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Abstract

In traditional scenes (short-distance applications), the
current Face Anti-Spoofing (FAS) methods have achieved
satisfactory performance. However, in surveillance scenes
(long-distance applications), those methods cannot be gen-
eralized well due to the deviation in image quality. Some
methods attempt to recover lost details from low-quality
images through image reconstruction, but unknown image
degradation results in suboptimal performance. In this pa-
per, we regard image quality degradation as a domain gen-
eralization problem. Specifically, we propose an end-to-
end Adversarial Domain Generalization Network (ADGN)
to improve the generalization of FAS. We first divide the
accessible training data into multiple sub-source domains
based on image quality scores. Then, a feature extractor
and a domain discriminator are trained to make the ex-
tracted features from different sub-source domains undis-
tinguishable (i.e., quality-invariant features), thus forming
an adversarial learning procedure. At the same time, we
have introduced the transfer learning strategy to address
the problem of insufficient training data. Our method won
second place in “Track Surveillance Face Anti-spoofing” of
the 4th Face Anti-spoofing Challenge@CVPR2023. Our fi-
nal submission obtains 9.21% APCER, 1.90% BPCER, and
5.56% ACER, respectively.

1. Introduction
Face Anti-Spoofing (FAS) technology aims to prevent

face recognition systems from being vulnerable to presen-
tation attacks, such as print attack, video attack, and 3D
mask attack [16, 24, 27–29]. Due to the importance of FAS
for security, both academia and industry have conducted a
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Figure 1. An overview of some characteristics of SuHiFiMask.
From top to bottom: mask attacks, cardboard attacks, blur, and
occlusion.

large amount of research and made much progress [20, 21,
23,25,39,40,47]. Compared with FAS in traditional scenes
(e.g., phone unlocking, face payment, and access authen-
tication) [26, 29, 46, 48], FAS in long-distance scenes (i.e.,
surveillance) such as station squares, parks, and self-service
supermarkets are equally important [2, 5, 9]. Although re-
cent FAS methods in traditional scenarios have achieved
satisfactory performance [23, 49, 50], FAS in surveillance
scenes has not yet been fully explored.

One major constraint on the performance of surveillance
FAS is image quality. Under surveillance scenes, the res-
olution of faces is small and contains noise from motion
blur, occlusion, and other bad factors, resulting in previous
methods can not effectively generalize to faces with varying
quality. To address the issue caused by image quality, meth-
ods [5,9] attempt to recover high-resolution faces from low-
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resolution faces to extract informative spoofing cues. De-
spite some progress, unknown image degradation processes
make it difficult to restore bona fide facial details. In con-
trast, Aravena et al. [2] advise discarding some low-quality
samples for improving the performance. However, directly
ignoring low-quality faces can not effectively address the
challenge of FAS in surveillance scenes. Therefore, how to
reduce the impact of image quality to further improve the
generalization of FAS in surveillance scenes is still a chal-
lenging problem that remains unsolved.

To address the above problem, the widely concerned Do-
main Generalization (DG) methods provide us with some
inspiration [19, 32, 38, 42]. Some DG-based FAS meth-
ods [17, 35, 44] minimize the difference among source
domains by domain-adversarial learning for extracting
domain-invariant representations. This inspires us to use
multiple source domains with different qualities to learn
quality-invariant features by simulating the above process.
Based on the idea of domain generalization, we have to fo-
cus on the number of available surveillance FAS datasets.
Recently, a large-scale surveillance FAS dataset, SuHiFi-
Mask, is established, which includes 101 participants of
different ages, 232 masks, and 200 2D attacks [9]. Some
typical examples are shown in Fig. 1. The most challeng-
ing protocol 3 (image quality degradation) is utilized for the
4th Face Anti-spoofing Challenge@CVPR2023. Because
we only have access to the current dataset, limited training
data restrict the probability of training deep architectures
from scratch. We train our model by Transfer Learning (TL)
strategy [12,33] from a pre-trained network to deal with the
limited data problem.

Motivated by the discussions above, we introduce DG
and TL technologies into FAS tasks in surveillance scenes
simultaneously, and propose an Adversarial Domain Gener-
alization Network (ADGN) to address the problems caused
by image quality. Specifically, we first divide the training
data based on quality scores to generate several sub-source
domains with significant quality differences. Then, a pre-
trained feature extractor is trained to compete with a do-
main discriminator to make the features of faces from dif-
ferent domains undistinguishable. Finally, we deployed a
simple classifier to predict whether a face is a bona fide or
malicious attack. Our contributions include:

• We treat quality degradation in FAS under surveillance
scenes as a domain generalization problem, and the
proposed ADGN can extract the quality-invariant fea-
tures through domain-adversarial learning effectively.

• Extensive experiments are conducted on protocol 3 of
SuHiFiMask to demonstrate the effectiveness of the
proposed method. In addition, our method won sec-
ond place in “Track Surveillance Face Anti-spoofing”
of the 4th Face Anti-spoofing Challenge@CVPR2023.

2. Related Work
In this section, we first introduce some recent progress

in surveillance FAS, and then demonstrate recent works on
DG-based and TL-based FAS.

2.1. FAS in Surveillance Scenes

To extend FAS from traditional scenes to surveillance
scenes, Chen et al. [5] propose a cross-device domain FAS
dataset called GREAT-FASD-S. The dataset is collected by
two multi-modal cameras and processed into low-quality
images. Simultaneously, they propose a depth-wise separa-
ble attention module with SE-block [14] to select the most
informative channels and recover the image by the near-
est neighbor algorithm. Aravena et al. [2] reveal the im-
pact of image quality on FAS and advise discarding some
low-quality samples to improve overall performance. Re-
cently, Fang et al. [9] release the first dataset collected based
on real surveillance scenes called SuHiFiMask. Besides,
they propose an IQV module to recover image informa-
tion by combining a super-resolution network [7]. Specifi-
cally, they down-sample high-resolution images into low-
resolution images as the training data to train the super-
resolution network. Although these methods have made
some progress, it is difficult to recover bona fide details
from complex image quality degradation in surveillance
scenes, and discarding low-quality samples cannot funda-
mentally address the challenges in surveillance scenes.

2.2. DG-Based FAS Methods

Domain generalization aims to achieve Out-Of-
Distribution (OOD) generalization by using only source
data for model learning [51]. In recent years, DG-
based FAS methods have attracted widespread atten-
tion [4, 6, 17, 35, 41, 44]. DG-based FAS methods mainly
include three categories: 1) domain-adversarial based,
2) domain-disentanglement based, and 3) domain-
augmentation based. The first category of meth-
ods [17, 35, 44] usually combines Gradient Reversal
Layer (GRL) [11] for domain-adversarial learning to
extract domain invariant features by minimizing the dif-
ference among source domains. Methods [41, 45] of the
second category disentangle domain information from
feature representations through specific networks. The last
category of methods [15, 18] expands the sample space
by generating mixed or pseudo domains, thereby learning
more general feature representations. The DG-based FAS
method can effectively reduce the performance degradation
caused by domain shift, which also inspires us to extend
the domain generalization to surveillance scenes.

2.3. TL-Based FAS Methods

Transfer learning can effectively improve the perfor-
mance of models in target domains by transferring knowl-
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Figure 2. The overall network of ADGN. We first divide the accessible data into m+1 sub-source domains based on image quality. Then,
a feature extractor deployed by ViT is used to extract the features of the input face. Subsequently, the domain discriminator distinguishes
which sub-source domain the extracted features come from, while the feature extractor seeks to enable the extracted features to spoof the
domain discriminator and form adversarial learning. Finally, a classifier is used to predict the category of input face.

edge contained in different but related source domains [52].
George et al. [12] first introduce the large-scale pre-trained
Vision Transformer (ViT) models into FAS tasks, effec-
tively improving the generalization of the model through
fine-tuning. Liu et al. [22] present a noval framework,
namely Modality-Agnostic Vision Transformer (MA-ViT),
which effectively improves the performance of arbitrary
modal attacks with the assistance of multi-modal data.
Quan et al. [34] present a semi-supervised learning-based
framework, progressively adopting the unlabeled data with
reliable pseudo labels during training to enrich the variety of
training data. Methods [1,31] reduce the limitations of FAS
datasets by transfer learning strategy in traditional scenes.

In order to overcome the challenges in surveillance
scenes, we extend the transfer learning strategies to learn
generalized quality-invariant feature representations.

3. Methodology
In this section, we first introduce the overall network of

the proposed ADGN and the generation of multiple sub-
source domains in Sec. 3.1 and Sec. 3.2, respectively. Then
we demonstrate the adversarial domain generalization pro-
cedure in Sec. 3.3. At last the supervision signals and loss
functions are presented in Sec. 3.4.

3.1. Overall Network

As shown in Fig. 2, the proposed ADGN mainly includes
a feature extractor, a classifier, and a domain discriminator.
For the face image x from an arbitrary domain, we first use
the feature extractor deployed by the ViT encoder [8] to ex-

tract its feature zcls. Then, the domain discriminator is used
to distinguish which domain zcls comes from. On the other
hand, we optimize the feature extractor to enforce zcls that
cannot be distinguished by the domain discriminator, so that
the feature extractor and the domain discriminator form an
adversarial learning process. Finally, we deploy a simple
classifier to predict whether x is a real face. Note that in or-
der to implement end-to-end training, we insert a GRL [11]
after the feature extractor.

3.2. Generation of Sub-Source Domains

To simulate the process of domain generalization, we
first subdivide the training data into multiple subsets based
on quality scores, with each subset representing a sub-
source domain. Specifically, we denote the accessible train-
ing data as D = {x1,x2, ...,xn}, and the quality score qi

for each sample xi is recorded as Q = {q1,q2, ...,qn}, n is
the number of samples. Then, we select a series of thresh-
olds in Q and record them as {T1, T2, ..., Tm}. After that,
the source domain D can be divided into m+ 1 sub-source
domains based on the quality threshold, represented as fol-
lows:

D1 = {xi ∈ D | 0 ≤ qi < T1} ,
D2 = {xi ∈ D | T1 ≤ qi < T2} ,

...,

Dm+1 = {xi ∈ D | Tm ≤ qi ≤ max(Q)} ,

(1)

where Dj represents the ith sub-source domain, j ∈ [1,m+
1]. max(Q) is the highest quality score in Q.
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Through the operation described in Eq. (1), we obtain
m + 1 sub-source domains {D1,D2, ...,Dm+1}. For each
sub-source domain Dj , we assign a sub-source domain label
sj to it, and we denote all sub-source domain labels as S =
{s1, s2, ..., sm+1}.

3.3. Domain-Adversarial Learning

Transformers for FAS. We utilize pre-trained ViT [8]
encoders to deploy feature extractors. This has two benefits:
1) transfer learning from a pre-trained model is an effective
strategy to deal with limited training data; and 2) the diverse
knowledge learned by a pre-trained model helps address the
domain shift [12].

Specifically, for the image x from a sub-source domain
DH×W×C

j , we divide x into N×N non-overlapped patches,
and embed those patches into 1D embeddings zi ∈ R1×C

after linear projections, 1 ≤ i ≤ N2. And we integrate all
zi as zp ∈ RN2×C , zp = [z1, z2, ..., zN2 ]. After that, we
randomly initialize classification embedding zcls ∈ R1×C

and position embedding zpos ∈ R1×C . Then, following
[8, 43], the two embeddings are bundled with zp as learn-
able embeddings to capture spoofing information and retain
positional information, and denoted as z ∈ R(N2+1)×C . z
can be expressed as follows:

z = concat(zcls, zp) + zpos. (2)

The relations between the local patch and classification
embeddings are captured progressively along with the cas-
caded transformer encoder layers. For example, the calcula-
tion process of adjacent layers can be expressed as follows:

hl = MSA(LN(zl)) + zl,

zl+1 = MLP(LN(hl)) + hl,
(3)

where MSA, MLP, and LN are the multi-head self-attention,
multi-layer perceptron, and layer normalization in trans-
former encoder layers, respectively. zl is the input of the
lth transformer encoder layer, hl is the temporal variable.
zl+1 denotes the output of the lth encoder layer.

Finally, the output classification embedding zcls of the
last encoder layer is used for predicting.

Learn Quality-Invariant Features. For image x ∈
DH×W×C , we obtain its feature representation zcls by the
feature extractor. Then, the domain discriminator is im-
plemented based on the extracted feature zcls to determine
which sub-source domain the input features stem from. On
the contrary, the feature extractor is trained to spoof the
domain discriminator so that the sub-source domain labels
cannot be recognized. Therefore, our method can learn a
generalized feature representation by adversarial learning
procedure between the feature extractor and the domain dis-
criminator.

During the adversarial learning procedure, the feature
extractor is optimized by maximizing the loss of the domain
discriminator while the domain discriminator is optimized
with the opposite objective. Since we divide the training
data into m + 1 sub-source domains and assign domain la-
bels, we utilize the Cross-Entropy (CE) loss to optimize the
proposed network under adversarial learning:

min
D

max
G

Ladv(G,D) =

− Ex,s∼D,S

∑m+1
j=1 1[j=s]logD(G(x)),

(4)

where G and D are feature extractor and domain discrimina-
tor, respectively. S represents the set of sub-source domain
labels, S = {s1, s2, ..., sm+1}.

Following [17], a GRL [11] is deployed to optimize the
feature extractor and the domain discriminator simultane-
ously.

3.4. Loss Function

Since all the sub-source domain data contain class labels,
a classifier is implemented after the feature extractor, as il-
lustrated in Fig. 2. The feature extractor is optimized by the
Binary Cross Entropy (BCE) loss, denoted as Lcls.

Lcls = − 1

n

∑n
i=1yilogŷi + (1− yi)log(1− ŷi), (5)

where n is the number of samples in source domain
DH×W×C . yi is the label of sample xi. ŷi is the predicted
probability output by the classifier.

Integrating the Lcls and the Ladv mentioned above to-
gether, the objective of the proposed method is:

Lall = Lcls + Ladv, (6)

By optimizing the above overall loss, we train all the
components in an end-to-end manner.

4. Experiment
In this section, extensive experiments are performed to

demonstrate the effectiveness of our method. In the fol-
lowing, we sequentially describe the experimental settings,
comparison with state-of-the-art methods, ablation study,
comparison of different backbones, and feature visualiza-
tions.

4.1. Experimental Settings

SuHiFiMask dataset. SuHiFiMask [9] is collected from
real surveillance scenes. This dataset includes 101 partici-
pants of different ages, 232 high-fidelity masks, 200 2D at-
tacks, and 2 adversarial attacks. Besides, it covers 40 real
surveillance scenes and different weather. To fully evalu-
ate the performance in surveillance scenes, SuHiFiMask de-
fines three protocols: protocol 1 is used to evaluate the com-
prehensive performance of the algorithm being migrated
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to surveillance scenes; protocol 2 is divide into four sub-
protocols by using the “leave-one-type-out testing” to eval-
uate the generalization of the algorithm for the “unseen” 3D
facial mask type; and protocol 3 evaluates the robustness of
the algorithm to image quality degradation. In this paper,
our experiments are all conducted on the most challenging
protocol 3 (quality degradation), which has been utilized for
the 4th Face Anti-spoofing Challenge@CVPR2023.

Evaluation Metrics. The evaluation metrics are consis-
tent with FAS tasks in traditional scenes, i.e., Attack Presen-
tation Classification Error Rate (APCER), Bona Fide Pre-
sentation Classification Error Rate (BPCER), and Average
Classification Error Rate (ACER) [10]. They can be formu-
lated as:

APCER =
FP

TN+ FP
,

BPCER =
FN

FN+ TP
,

ACER =
APCER+ BPCER

2
,

(7)

where FP,FN,TN and FP are the false positive, false neg-
ative, true negative, and true positive sample numbers, re-
spectively. ACER is used to determine the final ranking in
4th Face Anti-spoofing Challenge@CVPR2023.

Architecture Details. The proposed ADGN mainly con-
tains a feature extractor, a classifier, and a domain discrim-
inator. The feature extractor is deployed by the pre-trained
ViT model (ViT-L/16) [8]. Specifically, ViT-L/16 has 24
transformer encoder layers and the patch size is 16 × 16,
the patch embedding dim is 1024, and the head number of
MSA is 16. The classifier consists of a simple Fully Con-
nected layer (FC: 1024, 1). The domain discriminator is
sequentially composed of FC (1024, 512), ReLU activation
layer, Dropout (0.5), and FC (512, 2).

Training Settings. Our proposed method is imple-
mented with Pytorch. In the training stage, models are
trained with SGD optimizer with a momentum of 0.9 and
the initial learning rate (lr) is 0.01. The cosine learning rate
schedule (CosineLR) [30] is employed to adjust lr. We use
warm-up for the first 100 epochs and the minimum lr is the
1% of initial lr. After the first 100 epochs, we fine-tune our
model for the later 30 epochs. In the fine-tuning phase, we
use different data augmentation methods to expand training
data. The data augmentation methods [3] include Coarse-
Dropout, Random Flip, RandomRotate, RandomCrop, Mo-
tionBlur, GaussianBlur, Sharpen, Downsampling, Random-
lyErase, RandomFog, Posterize, etc. The augmented data
are gradually added to the training set to avoid the conflicts
caused by excessive augmentation methods one-time. Be-
sides, the gradual augmentation strategy verifies the effec-
tiveness of each augmented method. We train our model
with batch size 80 on four A100 GPUs, and the maximum
epoch is set to 130.

Method APCER (%) BPCER (%) ACER (%)

ResNet18 [13] 21.04 13.64 17.64
ViT [8] 19.61 13.95 16.78
CDCN [48] 28.70 25.89 27.30
CQIL [9] 19.14 12.87 15.98
Ours 9.21 1.90 5.56

Table 1. The testing results on protocol 3 of SuHiFiMask dataset.
Our method is significantly superior to the current best method
CQIL [9] on all metrics.

Data Preparation. As described in Sec. 3.2, we divide
accessible data into multiple sub-source domains. Please
note that before dividing the accessible data, we first ran-
domly select 10000 images from the accessible data as the
verification set. Then, we select a quality threshold value,
T=0.4, that is, samples with a quality score less than 0.4 are
placed in sub-source domain 1, and samples with a quality
score greater than 0.4 are placed in sub-source domain 2.
During the training process of our ADGN, we resize sam-
ples to 224× 224× 3, and perform some data enhancement
operations, such as random erasing of regions, affine trans-
formation, changing brightness, etc.

4.2. Comparison with State-of-the-art Methods

In this subsection, we conduct all experiments on pro-
tocol 3 of SuHiFiMask and present our final performance
in “Track Surveillance Face Anti-spoofing” of the 4th Face
Anti-spoofing Challenge@CVPR2023. Tab. 1 reports the
testing results of the following methods: ResNet18 [13],
ViT [8], CDCN [48], CQIL [9] and the proposed ADGN. As
shown in Tab. 1, ResNet18, ViT, and CDCN achieve good
performance in traditional scenes, but their performance in
surveillance scenes is unsatisfactory. Those results indicate
that quality degradation in SuHiFiMask poses a challenge to
existing FAS methods. CQIL [9] improves the performance
(ACER: 15.98%) in surveillance scenes by extracting qual-
ity independent features, but it still needs to be further im-
proved. Our method significantly improves various metrics
(∆APCER: 9.93%, ∆BPCER: 10.97%, ∆ACER: 10.42%)
compared to CQIL [9], which fully demonstrates the gener-
alization of our method under different quality conditions.
Overall, Table 1 fully demonstrates the effectiveness of our
method.

4.3. Ablation Study

In this subsection, ablation studies are conducted to
demonstrate the importance of each component and the
choice of loss functions. To draw general conclusions, we
implement a series of testing under different settings. and
all ablation studies are conducted on protocol 3 of the SuHi-
FiMask dataset. We provide detailed performance under
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Model ViT-L/16 Lcls/CE Lcls/BCE Ladv/CE Ladv/BCE APCER (%) BPCER (%) ACER (%)

A ✓ ✓ 9.23 9.25 9.24
B ✓ ✓ ✓ 10.57 2.27 6.42
C ✓ ✓ ✓ 10.42 7.40 8.91

Ours ✓ ✓ ✓ 9.21 1.90 5.56

Table 2. Ablation studies. The feature extractors of all models in the ablation study are deployed with ViT-L/16. We employ BCE loss for
classifiers and CE loss for domain discriminator to achieve optimal performance.

metrics APCER (%), BPCER (%), and ACER (%).
w/ Domain-Adversarial Learning. As described in

Sec. 3.3, we utilize the Domain-Adversarial Learning
(DAL) procedure to extract quality-invariant features. To
prove that the DAL procedure is effective, we conduct rel-
evant ablation studies as shown in Tab. 2 row1 (model-
A) and row2 (model-B). Specifically, compared to model-
A, model-B (w/ DAL) yields BPCER and ACER gains
of 6.98%, and 2.82%, respectively. These results indicate
that using a domain-adversarial learning procedure can ef-
fectively extract quality-invariant features, thereby improv-
ing the overall performance of our method in surveillance
scenes.

w/ BCE. We explore the performance of using different
loss functions for the classifier and the domain discrimina-
tor, i.e., BCE, and CE loss functions. Tab. 2 reports detailed
results. Compare model-B (w/ CE, row2) and model-ours
(w/ BCE, row4), our model improves by 1.36%, 0.37%, and
0.86% on APCER, BPCER, and ACER, respectively. These
performance improvements indicate that BCE loss is more
suitable for FAS tasks in surveillance scenes.

Similar to the classifier, we analyze the performance
of the domain discriminator under different loss functions.
Comparing row3 (model-C) and row4 (model-ours w/ CE)
in Tab. 2, we found that when CE loss is used for domain
discriminator, the performance achieves the best. Specifi-
cally, we observe some significant improvements in perfor-
mance (BPCER: 7.40%→1.90%, ACER: 8.91%→5.56%)
when using the CE loss function for domain discriminator.
BCE loss can be used only because we divide the accessi-
ble data into two subsets. CE loss can be applied to all data
partitioning situations (i.e., the number of subsets is greater
than 2) because the domain discriminator is a multi-class
classifier essentially. Comprehensively, we determine the
optimal combination of loss functions based on the above
ablation studies of loss functions.

Impact of m. In this paper, we first utilize SER-FIQ [36]
to obtain the quality scores of the samples, then we di-
vide the samples into m + 1 sub-source domains to form
a multi-domain adversarial procedure. In Sec. 4.2, we re-
port the performance at m = 1. To further explore the
effectiveness of extracting quality-invariant features from
domain-adversarial learning, we report detailed results here

m APCER (%) BPCER (%) ACER (%)

1 9.21 1.90 5.56
2 8.76 1.85 5.36
3 8.55 1.81 5.18

Table 3. The impact of m on our method. As the number of sub-
source domains increases, the performance of our method gradu-
ally improves.

Backbone APCER (%) BPCER (%) ACER (%)

ViT-S/16 [8] 12.40 2.27 7.34
ViT-B/16 [8] 10.52 2.24 6.38
ViT-L/16 [8] 9.21 1.90 5.56

Table 4. Comparison of our method with different backbones. As
the backbone scale increases, the performance of our method grad-
ually improves.

for m = 2 and 3, the quality thresholds are {0.5, 0.8} and
{0.5, 0.7, 0.9}, respectively. As shown in Tab. 3, the overall
performance of our method gradually improves as the num-
ber of sub-source domains increases. Comprehensively,
these results demonstrate the effectiveness of our method
in extracting quality-independent features.

4.4. Comparisons of Different Backbones

Here, we show the performance of the feature extractor
of our method with three different backbones: ViT-S/16,
ViT-B/16, and ViT-L/16 [8]. Tab. 4 reports the detailed re-
sults. Our method still achieves good performance when
using ViT-S/16 as the feature extractor, which fully demon-
strates the effectiveness of our proposed method (ACER:
7.34%). As the scale of feature extractors increases, the
performance of our method gradually improves. As shown
in Tab. 4, our method uses ViT-B/16 and ViT-L/16 as fea-
ture extractors, the ACER is 6.38% and 5.56%, respectively.
To fully explore the optimal performance of the proposed
method in surveillance scenes, we ultimately chose ViT-
L/16 to deploy our feature extractor.
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4.5. Visualizations of the Proposed Method

To analyze the feature space learned by our ADGN
method, we visualize the distribution of different features
using t-SNE [37], as shown in Fig. 3. For the features wø
ADL in Fig. 3a, it can be observed that their distribution is
more compact and mixed, though they may belong to mul-
tiple databases or various liveness attributions. It can be ob-
served that the feature distribution of samples in sub-source
domain 1 and sub-source domain 2 is greatly affected by
image quality, and there is a significant deviation in the fea-
ture distribution of the two sub-source domains. On the con-
trary, Fig. 3b clearly shows that the feature distribution of
the two sub-source domains is inseparable. These phenom-
ena demonstrate that our proposed ADGN can effectively
extract quality-invariant features. Comprehensively, the ex-
tensive comparing experiments, ablation studies, and fea-
ture visualization results all fully illustrate our method can
effectively deal with the adverse effects of image quality
degradation in surveillance scenes.
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(a) The feature distribution of our
method w/o ADL.
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(b) The feature distribution of our
method w/ ADL.

Figure 3. The t-SNE [37] visualizations of the extracted features.

5. Conclusion
To explore and promote the development of FAS in

surveillance scenes, this paper proposes ADGN combin-
ing domain generalization and transfer learning strategies.
Our ADGN effectively solves the adverse impact of im-
age quality on FAS tasks by extracting quality-invariant fea-
tures through the domain adversarial learning. In addition,
transfer learning strategy effectively address the problem of
limited training data. Extensive experiments show that our
ADGN is effective and achieves excellent performance on
the challenging protocol 3 of SuHiFiMask dataset.
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