a CNN-RNN model to leverage
the Depth map and rPPG signal as supervision. Similarly,
Wang et al. [48] take deep spatial gradient and temporal in-
formation to assist depth map regression and Yu et al. [56]
propose a novel frame-level FAS method based on Central
Difference Convolution (CDC), which can capture intrinsic
detailed patterns via aggregating both intensity and gradient
information. Yu et al. [53] treat FAS as a material recog-
nition problem and combine it with classical human mate-

rial perception [41], intending to extract discriminative and
robust features for FAS task. Although these CNN-based
methods achieve near-perfect performance under known at-
tack clues, they still show poor generalization in the face of
unknown attacks.

Another works [20, 29, 34, 42, 57] treat FAS as a feature
disentangled representation learning. There are also some
methods [40,46] that focus on improving the generalization
of FAS in unknown domains. However, these methods can
be treated as a defense system that is trained with existing
fake faces and ignore the generalization and perform poorly
on unseen attacks. Inspired by the success of Transform-
ers in natural language processing (NLP), convolution-free
models that only build on transformer blocks have flour-
ished in computer vision. In FAS community, ViTranZ-
FAS [12] uses the pure ViT to solve the zero-shot anti-
spoofing task for the first time. TransRPPG [54] proposes
a pure rPPG transformer framework for mining the global
relationship within MSTmaps for liveness representation
and gives a binary prediction for 3D mask detection. MA-
ViT [24] adopts the early fusion to aggregate all the avail-
able training modalities’ data and enables flexible testing of
any given modal samples with a Modality-Agnostic Trans-
former Block (MATB). ViTAF [17] introduce the ensem-
ble adapters module and feature-wise transformation lay-
ers to adapt to different domains with a few samples. In
this work, we employ a visual task universal network, e.g.,
ResNet50 [16], and two FAS task networks, e.g., Auxil-
iary [33], and CDCN [56] as backbones. At the same
time, they combine the proposed attack system to treat anti-
spoofing as a unified task of attack and defense to alleviate
the bias of the defense system on known attack clues.

3. Proposed Method
The proposed method in this work mainly solves the

poor performance of the current anti-spoofing systems in
the face of unknown attacks by introducing agnostic attack
patterns in the training process. In this part, we first intro-
duce the overall system and then describe each of the sub-
systems in detail.

3.1. Overall System

As shown in Fig. 2, we regard face anti-spoofing as an
integrated attack and defense system. The attack system is
composed of an Adv-APG module and a Sup-APD mod-
ule. First, Adv-APG translates a live face (abbreviated as
L) into a spoofing sample with known attack clues (abbre-
viated as Sk), and Sup-APD shifts the generated spoofing
sample into the agnostic domain (abbreviated as Sa). The
defense system can be an arbitrary face anti-spoofing back-
bone network, such as ResNet50 [16], Auxiliary [33], and
CDCN [56]. We take the commonly used Auxiliary [33]
method which includes a Depth Estimator as an example.
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It takes L, Sa and S as input, and uses the depth estimator
under L2 distance supervision to regress the corresponding
depth maps of input, where S means the spoofing samples
in the original dataset.

Inspired by the generative adversarial learning [14], we
organically optimize these two systems by adversarial train-
ing manner, i.e., by max−minimize the loss of depth
estimator in defense system, where the attack system and
defense system are similar to a generator and a discrimi-
nator, respectively. On the one hand, the defense system
forces the attack system to generate agnostic attacks with
unseen clues, that can attack its weakest zones. And on the
other hand, the defense system tries to distinguish the live
face from the spoofing samples as much as possible. These
two subsystems are trained alternately until they converge
to a balanced state.

3.2. Attack System

The attack system plays an important role in our frame-
work. It generates spoofing samples with agnostic attack
cues during the training time and can attack the weakest
zones of the defense system. However, directly performing
random forgery operations on live faces to mimic agnostic
attack clues, such as adding random noise [43], blurring im-
age, or applying a perspective transformation (with random
parameters) [51], cannot truly simulate the attack clues of
the existing fake faces. Because the noise on an existing
fake face is a combination of sensor, medium, image con-
tent, and environment. Therefore, how to generate as fi-
delity and unseen spoofing samples as possible is the main
purpose of the attack system.

In this work, we sequentially complete this task through
two modules: (1) Adv-APG. It translates a live face L into
a spoofing sample Sk with known attack clues. (2) Sup-
APD. It further pushes the translated spoofing sample Sk to
sample Sa with an agnosic-attack clue.

Adv-APG. One key distinction of our method from the
above [43, 51] is that we do not generate our attacks from
a fixed pool of common attack clues. Instead, the spoofing
examples are generated from a trainable Adv-APG module.
See from in Fig. 2, the Adv-APG essentially is a GANs [14]
associated with a generator (abbreviated as Gen) and a dis-
criminator (abbreviated as Dis).

Traditionally, we train Gen to translate a live face into a
spoofing sample with a special attack clue i, Gen : {L} →
Ski (i means the index of attack clues). To make the gen-
erated spoofing sample indistinguishable from the existing
fake faces, we adopt an adversarial loss

Li
GAN = ESi [logDis(S

i)]

+ EL[log(1−Dis(Gen(L)))]
(1)

where Gen tries to minimize this objective against an
adversarial Dis that tries to maximize it, i.e., G∗en =

arg minGen maxDis Li
GAN . However, each of the mod-

els is tailored for a specific attack clue translation, such as 4
models are needed to generate samples (i.e., Si=1 for Print1,
Si=2 for Print2, Si=3 for Replay1, Si=4 for Replay2) con-
taining all attack clues for a live face from OULU-NPU [3].

In this work, our goal is to train a single generator that
maps a live face to a spoofing sample with any specified at-
tack clue. To achieve this, we explore GANs in conditional
setting (cGANs) [10] by learning an attack clue-conditional
generative model, that translates a live face into a spoofing
sample in a generative way under the condition of the spec-
ified attack clue. At the same time as an inverse mapping,
the existing fake face S will also be translated to a live face
under the condition of the specified live label.

Specially, we first use a one-hot label to classify the at-
tack clues and randomly produce a target label i during
training time, where i is the index of one-hot vector, and
i > 0 means one attack clue, i = 0 means the label of
corresponding live face for symbolic unity. Such as for
OULU-NPU [3], we use Si=1, Si=2, Si=3, and Si=4 to rep-
resent Print1, Print2, Replay1, and Replay2, respectively.
Then, the Adv-APG module can take in as inputs both im-
age and label information to achieve multi-label image-to-
image translation. On the one hand suitable for our task,
it learns to translate the live face L into a spoofing sam-
ple by the randomly produced attack label i(i > 0), i.e.,
Gen : {L, i} → Ski (briefly named Mapping1). On the
other hand for an inverse mapping, it learns to translate the
fake face S into a corresponding live face by the given live
label i(i = 0), i.e., Gen : {S, i} → L (briefly named Map-
ping2). The objective for the Mapping1 (similar to the Map-
ping2) of a conditional GAN can be expressed as

LcGAN = EL[logDis(L)]

+ EL,i[log(1−Dis(Gen(L, i)))]
(2)

where Gen generates an image Gen(L, i) conditioned on
both the live face L and the attack label i, while Dis tries
to distinguish between real spoof face S and fake spoof face
Sk (and tries to distinguish between real live face L and fake
live face in Mapping-2). Inspired by the AC-GANs [36],
we also introduce an auxiliary classifier that allows a sin-
gle classifier Dcls to control multiple attack clues. It aims
to impose the classification loss of attack clue when opti-
mizing the above objective. Similar to StarGAN [6], the
classification loss of live faces is used to optimize Dis and
defined as:

Ll
cls = EL,i=0[−logDcls(i|L)] (3)

where Dcls(i|L) represents the probability that the sample
L belongs to a live face. By minimizing this loss,Dis learns
to classify the live face L to its corresponding original label
i (i = 0). In contrast, the classification loss of generated
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Figure 2. The overall architecture of the agnostic-attack face an anti-spoofing framework. It contains an attack system and a defense
system, which are trained in an alternate and adversarial manner. The dotted line indicates that the network parameters are fixed in the
current step.

spoofing samples is used to optimize Gen:

Ls
cls = EL,i>0[−logDcls(i|G(L, i))] (4)

where Gen tries to minimize this loss to generate spoofing
samples that can be classified as the attack clue i. To fur-
ther reduce the spatial diversity brought by GANs, we im-
pose a cycle-consistency constraint [6, 62] on the translator
Gen. In theory, for a live face L, the image translation cycle
should be able to bring it back to the original image after
two times of inverse mapping, i.e., L→ Gen(L, i|i > 0)→
Gen(Gen(L, i|i > 0), i|i = 0) ≈ L.

Lcyc = EL,i>0 ‖Gen(Gen(L, i), 0)− L‖1 (5)

where the cycle-consistency loss Lcyc can be regarded as a
regularizer to guarantee that the learned function Gen can
map an individual input L to a desired output Sk.

Sup-APD. Only generating spoofing samples Sk that are
indistinguishable from the existing fake faces S cannot ef-
fectively attack the weakest zones of the defense system.
Because trained on spoofing samples with fixed and limited
attack clues can easily lead to overfitting. Therefore, we de-
sign a Sup-APD module that will drift the generated sample
to an unknown domain along the direction that makes the
defense system invalid.

Before exploring this direction, we first introduce the
principle of the defense system in this work. See the de-
fense system in Fig. 2, the depth estimator is essentially a
depth regression network, denoted as Dep, which outputs
the fitted depth map of the input face with the supervision
of depth loss. It can be represented by Ldep by calculating
the L2 distance between the depth map of the input face I
and the ground truth D

Ldep = ‖Dep(I)−D‖22 (6)

where I is the input face from either a live or a fake face (de-
noted as I ∈ {L ∪ Sa ∪ S}), D is the corresponding ground

truth which is estimated by 3DDFA [15] in this work for
live faces and 0 for fake faces, and Dep(I) means the depth
map, denoted as D̂, output by Dep with fixed parameters in
inference phase, respectively.

In our context, drifting the spoofing sample to an un-
known domain along the direction that makes the defense
system invalid is equivalent to searching out the variants of
the spoofing sample in an unknown domain that makes the
current defense system give the worst prediction. As shown
in Fig. 2, it can be done by maximizing the Ldep in Eq.6.
Furthermore, to ensure the diversity of drifted samples Sa,
we design a drifter (abbreviated as Drf ) to push the gener-
ated spoofing samples Sk to any domain in as many direc-
tions as possible. This process of the Sup-APD module can
be expressed as

Ldrf = α1

∥∥Drf

(
Sk

)
− Sk

∥∥2
2
− α2Ldep (7)

where α1 controls the the fidelity of the image content,
while α2 controls drift strength of the image style, respec-
tively. They are set to 1, 0.1 in our experiments.

Objective for Attack System. Based on the above discus-
sion, we can regard the Sup-APD as a constraint imposed
on Adv-APG, which guides the generator Gen to generate
Sa by minimizing the Ldrf in Eq.7. Therefore, the objec-
tive functions to optimize the attack system are respectively
expressed as

LGen = LcGAN + λclsLs
cls + λcycLcyc + λdrfLdrf (8)

LDis
= −LcGAN + λclsLl

cls (9)

where LGen (and similar to LDis ) is a weighted sum of
the adversarial loss (Eq.2), the classification loss (Eq.3 and
Eq.4), the cycle-consistency loss (Eq.5), and the pixel-based
drift loss (Eq.7). λcls, λcyc, λdrf are weights that control
the importance of constraint terms, which are set to 1, 10, 1
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in all of our experiments, respectively. In particular, the cy-
cle consistency and classification losses focus on restoring
image content and style, while the adversarial loss restores
texture details and the drift loss enriches the diversity of
generated spoof samples.

3.3. Defense System

In contrast to the attack system that maximizes the Ldep

(if Auxiliary [33] is used as a defense system), the optimiza-
tion process of the Dep along the direction that minimizing
the Ldep in the defense system. Especially, the defense sys-
tem actively strengthens the weakest point of the current
Dep by adversarial training manner with the attack system.
It makes the defense system a generalizable approach and
provides significant robustness against unseen attacks.

4. Experiments
In this section, we conduct a series of experiments to

visually and quantitatively demonstrate the effectiveness of
the proposed approach. In the following, we sequentially
introduce the experimental setup, implementation details,
experimental results, and analysis in detail.

4.1. Experimental Setup

Datasets & Protocols. For the intra-testing experi-
ments, two high-resolution and -quality faces anti-spoofing
datasets, including OULU-NPU [3] and SiW [33] are eval-
uated in our experiments. According to the protocols, we
report the results under known attack on Protocols 1, 3 of
the OULU-NPU and Protocol 1 of the SiW, whilst under
unknown attack on the remaining protocols. For the inter-
testing experiments, we utilize the Replay-Attack [5] and
CASIA-FASD [61] datasets to perform cross-testing be-
tween them, which is widely used as a cross-testing bench-
mark.

Evaluation Metrics. Especially, Attack Presentation Clas-
sification Error Rate (APCER), Bonafide Presentation Clas-
sification Error Rate (BPCER), and ACER [18] are used
for the metrics. Further, Half Total Error Rate (HTER) is
adopted in the cross-testing between Replay-Attack [5] and
CASIA-FASD [61].

4.2. Implementation Details

Training Details. The proposed framework is implemented
with Pytorch and runs on a single NVIDIA TITAN X GPU.
We resize the cropped face region to 256 × 256. In the
training stage, all models are trained with a BatchSize of
6 and an initial learning rate of 0.0001. We train models
with 40 epochs from scratch via Adam solver, keep the same
learning rate for the first 20 epochs and linearly decay it to
0 over the next 20 epochs.

Figure 3. The domain-style display of a print attack in three ses-
sions (Protocol 1), three acquisition devices (Protocol 3).

Network Architecture. The attack system consists of a
generator Gen and a discriminator Dis with the same back-
bone with CycleGAN [62]. For the generator Gen, it con-
tains two stride-2 convolutions to downsample the input
face, followed by 9 residual blocks, and two fractionally-
strided convolutions with stride 1/2 to upsample to ensure
the input and output have the same size. Whilst for the dis-
criminator Dis, it is a 70× 70 PatchGAN [19], which aims
to determine whether the 70 × 70 image patch is real or
fake. Similar to, StarGAN [6], we use instance normaliza-
tion [45] for the generator but no normalization for the dis-
criminator. Inspired by [35] the generation of watermark at-
tack, our drifter Drf uses a simple two-layer CNN with the
structure of Conv3-LeakyReLU-Conv16. The main contri-
bution of this work is to introduce a plug-and-play attack
system to alleviate the bias of the defense to irrelevant fac-
tors. Therefore, we chose a relatively simple and effective
backbone as much as possible.

For the defense system, we employ four common net-
works as backbone: ResNet50 [16], Auxiliary [33], and
CDCN [56], respectively.

4.3. Results on Known Attack.

Results on OULU-NPU. The results of OULU-NPU are
shown in Tab. 1. When the defense system uses Auxil-
iary [33], the proposed method reduces its ACER to 1.6%
and 2.2% on Protocol 1 and 3, respectively. While when
the defense system uses CDCN [33], the proposed method
achieves the second-best and best performance for ACER,
i.e., 0.4%, and 1.7% in Protocol 1 and Protocol 3, respec-
tively. These two protocols introduce various image do-
mains by setting up multiple acquisition sessions and de-
vices. As shown in Fig. 3, a print attack (the same case for
other attacks) presents different domain styles in different
illuminations, which are more distinct in different camera
devices. The diversity of domain styles which are caused
by the noise prototypes of sensors [43] poses a certain chal-
lenge to the learning of subtle attack clues.

Compared with two prior methods on Protocol 3, i.e.,
STASN [51] and STDN [52], our approach achieves bet-
ter performance with an ACER of 1.7%. In particular, by
adding our attack system to the Auxiliary [33], all the per-
formances on Protocol 3 are improved, i.e., the metrics that
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Table 1. Evaluation results on four protocols of OULU-NPU.

P. Method APCER(%) BPCER(%) ACER(%)

1

STASN [51] 1.2 2.5 1.9
STDN [52] 0.8 1.3 1.1

NAS-FAS [55] 0.4 0.0 0.2
Aux. [33] 1.6 1.6 1.6

Ours(Aux.) 1.6 1.6 1.6
CDCN [56] 0.4 1.7 1.0

Ours(CDCN) 0.8 0.0 0.4

2

STASN [51] 4.2 0.3 2.2
STDN [52] 2.3 1.6 1.9

NAS-FAS [55] 1.5 0.8 1.2
Aux. [33] 2.7 2.7 2.7

Ours(Aux.) 1.1 1.1 1.1
CDCN [56] 1.5 1.4 1.5

Ours(CDCN) 1.5 0.9 1.2

3

STASN [51] 4.7±3.9 0.9±1.2 2.8±1.6
STDN [52] 1.6±1.6 4.0±5.4 2.8±3.3

NAS-FAS [55] 2.1±1.3 1.4±1.1 1.7±0.6
Aux. [33] 2.7±1.3 3.1±1.7 2.9±1.5

Ours(Aux.) 1.4±1.0 3.0±6.6 2.2±3.2
CDCN [56] 2.4±1.3 2.2±2.0 2.3±1.4

Ours(CDCN) 1.2±1.2 2.2±1.8 1.7±1.6

4

STASN [51] 6.7±10.6 8.3±8.4 7.5±4.7
STDN [52] 2.3±3.6 5.2±5.4 3.8±4.2

NAS-FAS [55] 4.2±5.3 1.7±2.6 2.9±2.8
Aux. [33] 9.3±5.6 10.4±6.0 9.5±6.0

Ours(Aux.) 2.1±1.0 4.9±1.2 3.0±0.5
CDCN [56] 4.6±4.6 9.2±8.0 6.9±2.9

Ours(CDCN) 4.9±3.2 5.7±6.2 5.3±2.9

are reduced by 1.3%, 0.1%, and 0.7% for APCER, BPCER,
and ACER respectively. Similar configuration for CDCN,
the metrics that are reduced by 1.2%, 0.0%, and 0.6% for
APCER, BPCER, and ACER respectively. The source of
the advantage is the Sup-APD module. It pushes the same
spoofing sample into a variety of unknown domains.

Results on SiW. Tab. 2 lists the results of different meth-
ods on SiW dataset. Whether the defense system is Auxil-
iary [33] or CDCN [56], our approach obtains the best per-
formance in Protocol 1 with 0% in all three metrics includ-
ing APCER, BPCER, and ACER.

Specifically, the proposed method ‘Ours(Aux.)’ outper-
forms Auxiliary [33] with a significant margin, e.g., 3.58%
of all three metrics on Protocol 1. The proposed method
‘Ours(CDCN)’ also has non-negligible advantages for de-
fense system CDCN [56], e.g., 0.12% for ACER on Proto-
col 1. Those improvements mainly benefit from the Adv-
APG module that can generate a lot of spoofing samples of
being aligned with live faces, which prompts the depth esti-
mator Dep to focus on attack clues in the face region rather
than changes in facial posture and expression.

Table 2. Evaluation results on three protocols of SiW dataset.

P. Method APCER(%) BPCER(%) ACER(%)

1

STASN [51] - - 1.00
MetaFAS-DR [38] 0.52 0.50 0.51

STDN [52] 0.00 0.00 0.00
NAS-FAS [55] 0.07 0.17 0.12

Aux. [33] 3.58 3.58 3.58
Ours(Aux.) 0.00 0.00 0.00
CDCN [56] 0.07 0.17 0.12

Ours(CDCN) 0.00 0.00 0.00

2

MetaFAS-DR [38] 0.25±0.32 0.33±0.27 0.29±0.28
STASN [51] - - 0.28±0.05
STDN [52] 0.00±0.00 0.00±0.00 0.00±0.00

NAS-FAS [55] 0.00±0.00 0.09±0.10 0.04±0.05
Aux. [33] 0.57±0.69 0.57±0.69 0.57±0.69

Ours(Aux.) 0.09±0.17 0.21±0.25 0.15±0.11
CDCN [56] 0.00±0.00 0.13±0.09 0.06±0.04

Ours(CDCN) 0.00±0.00 0.09±0.04 0.05±0.06

3

STASN [51] - - 12.10±1.50
STDN [52] 8.30±3.30 7.50±3.30 7.90±3.30

MetaFAS-DR [38] 7.98±4.98 7.35±5.67 7.66±5.32
NAS-FAS [55] 1.58±0.23 1.46±0.08 1.52±0.13

Aux. [33] 8.31±3.81 8.31±3.81 8.31±3.81
Ours(Aux.) 3.74±2.15 7.10±1.56 5.42±2.13
CDCN [56] 1.67±0.11 1.76±0.12 1.71±0.11

Ours(CDCN) 1.39±0.16 1.65±0.14 1.52±0.17

4.4. Results on Unknown Attack.

Results on OULU-NPU. The results of Protocol 2 and 4 on
OULU-NPU are reported in Tab. 1. For the Auxiliary de-
fense system, significant improvements are achieved in both
two protocols when equipped with our attack system, i.e.,
about 1.6% and 6.5% improvements for ACER on Proto-
col 2 and Protocol 4. While for the defense system CDCN,
the ACER of 0.3% and 1.6% are reduced on Protocol 2 and
Protocol 4, respectively.

It shows that our attack system, mainly the Sup-APD
module, can not only effectively simulate the domain styles
of multiple acquisition devices, but also simulate the sen-
sor noises introduced by various spoofing mediums for the
same attack. In addition, compared to STDN [52], we can
observe that our approach ‘Ours(Aux.)’ reduces the error
rate in all metrics for the most challenging Protocol 4. It
further demonstrates that our method improves the detec-
tion ability for unseen attacks by synthesizing various ef-
fective spoofing samples is better than that of disentangling
spoof traces from the spoofing samples [52]. This is due to
the lack of ground truth for spoof traces, and results in the
subtle spoofing clues are extremely difficult to be separated
from the spoofing samples.

Results on SiW. It is worth noting that on Protocol 3
of SiW (see Tab. 2), our approach ‘Ours(Aux.)’ outper-
forms previous methods, e.g., Auxiliary [33] and MetaFAS-
DR [38], with achieving 3.74%, 7.10% and 5.42% on
APCER, BPCER, and ACER, respectively. When the de-
fense system is replaced by CDCN [56], our approach
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Table 3. Quantitative ablation study of each component.

Method SiW(Protocol 1) OULU-NPU(Protocol 2)
APCER BPCER ACER APCER BPCER ACER

Aux. [33] 3.58 3.58 3.58 2.7 2.7 2.7
Aux.+APG 0.48 1.01 0.75 4.4 0.6 2.5
Aux.+APD 2.96 3.85 3.41 1.1 1.7 1.4
Ours 0.00 0.00 0.00 1.1 1.1 1.1

‘Ours(CDCN)’ achieves the best performance in most met-
rics, such as 1.39% and 1.52% on APCER and ACER, re-
spectively.

4.5. Ablation Study

To evaluate the contribution of each component in our
framework, we perform an ablation study and introduce two
variations according to the improvements, i.e., the Auxil-
iary [33] with Adv-APG (denoted as Aux.+APG), and with
Sup-APD (denoted as Aux.+APD).

Effect of the Adv-APG. We verify the effectiveness of our
improvements on both the testing protocols of known and
unknown attack clues. For the former, we conduct ex-
periments on Protocol 1 of SiW with four methods, i.e.,
Aux., Aux.+APG, Aux.+APD, and our approach (means
Aux.+APG+APD), respectively. From Tab. 3, we can ob-
verse that the most significant contribution comes from
the term of APG since the ACER drops sharply compared
with APD. In addition, the performance is further improved
by combining with APG and APD, e.g., 0% on APCER,
BPCER, and ACER of Protocol 1.

Effect of the Sup-APD. In addition, we set up a series of
comparative experiments on Protocol 2 of OULU-NPU to
measure the performance of our works in unknown attack
clues. Tab. 3 shows the comparison results of four methods.
The baseline method Aux. achieves decent performance on
three metrics, such as all 2.7% on APCER, BPCER, and
ACER. Adding the APG and APD to the baseline can re-
duce the ACER from 2.7% to 2.5% and 1.4%, respectively.
It indicates that the Sup-APD plays a more important role
in mitigating the impact of different attack mediums, such
as unseen printers or displays. Furthermore, in comparison
to baseline Aux. which is found to be vulnerable to unseen
attacks, our approach by combining APG and APD reduces
the ACER from 2.7% to 1.1%. It further demonstrates that
we unify the attack and defense system in the way of ad-
versarial training for face anti-spoofing demonstrates better
robustness.

4.6. Visualization Analysis

To visually demonstrate the generation effect of our at-
tack system, we randomly select a testing sample from the
OULU-NPU dataset, which contains a live face and 4 fake

Figure 4. Display of generated samples in two opposite mappings.
Note that the i = 0, i = 1, i = 2, i = 3, and i = 4 are the labels
of Live, Print1, Print2, Replay1, and Replay2, respectively.

faces with different attack types (i.e., Print1, Print2, Re-
play1, and Replay2), and then generate spoofing samples
corresponding to each face that are aligned with the live face
using the trained generator Gen.

We show some generated samples in Fig. 4. For Map-
ping1, our model learns to translate the real live face (the
second column) into the fake spoofing sample of Print1,
Print2, Replay1, and Replay2 by specifying the attack la-
bel as 1, 2, 3, 4, respectively. For Mapping2, our model
transforms four types of real spoofing samples into the fake
live sample (the first column) by specifying the label as 0.
Whether the fake live samples or fake spoofing samples, it is
difficult to distinguish from the corresponding real samples.

5. Conclusion

This work proposes an attack-agnostic framework for
tackling face anti-spoofing by unifying the attack and de-
fense system. Two modules are introduced in the attack sys-
tem: the Adv-APG module generates a series of spoofing
samples, and the Sup-APD module pulls the spoofing sam-
ples to an unknown domain. Finally, extensive experiments
demonstrate the performance of the proposed approach.

Acknowledgments

This work was supported by the National Key Research
and Development Plan under Grant 2021YFF0602103,
the External cooperation key project of Chinese Academy
Sciences 173211KYSB20200002, the Chinese National
Natural Science Foundation Projects 61876179 and
61961160704, the Science and Technology Development
Fund of Macau (No. 0010/2019/AFJ, 0008/2019/A1,
0025/2019/AKP, 0019/2018/ASC, 0004/2020/A1,
0070/2020/AMJ).

6343



References
[1] Zinelabidine Boulkenafet, Jukka Komulainen, and Abdenour

Hadid. Face spoofing detection using colour texture analysis.
TIFS, 2016. 3

[2] Zinelabidine Boulkenafet, Jukka Komulainen, and Abdenour
Hadid. Face antispoofing using speeded-up robust features
and fisher vector encoding. SPL, 2017. 3

[3] Zinelabinde Boulkenafet, Jukka Komulainen, Lei Li, Xiaoyi
Feng, and Abdenour Hadid. Oulu-npu: A mobile face pre-
sentation attack database with real-world variations. In FG,
2017. 1, 2, 3, 4, 6

[4] Zhihong Chen, Taiping Yao, Kekai Sheng, Shouhong Ding,
Ying Tai, Jilin Li, Feiyue Huang, and Xinyu Jin. General-
izable representation learning for mixture domain face anti-
spoofing. arXiv preprint arXiv:2105.02453, 2021. 1
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