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Abstract

Face anti-spoofing (FAS) plays a vital role in securing
face recognition systems from presentation attacks. Ben-
efitted from the maturing camera sensors, single-modal
(RGB) and multi-modal (e.g., RGB+Depth) FAS has been
applied in various scenarios with different configurations
of sensors/modalities. Existing single- and multi-modal
FAS methods usually separately train and deploy models
for each possible modality scenario, which might be redun-
dant and inefficient. Can we train a unified model, and
flexibly deploy it under various modality scenarios? In
this paper, we establish the first flexible-modal FAS bench-
mark with the principle ‘train one for all’. To be specific,
with trained multi-modal (RGB+Depth+IR) FAS models,
both intra- and cross-dataset testings are conducted on four
flexible-modal sub-protocols (RGB, RGB+Depth, RGB+IR,
and RGB+Depth+IR). We also investigate prevalent deep
models and feature fusion strategies for flexible-modal FAS.
We hope this new benchmark will facilitate the future re-
search of the multi-modal FAS. The protocols and codes are
available at https://github.com/ZitongYu/Flex-Modal-FAS.

1. Introduction

Face recognition has been widely used in many interac-
tive artificial intelligence systems for its convenience (e.g.,
access control and face payment). However, vulnerability
to presentation attacks (e.g., print, video replay, and 3D
masks) curtails its reliable deployment. For the reliable use
of face recognition systems, face anti-spoofing (FAS) meth-
ods [3,13,15,18–20,26,27,32,34,37] are important to detect
such presentation attacks (PAs).

In recent years, plenty of hand-crafted feature based [1,2,
35] and deep learning based [4, 5, 14, 21–24, 29, 33, 38–40]
methods have been proposed for RGB-based single-modal
FAS. On one hand, some hand-crafted descriptors with fa-
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Figure 1. The training and deployment frameworks of the (a)
traditional single- and multi-modal FAS; and (b) flexible-modal
FAS. The former one aims at separately train and deploy power-
ful models for each possible modality scenario, while the latter
one focuses on training a unified model for all real-world modal-
ity scenarios.

cial color texture [1] and physiological signals [35] fea-
ture representation are designed based on crucial live/spoof
clues (e.g., moiré pattern, noise artifacts, and bio-signal
liveness), thus are robust for live/spoof discrimination.
On the other hand, deep convolutional neural networks
(CNN) [10] and vision transformer (ViT) [6, 8, 35] become
mainstream in FAS due to their strong semantic representa-
tion capacities to distinguish the bonafide from PAs.

With the development of hardware manufacture and in-
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Figure 2. Feature fusion modules. (a) Direct concatenation [36]. (b) Squeeze-and-excitation (SE) fusion [41]. (c) Cross-attention fusion.

tegration technology, multi-modal FAS systems with ac-
ceptable costs are increasingly used in real-world appli-
cations. Meanwhile, a few large-scale multi-modal FAS
datasets [9, 17, 41] as well as multi-modal deep learning
based FAS methods [7, 18, 25, 28, 36] are proposed. In
terms of multi-modal FAS datasets, CASIA-SURF [41]
and CeFA [17] are with three modalities (RGB, Depth,
and Infra-red (IR)) while WMCA [9] is with four modal-
ities (RGB, Depth, IR, and Thermal). To learn intrinsic
live/spoof features from multiple modalities, feature-level
fusion strategies [16,25,30,31,36] are used. To better lever-
age contextual modality information and eliminate redun-
dancy, spatial [28] and channel [28, 41] attention is applied
in multi-modal fusion.

Existing single- and multi-modal FAS methods usually
separately train and deploy models for each possible modal-
ity scenario (see Fig. 1(a)), which might be redundant and
inefficient. A few natural questions occur: Can we train a
unified model, and flexibly deploy it under various modality
scenarios? How about the performance and efficiency gaps
among separate and unified single- and multi-modal mod-
els? To explore the questions above, we establish the first
flexible-modal FAS benchmark with the principle ‘train one
for all’, focusing on training a unified model for multiple
real-world modality scenarios (see Fig. 1(b)). Our contribu-
tions include:

• We establish the first flexible-modal FAS benchmark
with both intra- and cross-dataset testings under four
evaluation modality scenarios (RGB, RGB+Depth,
RGB+IR, and RGB+Depth+IR).

• We propose an elegant cross-attention fusion mod-
ule to efficiently mine cross-modal clues for flexible-
modal deployment. The proposed cross-Attention
module significantly benefits the ViT [6] in both flexi-
ble intra- and cross-testings.

• We also investigate prevalent deep models
(CDCN [40], ResNet [10], ViT [6]) and feature
fusion strategies for flexible-modal FAS. We find

that the modality dropout strategy [25] works well
in flex-modal intra-testings but poorly in flex-modal
cross-testings.

2. Multi-Modal Fusion Baselines
For the RGB-based single-modal FAS task, given a face

input XRGB , the corresponding deep features/descriptors
FRGB could be extracted. Then a prediction head h
is cascaded for binary live/spoof classification. For
the RGB+Depth+IR multi-modal FAS task, independent-
modality features FRGB , FDepth, and FIR could be cap-
tured from face inputs XRGB , XDepth, and XIR, respec-
tively. All these features will be fused to form Ffuse first,
and then forward the prediction head h. In this paper,
we focus on feature-level fusion strategy but there are also
e.g., decision-level fusion (a late fusion strategy) for multi-
modal scenarios. Here we discuss about three feature-level
fusion modules under the scenario with RGB+Depth+IR,
and it is easily extended to scenarios with less or more
modalities.

Direct concatenation fusion. Despite coarse alignment
in the spatial domain, the features (FRGB , FDepth, and
FIR) in the channel domain have heterogeneous represen-
tation. As illustrated in Fig. 2(a), one classical solution
is to concatenate these three features in the channel do-
main first [36], and then aggregate the multi-modal hetero-
geneous features with a lightweight fusion operator (e.g.,
convolution). The direct concatenation fusion can be for-
mulated as

Ffuse = ReLU(BN(Conv(Concat(FRGB , FDepth, FIR))).
(1)

Squeeze-and-excitation fusion. To alleviate the feature
misalignment among modalities, squeeze-and-excitation
(SE) module [11,41] is utilized in each independent modal-
ity branch first. With the channel-wise self-calibration via
SE module, the refined features (FSE

RGB , FSE
Depth, and FSE

IR )
are then concatenated and aggregated. The framework of
SE fusion is shown in Fig. 2(b). The SE fusion can be for-
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mulated as (where σ denotes the Sigmoid function):

FSE
RGB = FRGB · σ(FC(ReLU(FC(AvgPool(FRGB))))),

FSE
Depth = FDepth · σ(FC(ReLU(FC(AvgPool(FDepth))))),

FSE
IR = FIR · σ(FC(ReLU(FC(AvgPool(FIR))))),

Ffuse = ReLU(BN(Conv(Concat(FSE
RGB , F

SE
Depth, F

SE
IR ))),

(2)

Cross-attention fusion. Besides fusion via multi-modal
feature concatenation, we also explore the feature addition
in the homogeneous space. To this end, we calculate the re-
lationship maps between FRGB and FDepth/FIR via cross-
attention (CA), and then the normalized modality-interacted
maps are multiplied by FRGB to form cross-attentioned fea-
tures FCA

Depth and FCA
IR . Finally, original RGB feature and

cross-attentioned features are added and aggregated with an
extra convolution. The framework of CA fusion is shown in
Fig. 2(c). The CA fusion can be formulated as

F̄CA
Depth = Softmax(F̄Depth(F̄RGB)

T )F̄RGB ,

F̄CA
IR = Softmax(F̄IR(F̄RGB)

T )F̄RGB ,

Ffuse = ReLU(BN(Conv(FRGB + FCA
Depth + FCA

IR )),

(3)

where F and F̄ denote the spatial features and vectorized
features, respectively.

3. Flexible-Modal FAS Benchmark
In this section, we introduce the flexible-modal FAS

benchmark in terms of datasets, modality-aware protocols,
and evaluation metrics. Statistical description is shown in
Table 2.
Datasets. Three large-scale multi-modal datasets are
used in the flexible-modal FAS benchmark. CASIA-
SURF [41] consists of 1000 subjects with 21000 videos
(7000 for RGB, Depth, and IR modality, respectively).
There are two kinds of presentation attack instrument (PAI),
i.e., print and cut print attacks, in CASIA-SURF. CeFA [17]
is a cross-ethnicity FAS dataset, covering three ethnici-
ties (Africa, East Asia, and Central Asia), three modalities
(RGB, Depth, and IR), 1607 subjects with 7846 videos for
each modality. In terms of PAIs, it consists of print, replay,
3D print and 3D silica gel mask attacks. WMCA [9] con-
sists of 1941 short video recordings of both bonafide and
PAs from 72 different identities. Each video is recorded
from several spectrum channels including RGB, depth, IR,
and thermal. In addition, there are seven PAIs (i.e., glasses,
fake head, print, replay, rigid mask, flexible mask, and pa-
per mask) in WMCA.
Protocols. Towards the principle ‘train one for all’,
four flexible-modal protocols are established. Specif-
ically, after trained on CASIA-SURF and CeFA with

Table 1: Statistics of the flexible-modal FAS benchmark. ‘C.-S.’
and ‘D’ are short for ‘CASIA-SURF’ and ‘Depth’, respectively.
‘#Video’ indicates the video numbers of each modality.

Intra-dataset Cross-dataset
Partition Training Validation Testing Testing
Dataset C.-S. CeFA C.-S. CeFA C.-S. CeFA WMCA

#Subject 300 600 100 300 600 699 72
#Video 2100 2400 700 1200 4200 4246 1679
#PAI 2 2 2 2 2 4 7

Modality
Protocol 1 RGB+D+IR RGB RGB RGB
Protocol 2 RGB+D+IR RGB+D RGB+D RGB+D
Protocol 3 RGB+D+IR RGB+IR RGB+IR RGB+IR
Protocol 4 RGB+D+IR RGB+D+IR RGB+D+IR RGB+D+IR

RGB+Depth+IR modalities, the unified multi-modal model
is evaluated on both intra (CASIA-SURF and CeFA) and
cross (WMCA) datasets under RGB-based (Protocol 1)
single-modal, RGB+ Depth-based (Protocol 2) or RGB+IR-
based (Protocol 3) bi-modal, and RGB+Depth+IR-based
(Protocol 4) tri-modal scenarios. We also compare it with
traditional separate training framework in terms of perfor-
mance and efficiency.
Evaluation metrics. For all experiments, ACER [12] and
True Positive Rate (TPR)@False Positive Rate (FPR) are
used as evaluation metrics. ACER calculates the mean of
Attack Presentation Classification Error Rate (APCER) and
Bona Fide Presentation Classification Error Rate (BPCER).
The thresholds are determined by the Equal Error Rate
(EER) threshold on validation set and set as 0.5 for
intra- and cross-dataset testings, respectively. Besides,
TPR@FPR=0.1% and TPR@FPR=1% are also utilized for
fair comparison.

4. Experiment

4.1. Implementation Details

The experiments are implemented with Pytorch on one
NVIDIA V100 GPU. Three deep models (CDCN [40],
ResNet-50 [10] and ViT-Base [6]) are used with batch size
16, 64 and 64, respectively. We use the Adam optimizer
with learning rate (lr) of 1e-4 for CDCN and ResNet while
AdamW optimizer with lr=1e-5 for ViT-Base. CDCN is
trained from scratch with 60 epochs while lr halves in
the 30th epoch. Instead of supervision with pseudo depth
maps [40], we follow [36] to supervise CDCN with simple
binary maps. In contrast, ResNet50/ViT-Base is finetuned
based on the ImageNet/ImageNet-21K pre-trained models
with 30 epochs while lr halves in the 20th epoch. Di-
rect concatenation is adopted as the default fusion method.
For the SE fusion, the intermediate channel numbers are
reduced to one eighth of original channels. The missing
modalities are simply blocked as zeros in the testing phase
of Protocols 1,2, and 3. To mimic such scenarios in the
training phase, similar to [25], we randomly dropout the
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Table 2: Results of intra-dataset testings on CASIA-SURF and CeFA datasets with ‘Separate’ and ‘Unified’ settings.
Protocol 1 Protocol 2 Protocol 3 Protocol 4Method ACER(%) ↓ TPR(%)@FPR=0.1% ↑ ACER(%) ↓ TPR(%)@FPR=0.1% ↑ ACER(%) ↓ TPR(%)@FPR=0.1% ↑ ACER(%) ↓ TPR(%)@FPR=0.1% ↑

CDCN [40] 32.49 4.7 6.22 47.4 43.98 0.93 6.46 55.43
ResNet50 [10] 10.41 45.93 1.7 88.23 41.26 3.13 3.07 62.33Separate
ViT-Base [6] 10.81 31.33 1.44 91.27 26.34 6.5 3.82 80.87
CDCN 32.69 2.43 5.08 68.17 41.32 0.6 6.46 55.43
CDCN w/ DropModal 36.49 1.47 7.91 40.83 35.89 0.97 11.36 30.1
CDCN SE 35.13 1.03 4.6 61 37.09 0.3 8.81 46.8
CDCN SE w/ DropModal 46.5 0.3 25.88 19.6 46.8 0.23 31.15 16.4
CDCN CA 34.99 1.93 31.55 2.37 35.18 1.83 34.33 2.2
CDCN CA w/ DropModal 40.58 1.23 38.9 1.43 39.38 1.2 40.94 1.2
ResNet50 27.03 15.37 2.67 80.93 34.17 2.63 3.07 62.33
ResNet50 w/ DropModal 14.24 23.23 9.32 61.5 18.18 22.77 8.1 56.27
ResNet50 SE 20.59 6.87 2.05 78.37 27.67 2.3 2.48 55.3
ResNet50 SE w/ DropModal 14.57 32.6 3.66 82.9 13.58 31.77 5.29 77.57
ResNet50 CA 28.46 4.87 13.95 18.47 28.33 4.07 14.75 9.83
ResNet50 CA w/ DropModal 18 9.8 13.72 26.1 16 7.47 13.21 20.37
ViT-Base 20.33 4.07 2.5 84.27 29.51 3.1 3.82 80.87
ViT-Base w/ DropModal 7.87 40.73 2.59 80.97 9.06 30.37 4.97 79.43
ViT-Base SE 23.28 1.5 1.87 92.67 37.38 1.93 2.7 88.2
ViT-Base SE w/ DropModal 8.58 36.6 3.01 77.73 10.18 30.8 3.03 78.6
ViT-Base CA 19.4 13.27 1.75 87.63 14.84 15.07 2.43 78.75

Unified

ViT-Base CA w/ DropModal 6.04 57.53 3.85 73.3 5.97 57.5 3.91 71.17

Table 3: Results of cross-dataset testings on WMCA when trained on CASIA-SURF and CeFA.
Protocol 1 Protocol 2 Protocol 3 Protocol 4Method ACER(%) ↓ TPR(%)@FPR=1% ↑ ACER(%) ↓ TPR(%)@FPR=1% ↑ ACER(%) ↓ TPR(%)@FPR=1% ↑ ACER(%) ↓ TPR(%)@FPR=1% ↑

CDCN [40] 34.35 9.61 27.58 8.17 40.62 3.27 28.28 4.71
ResNet50 [10] 36.57 16.14 29.98 12.01 50 0.77 30.72 13.74Separate
ViT-Base [6] 39.38 5.96 36.81 11.53 49.34 2.88 33.08 3.07
CDCN 50 7.11 27.06 6.63 50 2.93 28.28 4.71
CDCN w/ DropModal 32.25 7.78 25.44 13.83 32.95 6.24 26.92 11.82
CDCN SE 43.66 3.8 30.11 4.8 43.3 2.4 28.18 4.51
CDCN SE w/ DropModal 36.99 7.1 43.55 1.73 42.86 4.29 42.6 2.02
CDCN CA 40.61 1.06 32.73 3.5 41.26 1.06 40.74 2.5
CDCN CA w/ DropModal 35.26 6.53 34.49 7.2 35.56 7.2 34.44 5.48
ResNet50 46.02 4.71 35.81 7.49 42.22 2.21 30.72 13.74
ResNet50 w/ DropModal 46.45 11.53 25.36 19.79 46.53 10.28 19.43 19.79
ResNet50 SE 49.52 1.34 28.86 7.88 43.58 0.67 32.55 7.49
ResNet50 SE w/ DropModal 45.31 13.26 30.88 13.26 42.22 17.58 27.41 15.95
ResNet50 CA 39.15 10.66 34 11.24 36.9 8.45 34.76 7.3
ResNet50 CA w/ DropModal 43.32 4.42 31.94 7.3 47.65 5 37.17 8.17
ViT-Base 48.52 9.03 44.42 7.59 50 0.38 33.08 3.07
ViT-Base w/ DropModal 39.06 8.26 30.37 15.95 40.61 8.36 29.51 17.2
ViT-Base SE 49.95 3.75 30.64 5.09 50 1.83 41.03 5.48
ViT-Base SE w/ DropModal 33.48 9.51 30.67 9.41 35.96 5.19 31.33 8.55
ViT-Base CA 35.07 26.13 10.07 50.05 24.57 16.04 20.87 36.5

Unified

ViT-Base CA w/ DropModal 42.38 6.15 33.87 8.17 37.81 6.72 33.59 7.88

Depth and IR inputs (called DropModal).

4.2. Intra Testing

The experimental results of flexible-modal intra-dataset
testing on CASIA-SURF and CeFA datasets is shown in Ta-
ble 1. We can see from the first block and first rows in
last three blocks that 1) the separated trained ResNet50 and
ViT models perform obviously better than the unified coun-
terparts while CDCN performs the opposite; and 2) ViT
has higher TPR@FPR=0.1% than ResNet50 and CDCN on
Protocols 2, 3, and 4 with both separated and unified set-
tings, indicating the excellent multi-modal modeling capac-
ities based on global self-attentioned features.
Impact of fusion modules. It can be seen from the ‘Uni-
fied’ block in Table 1, compared with directly concatena-
tion fusion, the SE fusion [41] has no gains for CDCN,
ResNet50, and ViT-Base. In contrast, we can find from the
results of ‘ViT-Base’ and ‘ViT-Base CA’ that the proposed
CA module improves the ViT-Base remarkably (with gains
9.2%, 3.36% and 11.93% TPR@FPR=0.1% for Protocols
1, 2 and 3, respectively). Despite benefits from CA for
ViT-Base backbone, the CA module still generalizes poorly

across other architectures (e.g., CDCN and ResNet50). It is
still an open question to design architecture-agnostic fusion
methods for the flexible-modal FAS benchmark.
Impact of DropModal. The multi-modal learning is easily
dominated by partial-modal features (e.g., Depth modality)
but neglecting other modalities with relatively weak clues
(e.g., IR modality). The results of all variants of ResNet50
and ViT-Base on Protocols 1 and 3 are sharply improved
with ‘DropModal’, indicating the augmentation with ran-
dom modality dropout [25] alleviates the modality overfit-
ting issue in intra testings.

4.3. Cross Testing

Table 3 shows the results of flexible-modal cross-dataset
testing on WMCA. Due to the domain shifts (e.g., from
sensors and sessions) and unseen PAIs, the performance
of both separate and unified models are unsatisfactory
(ACER>10%).
Impact of fusion modules. Similar to the intra-dataset
testings, the results with SE fusion [41] cannot bring ob-
vious benefits for CDCN, ResNet50, and ViT-Base on
cross-dataset testings. As can be seen from the results of
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Table 4: Results of ‘shared’ and ‘unshared’ multi-modal settings on intra-dataset testings on CASIA-SURF and CeFA.

Method Protocol 1 Protocol 2 Protocol 3 Protocol 4 Overall
TPR(%)@FPR=0.1% ↑ TPR(%)@FPR=0.1% ↑ TPR(%)@FPR=0.1% ↑ TPR(%)@FPR=0.1% ↑ #Param. (M) #FLOPs (G)

Separate ViT-Base 31.33 91.27 6.5 80.87 362.01 132.31
ViT-Base (unshared) 43.4 91.73 1.7 88.63 688.58 132.31

Unified ViT-Base 4.07 84.27 3.1 80.87 96.83 199.92
ViT-Base (unshared) 0.03 89.83 0.37 88.63 260.12 199.92

‘ResNet50 SE’, ‘ResNet50 CA’, ‘ViT-Base SE’, and ‘ViT-
Base CA’ in Table 3, compared with SE fusion, the pro-
posed CA is highly compatible with multi-modal ViT and
ResNet50 architectures (especially on Protocols 1, 2, and
3), and improves the cross-dataset testing results dramati-
cally.

Impact of DropModal. It is reasonable to find in Table 3
that‘DropModal’ benefits the cross-testing performance of
direct and SE concatenation fusions for all three kinds of
models. However, the results of ‘ResNet50 CA w/ Drop-
Modal’ and ‘ViT-Base CA w/ DropModal’ indicate that
‘DropModal’ degrades the cross-testing performance for
CA fusion for both ResNet50 and ViT-Base backbones. It
indicates that training CA with dropped-modality features
limit the overall domain generalization capacity.

4.4. Efficiency Analysis

Both performance and efficiency are important in
flexible-modal benchmark. Here we analyze the efficiency
based on ViT-Base with two kinds of settings: sepa-
rate/unified models and shared/unshared modality branches.
As shown on the right part of Table 4, compared with sep-
arate models, the unified models save more than 50% pa-
rameters but require a bit more FLOPs (due to the fixed
tri-modal branch setting in the testing phase) overall 4 pro-
tocols. Besides, using unshared backbone for indepen-
dent modality branch usually brings slight performance im-
provement but introducing extra huge parameters. Over-
all, it will be a good tradeoff if the unified models with
modality-shared backbones could achieve satisfactory per-
formance.

5. Conclusion and Future Work

In this paper, we establish the first flexible-modal FAS
benchmark with both intra- and cross-dataset testings. We
also provide sufficient baselines on prevalent deep models
and feature fusion strategies for flexible-modal FAS. How-
ever, from the experimental results in Tables 1, 3 and 4,
there are still observable performance gaps between sepa-
rate and unified models in some protocols, as well as the
efficiency issue (#FLOPs). One limitation and assumption
of the benchmark is that it needs all three modalities simul-
taneously in the training stage but RGB modality usually
dominates while partial NIR and Depth modalities are miss-
ing under real-world scenarios.
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metric face presentation attack detection with multi-channel
convolutional neural network. TIFS, 2019.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016.

[11] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In CVPR, 2018.

[12] international organization for standardization. Iso/iec
jtc 1/sc 37 biometrics: Information technology biomet-
ric presentation attack detection part 1: Framework. In
https://www.iso.org/obp/ui/iso, 2016.

[13] Xuan Li, Jun Wan, Yi Jin, Ajian Liu, Guodong Guo, and
Stan Z Li. 3dpc-net: 3d point cloud network for face anti-
spoofing. In 2020 IEEE International Joint Conference on
Biometrics (IJCB), pages 1–8. IEEE, 2020.

[14] Zhi Li, Rizhao Cai, Haoliang Li, Kwok-Yan Lam, Yongjian
Hu, and Alex C Kot. One-class knowledge distillation for
face presentation attack detection. IEEE TIFS, 2022.

6350



[15] Ajian Liu, Xuan Li, Jun Wan, Yanyan Liang, Sergio Es-
calera, Hugo Jair Escalante, Meysam Madadi, Yi Jin,
Zhuoyuan Wu, Xiaogang Yu, et al. Cross-ethnicity face anti-
spoofing recognition challenge: A review. IET Biometrics,
2021.

[16] Ajian Liu and Yanyan Liang. Ma-vit: Modality-agnostic vi-
sion transformers for face anti-spoofing. In IJCAI, 2022.

[17] Ajian Liu, Zichang Tan, Jun Wan, Sergio Escalera, Guodong
Guo, and Stan Z Li. Casia-surf cefa: A benchmark for multi-
modal cross-ethnicity face anti-spoofing. In WACV, 2021.

[18] Ajian Liu, Zichang Tan, Jun Wan, Yanyan Liang, Zhen Lei,
Guodong Guo, and Stan Z Li. Face anti-spoofing via adver-
sarial cross-modality translation. TIFS, 2021.

[19] Ajian Liu, Jun Wan, Sergio Escalera, Hugo Jair Escalante,
Zichang Tan, Qi Yuan, Kai Wang, Chi Lin, Guodong Guo,
Isabelle Guyon, et al. Multi-modal face anti-spoofing at-
tack detection challenge at cvpr2019. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 0–0, 2019.

[20] Ajian Liu, Chenxu Zhao, Zitong Yu, Anyang Su, Xing Liu,
Zijian Kong, Jun Wan, Sergio Escalera, Hugo Jair Escalante,
Zhen Lei, et al. 3d high-fidelity mask face presentation at-
tack detection challenge. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 814–
823, 2021.

[21] Ajian Liu, Chenxu Zhao, Zitong Yu, Jun Wan, Anyang Su,
Xing Liu, Zichang Tan, Sergio Escalera, Junliang Xing,
Yanyan Liang, et al. Contrastive context-aware learning
for 3d high-fidelity mask face presentation attack detection.
IEEE Transactions on Information Forensics and Security,
17:2497–2507, 2022.

[22] Yaojie Liu, Amin Jourabloo, and Xiaoming Liu. Learning
deep models for face anti-spoofing: Binary or auxiliary su-
pervision. In CVPR, 2018.

[23] Yunxiao Qin, Zitong Yu, Longbin Yan, Zezheng Wang,
Chenxu Zhao, and Zhen Lei. Meta-teacher for face anti-
spoofing. TPAMI, 2021.

[24] Yunxiao Qin, Chenxu Zhao, Xiangyu Zhu, Zezheng Wang,
Zitong Yu, Tianyu Fu, Feng Zhou, Jingping Shi, and Zhen
Lei. Learning meta model for zero-and few-shot face anti-
spoofing. In AAAI, 2020.

[25] Tao Shen, Yuyu Huang, and Zhijun Tong. Facebagnet: Bag-
of-local-features model for multi-modal face anti-spoofing.
In CVPRW, 2019.

[26] Jun Wan, Sergio Escalera, Hugo Jair Escalante, Guodong
Guo, and Stan Z Li. Special issue on face presentation at-
tack detection. IEEE Transactions on Biometrics, Behavior,
and Identity Science, 3(3):282–284, 2021.

[27] Jun Wan, Guodong Guo, Sergio Escalera, Hugo Jair Es-
calante, and Stan Z Li. Multi-modal face presentation attack
detection. Synthesis Lectures on Computer Vision, 9(1):1–
88, 2020.

[28] Guoqing Wang, Chuanxin Lan, Hu Han, Shiguang Shan, and
Xilin Chen. Multi-modal face presentation attack detection
via spatial and channel attentions. In CVPRW, 2019.

[29] Zezheng Wang, Zitong Yu, Chenxu Zhao, Xiangyu Zhu,
Yunxiao Qin, Qiusheng Zhou, Feng Zhou, and Zhen Lei.

Deep spatial gradient and temporal depth learning for face
anti-spoofing. In CVPR, 2020.

[30] Zitong Yu, Rizhao Cai, Yawen Cui, Xin Liu, Yongjian Hu,
and Alex Kot. Rethinking vision transformer and masked
autoencoder in multimodal face anti-spoofing. arXiv preprint
arXiv:2302.05744, 2023.

[31] Zitong Yu, Rizhao Cai, Zhi Li, Wenhan Yang, Jingang Shi,
and Alex C Kot. Benchmarking joint face spoofing and
forgery detection with visual and physiological cues. arXiv
preprint arXiv:2208.05401, 2022.

[32] Zitong Yu, Jukka Komulainen, Xiaobai Li, and Guoying
Zhao. Review of face presentation attack detection competi-
tions. In Handbook of Biometric Anti-Spoofing: Presentation
Attack Detection and Vulnerability Assessment, pages 287–
336. Springer, 2023.

[33] Zitong Yu, Xiaobai Li, Xuesong Niu, Jingang Shi, and Guoy-
ing Zhao. Face anti-spoofing with human material percep-
tion. In ECCV, 2020.

[34] Zitong Yu, Xiaobai Li, Jingang Shi, Zhaoqiang Xia, and
Guoying Zhao. Revisiting pixel-wise supervision for face
anti-spoofing. IEEE TBIOM, 2021.

[35] Zitong Yu, Xiaobai Li, Pichao Wang, and Guoying Zhao.
Transrppg: Remote photoplethysmography transformer for
3d mask face presentation attack detection. IEEE SPL, 2021.

[36] Zitong Yu, Yunxiao Qin, Xiaobai Li, Zezheng Wang, Chenxu
Zhao, Zhen Lei, and Guoying Zhao. Multi-modal face anti-
spoofing based on central difference networks. In CVPRW,
2020.

[37] Zitong Yu, Yunxiao Qin, Xiaobai Li, Chenxu Zhao, Zhen
Lei, and Guoying Zhao. Deep learning for face anti-
spoofing: A survey. IEEE TPAMI, 2022.

[38] Zitong Yu, Yunxiao Qin, Hengshuang Zhao, Xiaobai Li, and
Guoying Zhao. Dual-cross central difference network for
face anti-spoofing. In IJCAI, 2021.

[39] Zitong Yu, Jun Wan, Yunxiao Qin, Xiaobai Li, Stan Z Li, and
Guoying Zhao. Nas-fas: Static-dynamic central difference
network search for face anti-spoofing. IEEE transactions on
pattern analysis and machine intelligence, 43(9):3005–3023,
2020.

[40] Zitong Yu, Chenxu Zhao, Zezheng Wang, Yunxiao Qin,
Zhuo Su, Xiaobai Li, Feng Zhou, and Guoying Zhao.
Searching central difference convolutional networks for face
anti-spoofing. In CVPR, 2020.

[41] Shifeng Zhang, Xiaobo Wang, Ajian Liu, Chenxu Zhao,
Jun Wan, Sergio Escalera, Hailin Shi, Zezheng Wang, and
Stan Z. Li. A dataset and benchmark for large-scale multi-
modal face anti-spoofing. In CVPR, 2019.

6351


