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Abstract

We investigate the potential of multi-scale descriptors
which has been under-explored in the existing literature.
At the pixel level, we propose utilizing both coarse and
fine-grained descriptors and present a scale-aware method
of negative sampling, which trains descriptors at differ-
ent scales in a complementary manner, thereby improving
their discriminative power. For sub-pixel level descriptors,
we also propose adopting coordinate-based implicit mod-
eling and learning the non-linearity of local descriptors
on continuous-domain coordinates. Our experiments show
that the proposed method achieves state-of-the-art perfor-
mance on various tasks, i.e., image matching, relative pose
estimation, and visual localization.

1. Introduction
Image matching, a key building block of many vision

tasks such as SfM [29], visual localization [26], and vi-
sual odometry [32], is an algorithm that recognizes struc-
tural characteristics with a similarity between two given im-
ages. Previously, image matching algorithms were imple-
mented on top of hand-crafted features such as SIFT [15]
and ORB [25]. Recent studies have achieved higher ac-
curacy by re-interpreting image matching in terms of deep
learning.

A deep learning-based image matching algorithm gen-
erally consists of the following steps. First, given two in-
put images, a trained network is executed for each image to
obtain the keypoint locations (i.e., keypoint detection), the
corresponding repeatability or reliability scores, and the de-
scriptors sampled from dense feature maps using each key-
point’s coordinate. After selecting the keypoint locations
(often at pixel-level resolution) having the top-K highest
scores on each of the two input images and their associated
descriptors, each descriptor is compared with the descrip-
tors of the other image. The keypoint matching proceeds by
iteratively selecting the keypoint pairs having the highest
descriptor similarity.

For accurate matching, the detector should be able to find

(a) (b) (c)

Figure 1. Keypoints are denoted with stars, and each grid rep-
resents the resolution of the feature map. As the resolution de-
creases, the number of keypoints per pixel increases, which makes
the descriptors of adjacent keypoints similar to each other.

keypoints under various conditions (e.g. viewpoints or illu-
mination change) [5, 7, 20, 23, 28, 33, 37] and should be re-
liable for the purpose of local feature matching when using
descriptor [8, 18, 23]. Also, the descriptor from the dense
feature map should reflect the uniqueness of keypoint by
considering the surrounding image features. This means
that the descriptor of a specific keypoint should be distin-
guishable from those of the other keypoints.

The descriptor feature map is obtained by convolution
layers and the model architecture determines the size of
feature map (1/N of input image size). For determining
the size of this feature map, there is a trade-off between
its discrimination ability and implementation cost. For in-
stance, if a high resolution descriptor feature map is used,
the descriptor from each pixel can have detailed informa-
tion, which improves discrimination ability. However, it can
incur high memory and computation costs due to high reso-
lution [23, 36].

On the contrary, in the case of a low resolution descrip-
tor feature map, due to a smaller number of feature vectors,
the selection of positive and negative pairs becomes easier,
which helps the training for enlarging a gap between posi-
tive and negative pairs. However, the descriptors of adjacent
keypoints in the image tend to be similar to each other. It
is because the descriptors of adjacent keypoints are affected
by the same feature vector via bilinear interpolation (Figure
1). This can hurt the discrimination ability of the keypoint
descriptor.
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In many previous works [8,18,33], a single resolution of
descriptor feature map (e.g., 1/4 of image size) is selected
considering the above pros and cons of high and low resolu-
tions, and the descriptor is obtained through a hand-crafted
function, e.g., bilinear interpolation, at the pixel locations
of the selected resolution.

We consider that the scale of the keypoint descriptor is
under-explored and propose a multi-scale approach tackling
both pixel and sub-pixel resolutions. In terms of pixel-level
resolution, we propose a multi-scale descriptor in order to
take advantage of both high and low resolutions in a U-net
like architecture. Compared with the conventional single
scale descriptor, our proposed multi-scale descriptor has a
potential of offering better discrimination ability by making
the best use of the CNN features with different receptive
field sizes (e.g., large/small receptive fields for global/local
features). In addition, we demonstrate the utility of sub-
pixel resolution and propose a novel implicit model ap-
proach which can learn the embedding space of the descrip-
tors, i.e., the non-linearity in the relationship between pixel-
level descriptors and sub-pixel keypoint locations. Unlike
conventional methods of bilinear interpolation for sub-pixel
sampling, our proposed method is trainable thereby having
a potential of giving more useful descriptors at a sub-pixel
resolution.

Our contributions are summarized as follows.

• We investigate the potential of a multi-scale approach
in keypoint descriptor and present a U-net-like model
architecture.

• We propose a multi-scale descriptor consisting of
coarse/fine-grained descriptors, in order to make the
best use of the advantages of each scale. We also
present a reliability score and scale-aware negative
sampling for the multi-scale descriptor learning.

• We propose a sub-pixel descriptor function which,
based on the existing coordinate-based feature genera-
tor, aims at learning the non-linearity of sub-pixel de-
scriptor on the continuous coordinate space.

• We demonstrate the utility of the proposed methods in
image matching [1], relative pose estimation [6, 13],
and visual localization [26].

2. Related works

Multi-scale descriptor Recent methods such as [8,18,23]
perform multi-scale estimation, where they resize the in-
put image recursively and run the model multiple times to
become invariant on scale changes. From multiple infer-
ence outputs, the keypoints and their descriptors are fil-
tered by the keypoint scores. Another recent method [38]

uses a coarse-to-fine architecture model, which is simi-
lar to our proposed one. It adopts a differentiable match-
ing layer where a coarse feature map is used to alleviate
computational cost in training to obtain keypoint locations.
However, the method uses multi-descriptors differently in
training time and inference time, which can lead to sub-
optimal evaluation results. In our paper, we not only use a
novel multi-scale descriptor, but also propose a new train-
ing pipeline to exploit the benefit of each scale for higher
performance.

Learned Local Descriptors Recently, hand-crafted key-
point detectors and descriptors [2,15,24,25] have been out-
performed by deep learning-based models by a large mar-
gin in several vision tasks. Early works in learned descrip-
tor follow the classic vision descriptor method by running
a CNN on a small patch of the image around the detected
keypoint [9, 11, 16, 19, 20, 34, 35, 40]. To train the network,
pairwise/triplet loss is often used with positive and negative
patches [9, 16, 19, 20, 35, 40], and the average precision is
used as loss function [11]. Subsequently, descriptors such
as [5,7,8,14,18,21,23,33], which extract full image’s fea-
ture map, have been suggested while still adopting the loss
used in patch-based descriptors. More recently, [12,38] sug-
gests a new loss that exploits the epipolar constraint using
camera pose, and [36] suggests a pipeline where the de-
tector and descriptor are learned via reinforcement learn-
ing. Usually in these works, the descriptor feature map is
smaller than the image size, so the keypoint descriptors are
obtained via bilinear interpolation on the dense descriptor
feature map. In our method, rather than using bilinear in-
terpolation, we use a coordinate-based implicit function to
obtain local keypoint descriptors and learn the non-linearity
of local descriptors on continuous-domain coordinates.

Jointly learned detector through descriptor Learned
detectors such as [5,20,33] are trained so that the keypoints
with high scores on an image also have high scores in the
other pair images. On the other hand, [8, 18] use triplet
margin loss [19] where the multiplication of pair of key-
point scores is used for loss’s weight. Likewise, in [23], the
learned reliability score is utilized to weight average preci-
sion loss of [11] for descriptor training. Thus, the reliability
score gets proportional to the matching probability of key-
point descriptor. Inspired by [23] where both repeatability
and reliability scores are used for keypoint filtering, we de-
vised a new relative reliability score loss to train keypoints
considering both repeatability and reliability scores.

3. Preliminary: KeypointNet
We adopt two detector heads from KeypointNet [33], in

which (i) the location head returns the estimated real value
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Figure 2. Overview of the proposed model architecture.

(i.e., sub-pixel) coordinates of keypoints, and (ii) the score
head returns the repeatability scores (between 0 and 1) of
the corresponding keypoints. Each head’s input is the fea-
ture map downsampled by the cell size and each keypoint’s
score and coordinate are obtained from each cell. Unlike the
original cell size of 8x8 pixels, we change the cell size into
4x4 pixels in order to improve the detector performance.

The score head is learned so that those keypoints with
high score tend to have a small distance of point-pair cor-
respondence d(pi, p̂i) where pi and p̂i are two correspond-
ing points from each image. p̂i is defined as the location
of the keypoint nearest to the reprojected (i.e., homography
warped) point of pi, p∗i , on the target image. The original
loss function for score head is as follows [33]:

Lscore =
∑
i

[
(si + ŝi)

2
· (d(pi, p̂i)− d̄)

]
(1)

where si and ŝi are the scores of the two corresponding
points on the source and target images, respectively, and d̄
is the average reprojection error of associated points in the
current image, d̄ =

∑L
i

d(pi,p̂i)
L , where L represents the

total number of point pairs.

4. Methods
4.1. Overall Structure

Figure 2 shows the proposed model architecture. We use
5 VGG-style blocks to reduce the resolution of the image
by 16 in the encoder. Our detector is based on Keypoint-
Net [33], where it obtains the keypoint’s location and score.
The smaller feature maps are upsampled via pixelshuffle
and concatenated with the larger feature maps and the in-
termediate feature maps of 1/4 and 1/8 of input image size
are used for the score head and location head for the detec-
tor.

In the decoder part, we use up-sampling and skip con-
nections to obtain coarse- and fine-level feature maps whose
sizes are 1/16 and 1/4 of the original image size, respec-
tively. As the figure shows, two Local Implicit Keypoint
Descriptor (LIKD) modules sample the coarse- and fine-
level feature maps to calculate a multi-scale descriptor at
each location of keypoint with sub-pixel resolution.

4.2. Multi-scale Descriptor and Reliability Score

As Figure 2 shows, we first obtain two types of keypoint
descriptor, coarse-grained (x16) and fine-grained (x4) ones
from two LIKD modules, respectively. Then, we concate-
nate them for the final descriptor. We propose the following
reliability score loss using the final descriptor.

The original score loss in Eqn. 1 does not take into ac-
count the descriptor. Thus, in order to ensure the corre-
lation between keypoint’s score and descriptor’s discrimi-
nativeness, we devise a new loss of reliability score which
contains the triplet margin loss [19] as relative reliability as
follows:

Lrel score =
∑
i

[
(si + ŝi)

2
· (rel(pi, fi)− r̄el)

]
, (2)

rel(pi, fi) =
∑
i

max{0, ∥fi, f∗
(i,+)∥−∥fi, f∗

(i,−)∥+m)},

(3)
where the anchor fi is the descriptor of the keypoint at pi in
the source image, and f∗

(i,+) is a positive example, i.e., the
descriptor sampled at p∗t (the reprojected location of pi on
the target image under homography) in the target image’s
descriptor feature map. f∗

(i,−) is a negative descriptor that
has the highest similarity with fi in the target image’s de-
scriptors whose position is farther than a certain distance
(called safe-radius) from the positive sample. We will de-
scribe the details of negative sampling on our multi-scale
descriptor in Section 4.3.
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(a) Conventional
safe-radius setting for
training descriptor.

(b) Safe-radius setting
for training x16 de-
scriptor.

(c) Safe-radius setting
for training x4 de-
scriptor.

Figure 3. Area (in red) of negative sampling. The star in the image
represents a positive sample to be used for calculating loss, and the
area nearby star is also considered as positive. Thus, the descrip-
tors of the keypoints in the blue area are not used to calculate loss
through negative similarity.

This loss helps the score head selecting keypoints which
produce better descriptor matching. For instance, when
rel(pi, fi) < r̄el, the descriptor is relatively more discrim-
inative, thus the model must learn to set the score high to
minimize the loss. On the contrary, for rel(pi, fi) > r̄el,
the model learns to set the score low to minimize the loss.
As a result, a keypoint with a high score can not only be
detected in various circumstances(e.g., viewpoint or illumi-
nation change) by Lscore but also well-matched when using
the keypoint descriptor by Lrel score. Note that this loss
is used to train the score head. Thus, when we calculate
rel(pi, fi) for Lrel score, we stop the propagation of the gra-
dient to the descriptor feature map to make this loss affect
only score head.

4.3. Negative Sampling for Multi-Scale Descriptor

Multi-scale descriptors like ours can offer new opportu-
nities for better discriminative power. In order to make the
best use of the advantages of each of the multiple scales
(x16 and x4 in our experiments), we propose re-visiting
negative sampling used for the training of descriptors. In
our model architecture in Figure 2, we need negative sam-
pling on the coarse (x16) and fine-grained (x4) feature maps
of decoder.

In order to train the descriptors at multiple scales, basi-
cally we follow the pipeline similar to [7, 8, 18, 33] where
it uses positive and negative samples from a pair of images.
In the pipeline, negative samples are selected from points at
more than a small distance (called safe-radius) away from
the positive sample, as illustrated in Figure 3a. In the con-
ventional negative sampling for single-scale descriptors, the
safe-radius is fixed to a single value in [18], as illustrated in
Figure 3a. However, in our multi-scale descriptor training,
a single fixed value of safe-radius can result in poor descrip-
tors. For instance, in case of a coarse-grained feature map as
in Figure 1c, a small safe-radius may produce negative sam-
ples whose descriptors are similar to that of a positive one.

On the contrary, a large safe-radius used on a fine-grained
feature map, as in Figure 1a, would lose opportunities of
selecting nearby negative samples for better discrimination
ability.

We propose a scale-aware negative sampling method for
multi-scale descriptor learning. The basic idea is to divide
the area of negative sampling in a scale-aware manner. We
use a large safe-radius (16 pixels in our experiments) in case
of the coarse-grained feature map as illustrated in Figure 3b.
The rationale behind this idea is that the descriptors of ad-
jacent keypoints (at continuous-domain coordinate) on the
coarse-grained feature map are likely to be similar to each
other due to the aggregation, e.g., bilinear interpolation, of
same feature vector at pixel locations. Thus, it would be
better to find negative samples farther apart from the posi-
tive one for stable learning. Additionally, the adoption of a
large safe-radius has the effect of enhancing discrimination
ability for distant or global negative samples.

Regarding negative sampling on the fine-grained feature
map, we propose a complementary solution where negative
samples are selected in a band of area (between 4 and 16
pixels in our experiments) as illustrated in Figure 3c. In this
case, we choose points near the keypoint as in the conven-
tional method with a small safe-radius. However, we do not
select points far from the keypoint. The rationale of this is
that the negative sampling of farther points from the key-
point is covered by the coarse-grained scale as explained
before. Thus, both the area of negative sampling inside of a
band on the fine-grained feature map and that of large safe-
radius on the coarse-grained feature map are complemen-
tary to each other, and, both combined correspond to the
conventional area of negative sampling.

Regarding the concatenated descriptor which is used at
test time, we apply the conventional setting of safe-radius
for negative sampling as illustrated in Figure 3a. We set
safe-radius to 12 in our experiments as ASLfeat [18]) using
circle loss [31]. The detail for loss function to train the
descriptor will be provided in Section 4.5.

4.4. LIKD: Local Implicit Keypoint Descriptor

In order to obtain the descriptor on the real value coor-
dinate, previous works [5, 8, 18, 33] often perform bilinear
sampling (interpolation) from dense feature maps to obtain
the descriptors. However, bilinear interpolation has a lim-
ited expression capability since it fails to capture the non-
linearity of local descriptors on the continuous-domain co-
ordinate. In order to resolve this problem, we propose a new
module called local implicit keypoint descriptor (LIKD),
which enables us to learn the embedding space of local fea-
tures on the continuous-domain coordinate.

Our proposed LIKD module is motivated by the contin-
uous feature mapping technique called LIIF [4] for super-
resolution with arbitrary scaling. Compared with LIIF, our

6148



(a) Bilinear interpolation in LIIF (b) LIKD’s implicit modeling

Figure 4. Left: Obtaining the descriptor of sub-pixel keypoint via
simple bilinear interpolation of Eqn. 6. Right: Obtaining the de-
scriptor of sub-pixel keypoint via LIKD in Eqn. 7. For simplicity,
we remove the real value coordinate x in S and D.

proposed LIKD is different in that it does not adopt the con-
tinuous function(e.g., bilinear interpolation), but the func-
tion learned through training for weights used to aggregate
feature vectors. It is because the keypoint descriptor func-
tion does not need to be continuous but discriminative, as
will be explained later in this section.

First, we define a coordinate-based feature generator
function fθ as follows.

d′xij
= fθ(D

′
xij

,∆xij), (4)

where d′xij
is the output of descriptor generator fθ at the

pixel location xij near the real value coordinate x. ∆xij

represents the coordinate difference between x and a pixel
location xij , ∆xij = x− xij . D′

xij
is obtained by concate-

nating the vectors of descriptor head D. Specifically, D′
xij

is calculated by concatenating descriptor vectors in the 3x3
window centered at the pixel location xij as follows:

D′
xij

= Concat({Dxi+l,j+k
}l,k∈{−1,0,1}). (5)

Note that zero padding is applied to the border of the de-
scriptor head output D.

If we adopted the original LIIF [4] to obtain the final
descriptor of the keypoint located at a real value coordinate
x, we could apply the followings:

d′x =
∑

m∈{00,01,10,11}

Sm

S
× fθ(D

′
xm

,∆xm), (6)

where the index m (m ∈ {00, 01, 10, 11}) represents one of
four neighbor pixel locations around the given coordinate
x of the keypoint as shown in Figure 4a. Sm represents
the area of (diagonally located) rectangle assigned to xm as
shown in Figure 4a.1

Unlike the super-resolution task where LIIF is applied,
there is no need for the keypoint descriptor function to be

1For simplicity, we use Sm instead of Sxm in the figure.

continuous or smooth. Instead, it needs to be discrimi-
native enough to support the case that some specific cor-
ners are more important to explain the keypoint’s descriptor
than other corners regardless of their relative position in the
square.

Thus, unlike Eqn. 6 used in the original LIIF, we also
propose learning the weights as follows:

d′x =
∑
m

gϕ(Dxall
,∆xall,m) · fθ(D′

xm
,∆xm) (7)

where Dxall
and ∆xall are the concatenated ones of all

Dxm
and ∆xm (m ∈ {00, 01, 10, 11}), respectively. fθ

and gϕ are each composed of three fully connected lay-
ers where fθ consists of hidden dimensions of 512, 256,
and 128 with ReLU activation functions, and gϕ consists of
hidden dimensions of 256, 64, and 4 with softmax at the
final layer. gϕ includes softmax layer at the end to make∑

m gϕ(D,∆x,m) = 1.
Note that, in terms of test-time computation cost, the

LIKD module incurs negligible additional cost compared
with the overall encoder-decoder architecture. It is because
the frequency of executing the generator function in Eqn. 7
is proportional to the number of keypoints under top K (de-
pending on the image size in our experiments) selection.

4.5. Implementation

Training We train our model using the dataset in GL3D
[17, 30, 39] and [22]. The training dataset consists of about
800K image pairs and we resize images into 480 × 480.
Similar to [18], the gradients are calculated only if the pair
has at least 128 matches which are confirmed by relative
pose and depth. We also augment each input image with
random photometric augmentation of brightness, contrast,
saturation and hue. The Adam optimizer is used with a
learning rate set to 10−3.

Loss design For training the score head and location head
in detector, we adopt a similar approach to [5, 33] where
a known homography transformation is used. We apply
random homography transformation which is generated in
training time and obtain a target image It from source im-
age Is. From the pair of images, we use location loss:

Lloc =
∑
i

||p∗i − p̂i||2 , (8)

where p∗i is a homography-warped point on the target im-
age, and p̂i is its associated point (i.e., the closest keypoint)
on the target image. The losses for score head are defined
in Eqn. 1 (Lscore) and 2 (Lrel score).

As explained in Section 4.3, for training the multi-scale
descriptor, we use three losses for the coarse-grained de-
scriptor (Ldesc×16

), the fine-grained descriptor (Ldesc×4
)
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and the final concatenated descriptor (Ldescconcat ), respec-
tively. For coarse and fine-grained descriptors, we use
triplet margin loss [19] where we set the margin to 0.3 and
safe-radius to 16 and 4 respectively as mentioned before.
For the concatenated descriptor, we set circle loss’s hyper-
parameter mfuse and γ to 0.1 and 512, respectively [31].
Thus, the final loss for training is as follows:

Ltotal = λ1Lloc + λ2Lscore + λ3Lrel score

+λ4Ldesc×16 + λ5Ldesc×4 + λ6Ldescconcat

(9)

where we set each of scaling parameters λi as 1, 2, 2, 2,
2, and 1, respectively.

5. Experiments
We evaluate our method on various datasets with differ-

ent tasks, and compare ours with SOTA methods. For a di-
rect evaluation of keypoint detector and descriptor, we use
sparse feature matching on the HPatches dataset [1]. We
also evaluate our method on the downstream tasks, rela-
tive pose estimation, and visual localization. In these ex-
periments, we use Megadpeth [13] for outdoor and Scan-
Net [6] for indoor for relative pose estimation, and Aachen
day-night dataset [26] for visual localization. Also, to check
whether each of our proposed methods contributes to higher
performance, we evaluate each method one by one using the
HPatches dataset.

5.1. Image Matching

Datasets From HPatches dataset [1], which includes 116
image sequences with ground-truth homography, we eval-
uate our method on the image sequences. Each sequence
contains a reference image and 5 target images with vary-
ing illumination and viewpoint changes. When we evaluate
each model, we exclude 8 high-resolution sequences fol-
lowing D2-Net [8].

Evaluation metrics We follow three metrics which are
mainly used in the dataset. 1) Repeatability: the ratio of
possible matches and the minimum number of keypoints in
the shared view. 2) Matching score (M.score): the aver-
age of each ratio of successful matches and the minimum
number of keypoints in the shared view from two images.
3) Mean matching accuracy (MMA): the ratio of correct
matches and possible matches. For matching keypoints, we
use the nearest neighborhood from one image to the other,
and the mutual nearest neighborhood in M.score and MMA
respectively. In each metric, the matches are considered as
successful if the distance between true warped keypoints
and matched keypoints is under 3 pixels. We measured
repeatability and M.score following KeypointNet [33], and
MMA following D2-Net [8]. We limit the maximum num-
ber of features of our methods to 5K.

Method Repeat. MMA@3 M.Score

KeypointNet [33] w/ 8x8 cells 0.654 0.740 0.521
KeypointNet w/ 4x4 cells 0.747 0.760 0.533
V1 - Multi-scale descriptor 0.749 0.765 0.547
V2 - V1 + Reliability loss 0.748 0.770 0.549
V3 - V2 + LIKD (area weight) 0.749 0.772 0.551
V4 - V2 + LIKD (learned weight) 0.750 0.776 0.552
V5 - V4 + Our negative sampling 0.748 0.785 0.560

Table 1. Ablation experiment for KeypointNet and our model with
5 configurations discussed in Section 4.2, 4.3 and 4.4.
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Figure 5. Comparison for Mean Matching Accuracy (MMA) on
HPatches dataset [1]. We evaluate each method with varying pixel
error thresholds. Our method achieves the best in overall perfor-
mance. Table 2 compares top performing methods in detail.

Methods MMA@1 MMA@3 MMA@5

R2D2 (MS) 0.363 0.728 0.807
SP + CAPS 0.356 0.705 0.809
ASLfeat (MS) 0.406 0.752 0.851
DISK 0.380 0.773 0.847
PoSFeat 0.396 0.765 0.865
Ours 0.434 0.785 0.871

Table 2. Comparison of top performing methods in Figure 5.

Ablation study We evaluate five different versions of our
method. We define V1-V2 as (i) V1: From our model archi-
tecture in Figure 2, V1 is trained from loss Lloc, Lscore and
Ldescconcat ; (ii) V2: The loss Lrel score is also used when
training. The keypoint descriptors of the two versions are
sampled via bilinear interpolation from each feature map.
Starting from V3, we apply LIKD module, (iii) V3: The
weights for each corner’s feature vector in LIKD module
are determined by the area as Eqn. 6; (iv) V4: The weights
for each corner’s feature vector are learned as Eqn. 7; (v)
V5: From V4, both Ldesc×16 and Ldesc×4 are used together
with our proposed negative sampling.

The evaluation results are shown in Table 1. The com-
parison of the first two rows between KeypointNet with 8x8
and 4x4 cells shows that 4x4 cells can boost performance.
We found that the detector of cell size 8 has early saturation
of repeatability when increasing the number of keypoints.
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Methods Accuracy on ScanNet [%] Accuracy on MegaDepth [%]

dframe = 10 dframe = 30 dframe = 60 easy moderate hard

SIFT 91.0 / 14.1 65.1 / 15.6 41.4 / 11.9 58.9 / 20.2 26.9 / 11.8 13.6 / 9.6
SuperPoint 94.4 / 17.5 75.9 / 26.3 53.4 / 22.1 67.2 / 27.1 38.7 / 18.8 24.5 / 14.1
LF-Net 93.6 / 17.4 76.0 / 22.4 49.9 / 18.0 52.3 / 18.6 25.5 / 13.2 15.4 / 11.1
D2-Net (MS) 97.5 / 19.0 83.7 / 27.5 62.9 / 25.1 70.6 / 31.9 47.9 / 23.6 28.5 / 15.7
R2D2 (MS) 98.0 / 20.9 87.3 / 30.8 65.1 / 27.7 73.8 / 31.9 51.6 / 25.0 36.9 / 16.7
KeypointNet 94.6 / 19.0 79.0 / 26.4 54.0 / 20.7 68.0 / 29.6 43.1 / 22.1 36.6 / 12.5
GIFT w/ SuperPoint kp. 94.7 / 17.6 77.1 / 27.4 47.4 / 11.1 72.8 / 32.4 49.5 / 24.3 31.9 / 17.9
CAPS w/ SuperPoint kp. 96.1 / 17.1 79.5 / 27.2 59.3 / 26.1 72.9 / 30.5 53.5 / 27.9 38.1 / 19.2
ASLfeat (MS) 97.5 / 21.0 87.6 / 34.0 70.6 / 33.7 72.2 / 32.7 57.2 / 29.3 40.3 / 19.9
DISK 95.3 / 19.1 77.5 / 22.7 53.2 / 21.5 74.1 / 32.5 56.6 / 29.6 45.5 / 20.4
PoSFeat 96.3 / 18.1 77.1 / 22.7 54.7 / 21.1 76.9 / 35.2 57.2 / 30.0 43.7 / 20.2

Ours 98.2 / 22.8 92.6 / 38.9 74.1 / 37.5 74.1 / 32.7 55.9 / 27.9 41.3 / 20.7

Table 3. Relative pose estimation accuracy on ScanNet [6] and MegaDepth [13]. Each cell shows the accuracy of estimated rotations /
translations. Each accuracy value is defined as the percentage of pairs with relative pose error under a certain threshold. The detail of
evaluation metric is described in Section 5.2.

However, the detector with cell size 4 can detect more key-
points within the same area so that more keypoints, which
might be missed with cell size 8, can be detected thereby
yielding better matching performance.

Compared with KeypointNet with 4x4 cells, our pro-
posed baseline V1, which is also based on 4x4 cells, no-
ticeably improves the matching accuracy. It is mainly be-
cause V1 adopts multi-scale descriptors while KeypointNet
uses single-scale descriptors. The table shows V2 improves
V1 by training keypoint detector with our reliability loss in
Eqn. 2. Note that the reliability loss aims at increasing the
correlation between the keypoint score and the discrimina-
tion ability of descriptors, which contributes to the increase
in MMA@3 and M.Score without hurting the repeatability
of detector.

The table also shows that our proposed LIKD can further
improve the metrics utilizing the coordinate-based feature
generation with area-proportional (V3) or non-linear (V4)
modeling. Finally, our scale-aware negative sampling (V5),
which is applied to Ldesc×16

and Ldesc×4
to exploit the ben-

efit of each of two different scales of the feature map, boosts
the performance, especially in MMA and M.Score.

Results and comparison Figure 5 shows that our method
outperforms the other methods, especially on MMA across
all the thresholds in HPatches dataset. Table 2 gives a de-
tailed comparison of the figure in terms of MMA@1, @3
and @5. The table shows that our method offers large mar-
gins from the other SOTA methods.

5.2. Relative Pose Estimation

Datasets We use MegaDepth dataset [13], an outdoor
dataset which provides a pair of images with a difference
in illumination and viewpoint with large time changes. The
image pairs for evaluation are provided by CAPS [38],
where there are three subsets with 1,000 images each ac-
cording to relative rotation angle: easy ([0◦, 15◦]), mod-
erate ([15◦, 30◦]) and hard ([30◦, 60◦]). For the indoor
dataset, we use ScanNet dataset [6], where image pairs are
randomly sampled at three different frame intervals, 10,
30, and 60. We follow the sampled image pairs from LF-
net [20] and CAPS [38] and each subset consists of about
1,000 image pairs.

Evaluation metrics To estimate relative pose, we first
derive the essential matrix from mutual nearest neigh-
bor matches and OPENCV [3]’s findEssentialMat with
RANSAC [10]. We can decompose it into relative rota-
tion and translation through OPENCV’s recoverPose. We
consider a rotation or translation to be correct if the angu-
lar deviation is less than a threshold, and report the average
accuracy for that threshold as CAPS [38]. We set a thresh-
old of 5◦ for ScanNet, and 10◦ for MegaDepth because of
the large variation between images in terms of viewpoint or
illumination on Megadepth. We limit the maximum num-
ber of features to 5K and 10K on MegaDepth and ScanNet
respectively for all the methods.

Results and comparison Table 3 shows that our method
outperforms all other methods in ScanNet dataset, and
has competitive performance with other methods on
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Methods Avg. #Features Dim 0.25m, 2◦ 0.5m, 5◦ 5m, 10◦ 0.5m, 2◦ (V1.1) 1m, 5◦ (V1.1) 5m, 10◦ (V1.1)
SuperPoint 4K 256 73.5 80.6 91.8 69.6 85.9 95.3
SuperPoint KP + CAPS 4K 256 80.6 88.8 99.0 71.2 88.0 97.9
SuperPoint KP + Our descriptors 4K 256 81.6 89.8 100.0 73.3 86.4 97.9
D2Net (MS) 14K 512 79.6 87.8 100.0 67.5 86.4 97.4
D2Net KP (MS) + Our descriptors 14K 256 79.6 89.8 100.0 70.7 87.4 98.4
ASLfeat (MS) 9K 128 80.6 87.8 99.0 70.2 84.8 97.4
ASLfeat KP (MS) + Our descriptors 9K 256 78.6 87.8 100.0 71.2 86.9 97.9
R2D2 (MS) 10K 128 76.5 88.8 100.0 71.7 85.9 96.9
R2D2 KP (MS) + Our descriptors 10K 256 78.6 90.8 100.0 72.8 88.0 97.4
DISK 10K 128 81.6 89.8 100.0 74.3 86.9 97.4
DISK KP + Our descriptors 10K 256 80.6 89.8 100.0 71.7 84.8 98.4
PoSFeat 10K 128 78.6 88.8 100.0 70.7 85.3 97.9
PoSFeat KP + Our descriptors 10K 256 78.6 89.8 100.0 73.8 86.9 97.9
Ours 15K 256 78.6 89.8 100.0 71.7 86.4 98.4

Table 4. Evaluation results on Aachen Day-Night dataset [27, 41] for visual localization.

MegaDepth dataset. Considering that DISK and PoSFeat
are trained on MegaDepth, our method demonstrates its
generalization ability in both outdoor and indoor datasets.

5.3. Visual Localization

Datasets We use Aachen Day-Night dataset [27, 41] to
evaluate the utility of our method on visual localization. We
use both 1.0 and 1.1 versions for the dataset where each
dataset contains 98 and 191 queries for estimating pose
from 4,328 and 6,697 DB images, respectively, with day-
night changes.

Evaluation metrics We evaluate the queries’ pose in The
Visual Localization Benchmark2. The evaluation pipeline
takes custom features as input for image matching and uses
COLMAP [29] to reconstruct 3D models and generates the
percentages of successfully localized query images with
three error thresholds: (0.25m, 2◦)/(0.5m, 5◦)/(5m, 10◦).
We limit the maximum number of features to 20K for all
methods.

Results and comparison Table 4 shows that no method
prevails in this task. According to the table, our proposed
method offers competitive performance to the other SOTA
methods and has a potential of offering further performance
improvement when applied together with existing methods.

6. Conclusion
In this paper, we investigated the potential of multi-

scale approach of keypoint descriptor from pixel to sub-
pixel level. We presented a model architecture for multi-
scale keypoint descriptor with sub-pixel accuracy. The pro-
posed multi-scale descriptor is trained with negative sam-
ples found in a scale-aware and complementary manner. We
also presented a sub-pixel descriptor function adopting fea-
ture generation on the continuous coordinate domain while

2http://visuallocalization.net/

learning non-linearity of descriptor for improving discrimi-
nation ability. Our experiments with HPatches dataset show
that our proposed method outperforms the SOTA methods
by a large margin and the evaluations on downstream tasks
also show the competitiveness of our proposed method.
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