
Bandpass Filter Based Dual-stream Network for Face Anti-spoofing

Dingheng Zeng1, Liang Gao1, Hao Fang2, Guohui Xiang1, Yue Feng1*, Quan Lu1

1Mashang Consumer Finance Co., Ltd., Chongqing, China
2School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
{dingheng.zeng,liang.gao01,guohui.xiang,yue.feng,quan.lu}@msxf.com, fanghao21@mails.ucas.ac.cn

Abstract

Face Attack Detection (PAD) technology is crucial for
protecting facial recognition systems. At present, methods
for Face Anti-spoofing (FAS) mainly focus on short-distance
applications, and algorithm performance can sharply de-
cline when facing challenges such as low resolution, pedes-
trian obstruction, and blurriness in long-distance scenar-
ios. To address these issues, we propose a dual-stream ar-
chitecture that combines information from the images and
its bandpass filtered image to distinguish attacks. Specifi-
cally, one branch extracts detailed facial structure and tex-
ture information from the original spatial domain of images.
The other branch take the Gaussian bandpass filtered im-
age as input to learn the complementary discriminative fea-
tures. The filtering process was done in frequency domain
by FFT/IFFT. We proposed a cross-attention fusion module
to fuse the features extracted by the two network branches.
Additionally, to further improve the model’s generalization
ability to data quality, we use automatic correction and lion
optimizer. Finally, our method achieved a result of 6.22%
on the ACER metric and ranked third in the 4th Face Anti-
Spoofing Challenge @CVPR2023.

With the rapid development of computer vision technol-
ogy, face recognition technology [1,11,26] has become very
mature and widely used in personal identification scenarios.
However, there are also increasing threats to face recogni-
tion technology, such as 3D masks, high-definition printed
photos, high-definition video replays, and so on. These face
representation attacks attempt to deceive face recognition
systems using physical media in order to gain illegal bene-
fits through these systems. Therefore, research on face rep-
resentation attack detection technology is extremely critical
for protecting user privacy and system security. This tech-
nology can detect in advance whether the input face is a
live person or an attack, so that appropriate measures can
be taken to protect the privacy and security of the system
and citizens.

*Corresponding author

1. Introduction

Figure 1. Examples from the SuHiFiMask dataset [7].

Based on the differences in structural features and tex-
ture features of human faces, the types of physical attacks
can be roughly divided into two types: 2D and 3D. Com-
mon 2D attacks include electronic photos [4], video play-
back [5], printed photos [39], etc. The 3D attack includes
HD masks, headgear and head models [22], etc. However,
regardless of 2D or 3D attacks, existing FAS work is lim-
ited to detecting attack types in close-range restricted envi-
ronments. With the popularization of remote sensors and
the large-scale deployment of monitoring networks. The
FAS community urgently needs to extend the face anti-
counterfeiting algorithm to long-distance monitoring sce-
narios.

The task of facial anti-fraud in monitoring fields is rela-
tively difficult because the targets in most scenes are uncon-
strained, making it difficult to ensure the quality of the face
images. Compared with previous close-distance face anti-
spoofing tasks, the face in surveillance scenes are small, oc-
clusion, motion blur and pose variations. In Figure 1, we
show some examples from large-scale Surveillance High-
Fidelity Mask (SuHiFiMask) dataset [7], which has 101
subjects from different age groups with 232 3D masks,200
2D attacks,and 2 adversarial attacks.

With the widespread application of face recognition
technology in surveillance scenarios, research on face anti-

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

6403



spoofing in this field has been promoted. Previous CNN
methods pay more attention to fine-grained feature, which
includes image reflection, based on color-texture [10, 24,
28], based on depth map [27, 36, 37], or based on remote
photoplethysmography [14, 35], which achieved very good
results. However, they did not generalize well to low-
quality, long-distance face images. In this paper, inspired
by the lightweight network EfficientFormerV2 [13], we pro-
pose a dual-stream network framework that combines in-
formation from the images and its bandpass filtered im-
age. One stream uses band-pass filters to enhance edges
of image and denoise the image, which has been proven
to be a very effective denoising method in previous studies
[29, 33, 40, 41]. To avoid information loss caused by image
denoising, the other stream extracts features from the orig-
inal image. By fusing the features of the dual streams, we
can improve the overall algorithm’s generalization perfor-
mance on low-quality images. In addition, we use autoaug-
mentation [6]strategies to reduce model overfitting and use
the Lion [2] optimizer to ensure algorithm training stability.
Finally, we achieved 6.22%(ACER) in the 4th Face Anti-
spoofing Challenge@CVPR2023, ranking third among all
participating teams.

Our main contributions can be summarized as follows:

• We proposed a dual-stream network architecture that
extract complementary discriminative features from
the images and its bandpass filtered image based on a
visual transformer. The bandpass filter branch obtains
features after image filtering, while the other branch
preserves the original image features. We proposed a
cross-attention fusion module to fuse the output fea-
tures of dual-stream network, can enhance the model’s
generalization ability to low-quality facial images.

• We have demonstrated through experiments that using
the strategy of automatic data augmentation and us-
ing the LION optimizer can significantly improve the
generalization ability of the algorithm and ensure the
stability of model iteration.

• Our method achieves 6.22%(ACER) and ranks third in
the Face Anti-spoofing Challenge@CVPR2023. In ad-
dition, We have summarized the effectiveness of meth-
ods for low-quality data and identified future research
directions.

2. Related work

The existing face anti-spoofing methods [8, 9, 30] can
be broadly classified into two categories: hand-crafted fea-
ture and deep learning methods. The hand-crafted feature
method uses manually designed features as inputs for clas-
sifiers such as LBP [34], HOG [12], SURF [25], etc., and

then train a classifier similar to SVM [31]. These meth-
ods have advantages such as low computational complexity
and fast speed, and have achieved good results in traditional
simple scenarios. However, the manual feature extraction
process is cumbersome, and when the input data volume
doubles, the cost of manual feature extraction is high and
often cannot be located to features that are beneficial for
downstream tasks. Therefore, these methods will fail in
complex or cross-domain tasks.

On the other hand, the deep learning-based methods use
CNN to treat the live detection as a binary classification
task. These methods mainly analyze fine-grained features
of the face, such as color and texture [15,17,19,21–23,38],
and are therefore suitable for high-quality face images cap-
tured at close-distance. However, when these methods are
extended to long-distance monitoring scenarios, the fine-
grained features they rely on in high-quality images contain
only partial discriminative information, while also contain-
ing noise interference such as dynamic blur, occlusion, and
pseudo-images, which makes the network unable to distin-
guish the correct optimization direction and thus leads to a
decrease in performance.

To address the problem of low-quality face images, re-
cent studies have proposed several solutions. For example,
Chen et al. [3] consists of the depthwise separable atten-
tion module and the multi-modal based feature augment
module to enhance the low-quality images. Fang et al.
[7]proposes a Contrastive Quality-Invariance Learning net-
work to eliminate the effect of image quality. This frame-
work includes three modules: the Image Quality Variable
module, which upscales the low-quality images to restore
fine-grained information, the Contrastive Learning Branch,
which uses generated samples to simulate quality distribu-
tion and learn live features that are not affected by qual-
ity interference, and the Separate Quality Network, which
learns the quality factor from the input images. To alle-
viate performance degradation caused by large face pose,
Liu et al. [20] designed a Pose-Independent Face Anti-
Spoofing (PIFAS) framework to disentangle face into an
appearance information and a pose code to capture liveness
and liveness-irrelated features, respectively. Face Presen-
tation Attack Detection (PAD) approaches based on multi-
modal data have been studied extensively by its good per-
formance. Liu et al. [18] proposed a Cross-modal Auxiliary
(CMA) framework, via a generative model that maps in-
puts from one modality (i.e., RGB) to another ( i.e. , NIR),
to assist the performance improvement of VIS-based PAD.
Liu et al. [16] present a single branch based Transformer
framework, namely Modality-Agnostic Vision Transformer
(MA-ViT), which aims to improve the performance of arbi-
trary modal attacks with the help of multi-modal data.

To effectively alleviate the negative impact of low-
quality images, this paper proposes a dual-stream network
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framework take image and its bandpass filtered image as in-
puts, which has the following advantages: (1) One branch
converts the image to the frequency domain and obtains an
edge enhanced image through the Gaussian bandpass fil-
ter, which can extract features that are less related to image
quality. (2) Another branch extracts features of the orig-
inal spatial domain image, including detailed facial struc-
tural information and color texture. (3) The features of the
two branches are fused by a cross attention fusion module,
better utilizing the complementary advantages of the two
features for classification. In addition, we use automatic
augmentation and lion optimizer to improve the algorithm’s
generalization performance and training stability.

3. Methodology
In this section, we will first introduce the framework of

our method, including the network architecture and pro-
posed features fusion module, followed by the data prepro-
cessing process, data augmentation techniques employed
during training, the loss function, and the strategy used for
the final outputs.The entire framework of our method is il-
lustrated in Fig 2.

3.1. Network Architecture

Many studies have already demonstrated the effective-
ness of vision transformers (ViT) for fine-grained classifica-
tion tasks. In this work, we use the EfficientFormerV2 [13]
as the backbone and designed a dual-stream architecture.

EfficientFormerV2. As stated in [13], Efficient-
FormerV2 is a neural network architecture that is designed
and optimized for mobile devices, taking reference from
MobileNet and making a series of mobile-specific optimiza-
tions to the Vision Transformer (VIT). The model’s param-
eter count and latency are crucial for hardware with limited
resources, so EfficientFormerV2 employs a fine-grained
joint search strategy to create an efficient network with low
latency and small size. Compared to MobileNetV2, this
network achieves 4% higher performance on the validation
set of the ImageNet dataset while maintaining the same pa-
rameter count and latency. EfficientFormerV2 thoroughly
investigates mixed visual backbones and validates network
structure designs that are more friendly to mobile devices.
It follows the conventional ViT architecture, replacing the
token mixer’s average pooling layer with depthwise sepa-
rable convolution layers with the same kernel size, which
improves performance without increasing latency. The net-
work design consists of four stages that capture features
at resolutions of 1/4, 1/8, 1/16, 1/32 of the input resolu-
tion. Similar to its predecessor EfficientFormer, Efficient-
FormerV2 embeds the input image from a small kernel con-
volution stem, rather than using inefficient non-overlapping
patches. The first two stages capture high-resolution lo-
cal information, so the paper only uses a unified feedfor-

ward network (FFN), while local FFN and global MHSA
blocks are used in the last two stages. Additionally, Effi-
cientFormerV2 introduces fine-grained joint search for size
and speed on top of its previous version, resulting in ex-
tremely fast inference and small model size, surpassing pre-
vious technologies and serving as a powerful backbone for
various downstream tasks.

Figure 2. Framework of our proposed method.

Dual-stream Network. Dual-stream networks are com-
monly used in applications that involve processing of multi-
modal data. By processing each modality of data separately,
the network can learn features that are specific to each
modality, which can then be fused to obtain a more com-
prehensive representation of the data. In face anti-spoofing
tasks, a dual-stream network can be used to process rgb and
depth inputs separately and then fuse the extracted features
to improve the overall accuracy of the classification. The
dual-stream structure we used has two identical backbone
with different inputs. One input is the original image, while
the other input is the image that has been filtered using a
Gaussian band-pass filter. A band-pass filter can remove
signals below or above a certain frequency range, thus fil-
tering out noise and interference. And it increase signals
in certain frequency ranges, thereby changing the image’s
color and contrast, among other visual features. So we can
regard it as data of another modality.

Cross Attention Fusion. In order to fuse the output fea-
tures from the two different branches, a cross-attention fu-
sion module is adopted which illustrated in Fig 3 This mod-
ule composed by two regular multi-head attention blocks.
The original outputs from the two branches and the fused
features are then fed into three separate classification heads
to generate three output results.

3.2. Data Preprocessing

The two branches of our network take as input the orig-
inal RGB image and the image filtered using a Gaussian
band-pass filter, respectively. The band-pass filtering pro-
cess can be illustrated as shown in Fig 4

As shown in the diagram, the band-pass filtering process
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Figure 3. Cross attention fusion module.

Figure 4. Band-pass filtering process.

involves the following steps: The Gaussian band-pass fil-
tering process we used involves subtracting two Gaussian
window with different standard deviations to obtain a band-
pass filter kernel, denoted as g k. The original image is
then transformed into the frequency domain using the Fast
Fourier Transform (FFT), and applied with shift operation
to obtain centralized frequency domain image. To apply the
band-pass filter to the frequency domain image, we mul-
tiply the bandpass filter kernel g k with the frequency do-
main image, element-wise. This operation attenuates the
low and high-frequency components of the image, while
preserving the mid-frequency components within the range
of the band-pass filter. The resulting filtered frequency do-
main image is then shifted back to its original position, and
transformed back into the spatial domain using the Inverse
Fast Fourier Transform (IFFT). This yields the final band-
pass filtered image, which emphasizes the edges and high-
frequency details within the range of the band-pass filter.
The process of frequency domain filtering can be expressed
by the following formula:

I(x, y) = Real{IFFT [H(u, v)F (u, v)]} (1)

where I(x,y) is the filtered spatial domain image, Real refers
to the operation of taking the real part of a complex num-
ber, IFFT is the inverse fast Fourier transform, H(u,v) is the
frequency domain filtering function, and F(u,v) is the data
of the input image after performing the Fourier transform
to the frequency domain. H(u,v) here we used is Gaussian

window which is shown in Eq2.

w(n) = e−
1
2 (

n
σ )2 (2)

We use a Gaussian window instead of a rectangular window
as the filter because using a rectangular window to truncate
the spectrum can result in striped patterns(Refer to Fig 5)
due to spectral leakage. These extra patterns, when applied
to both positive and negative samples, can cause training
instability.

Figure 5. Filter comparison. (a) Gaussian window as filters for
frequency domain filtering. (b) Rectangular window as filters, the
area pointed by the red arrow is the stripe artifact.

3.3. Data Augmentation

We use the data augmentation module provided by the
timm framework, which includes various techniques such
as auto-augmentation, color jitter, random erase, random
scaling and mixup etc,. In addition, we also added some
operations such as random noise, image quality degradation
to further diversify the training data.

To regularize the model and prevent overfitting, we em-
ployed mixup and label smoothing techniques during train-
ing. To ensure the consistency of the labels for the dual-
input network after mixup, we replayed the random seed
during each mixup operation. This ensured that the same
pairs of images were mixed up in both branches of the net-
work with the same mixing coefficients, resulting in consis-
tent labels across the two branches.

Fig 6 shows the resulting data after mixup for the dual-
branch inputs.

3.4. Loss Function

We employed three separate classification heads, each
with its own cross-entropy loss function. These losses were
combined using a weighted sum to form the final loss func-
tion, which is given by:

Loss = Loss fusion+λ1∗Loss ori+λ2∗Loss bpf (3)
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Figure 6. Network inputs after data augmentations and mixup.

where Loss fusion is the cross-entropy losses of the clas-
sification head corresponding to the output of the cross-
attention fusion module, Loss ori refers to the output cross-
entropy loss of the network branch corresponding to the
original image, while Loss bpf refers to the output cross-
entropy loss of the network branch corresponding to the
band-pass filtered image. λ1, and λ2 are the correspond-
ing weights. The weights of each loss can be determined
through cross-validation or grid search.

4. Experiments

In this section, we describe the dataset setup, evaluation
metrics, and implementation details, results and visualiza-
tion.

4.1. Dataset & Metrics

SuHiFiMask [7]. The large-scale Surveillance High-
Fidelity Mask (SuHiFiMask) dataset captured under 40
surveillance scenes, which has 101 subjects from different
age groups with 232 3D attacks (highfidelity masks), 200
2D attacks (posters, portraits, and screens), and 2 adversar-
ial attacks. There are three protocols to evaluate the perfor-
mance in surveillance environments: Protocol 1-ID, Proto-
col 2-Mask, and Protocol 3-quality. This challenge is based
on Protocol 3 which evaluates the robustness of the algo-
rithm to image quality degradation. Variable quality and
disturbances are factors that affect the stability of the algo-
rithm.

Performance Metrics. For the performance evalua-
tion, selected the standardized ISO/IEC 30107-3 metrics:
Attack Presentation Classification Error Rate (APCER),
Normal/Bona Fide Presentation Classification Error Rate
(NPCER/BPCER) and Average Classification Error Rate
(ACER) as the evaluation metric, in which APCER and
BPCER/NPCER are used to measure the error rate of fake
or live samples, respectively. They can be formulated as

APCER =
FP

TN + FP
(4)

BPCER =
FN

FN + TP
(5)

ACER =
APCER+BPCER

2
(6)

where FP, FN, TN and TP denote the false positive, false
negative, true negative and true positive sample numbers,
respectively. ACER is used to determine the final ranking
in the 4th Face Anti-spoofing Challenge@CVPR2023. Our
experiments based on Protocol 3 also, we use train and val-
idation set to train and evaluation, get the threshold corre-
sponding to the Equal Error Rate(EER) of validation set and
then calculation the ACER for the test set.

4.2. Implementation Details

Our proposed method is implemented with Pytorch and
timm library [32]. In the training stage, models are trained
with Lion optimizer [2] , the initial learning rate is 1e-4 and
minimal learning rate is 1e-6, respectively. We used co-
sine LR schedule, first 5 epochs used for warmup, total 100
epochs was trained. We use 4 NVIDIA V100 GPUs to train
our models. The batch size is 64. Image resolution set as
224 × 224 for both training and testing. In the ablation study
phase, we used EfficientFormerV2-S0 as the backbone to
quickly verify the effectiveness of our approach. For the fi-
nal submission of our results, we used EfficientFormerV2-
S2 as the backbone to achieve higher performance. The λ1,
and λ2 in the loss function are set to 0.5 and 0.5, respec-
tively. The score from the classification heads obtained by
fusing features from the two branches is used as the final
output of the model.

4.3. Results

Ablation Study. During the ablation study phase, we
evaluated the effectiveness of the proposed dual-stream net-
work structure based on band-pass filtering and the Cross-
attention fusion module. The experimental results are
shown in Tab 1. We conducted two sets of experiments,
all of which used a dual-stream network with the same
backbone(EfficientFormerV2-S0) and hyperparameters. In
Experiment No.1, the two inputs of the network were the
original images, which underwent online data augmenta-
tion. The outputs of the two branch networks were con-
catenated for feature fusion, and then a classification head
was added to obtain the network output ”cat”. In Experi-
ment No.2, one of the network inputs was the original im-
age, and the other input was the image filtered by a Gaussian
bandpass filter(bpf). The output features of the two branch
networks were send to the cross-attention fusion module,
followed by a classification head to abtain the output ”caf”.
From the results, we can find that introducing the filtered
image as input and using the cross-attention fusion module
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No. Model Branch APCER BPCER ACER
effiv2-s0 img ori 14.81 8.96 11.89

1 wo/bpf img ori 16.69 7.54 12.11
wo/caf cat 15.1 7.81 11.45
effiv2-s0 img ori 14.42 8.71 11.57

2 w/bpf img bpf 15.44 11.99 13.71
w/caf caf 13.6 9.01 11.30

Table 1. Ablation Study on the SuHiFiMask dataset

Rank Team APCER BPCER ACER
1 Baidu Inc 5.07 4.38 4.73
2 China Telecom 9.20 1.90 5.56
3 Ours 8.17 4.26 6.22

Table 2. Final Submission Results

for feature fusion can effectively improve the final classi-
fication accuracy. In addition, all the experimental results
have demonstrated that using a dual-stream network to ex-
tract features separately from inputs, and then fusing the
features of the two branches, performs better than a single
branch, especially when the two branches can extract com-
plementary information.

Final Submission. In the final submission stage, we
used EfficientFormerV2-S2 as the backbone of the dual-
stream network and used the model pre-trained on the
imagenet-1k dataset by the official. We trained the network
on the train and validation datasets with more data augmen-
tation strategies to obtained the optimal result. The final
score on the leaderboard is shown in Tab 2. Our ACER
is 6.22%, ranked third place in this competition. It is worth
mentioning that we used EfficientFormerV2-S2 as the back-
bone of the dual-stream network, and the total number of
parameters in the model was only 25M, with a computa-
tional cost of 5G FLOPs.

4.4. Visualization

We use GradCam, a visual explanation technique based
on gradient-based localization, to analyze different types of
attacks on a face recognition system. The types of attacks
studied include 3D masks and head models, adversarial hats
and masks, and 2D attacks. The results show that the model
focuses on different areas depending on the type of attack.
For example, when faced with a 3D mask, the model pays
attention to the eyes and the area with clear boundaries.
However, for a side profile mask, the model mainly relies
on the mask boundary to make decisions due to the lack of
facial information. When dealing with adversarial attacks,
the model primarily relies on the adversarial pattern to make
decisions, while in the case of 2D attacks, the model focuses
on the eye area to make decisions. Please refer to Fig. 7 for
details.

Figure 7. Visualization of attention maps for different attacks.

5. Conclusion

In this paper, we proposed a dual-stream network based
on Gaussian bandpass filtering and a cross-attention fusion
module, and demonstrated its effectiveness through exper-
iments.The proposed approach wins the third place of the
4th Face Anti-spoofing Challenge@CVPR2023.
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