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Abstract

With the explosive growth of video contents in the In-
ternet, video retrieval has become an important issue that
can benefit video recommendation and copyright detection.
Since the key features of a video may distribute in distant
regions of a lengthy video, several works have made a suc-
cess by exploiting multi-stream, multi-scale architectures to
learn and merge distant features. However, a multi-stream
network is costly in terms of memory and computing over-
head. The number of scales and these scales are hand-
crafted and fixed once a model is finalized. Further, being
more complicated, multi-stream networks are more prone
to being overfitting and lead to poorer generalization. This
paper proposes a single-stream network with built-in di-
lated spatial and temporal learning capability. By combin-
ing with modern techniques, including Denoising Autoen-
coder, Squeeze-and-Excitation Attention, and Triplet Com-
parative Mechanism, our model achieves state-of-the-art
performance in several video retrieval tasks on the FIVR-
200K, CC WEB VIDEO, and EVVE datasets.

1. Introduction
Various deep learning-based video applications have

been developed [13, 41, 58, 59]. With the growth of user
stickiness on video-sharing platforms, such as YouTube,
Vimeo, TikTok, and Facebook, the amount of Internet video
contents has increased rapidly on a daily basis. Compared
to the other forms of media, videos are more interactive and
entertaining. However, keeping track of videos is a chal-
lenge because of not only lack of labels, but also the way
to assign proper labels. Video editing and forwarding fur-
ther exacerbate the problem. The video retrieval task [1]

is to identify the relevant video(s) of a given query from a
video dataset. A query may be in a form of text [28,62], au-
dio [31,62], image [2,64], and/or video clip [12,33,34,37].

In this work, we consider the video retrieval task where
the query is also a video clip. In general, video retrieval in-
volves three steps: feature extraction, feature aggregation,
and similarity calculation [33]. The extraction of discrim-
inative features is an essential step. Features can be ob-
tained in a hand-crafted manner or from a learning-based
approach. Handcrafted features can be local ones or global
ones. Local approaches include local binary patterns (LBP)
[32, 54], scale-invariant feature transform (SIFT) [29, 61],
and speeded-up robust feature (SURF) [46]. Global ap-
proaches include Color Histograms [32,54,61], 3D-Discrete
Cosine Transform [17], and TIRIs [20]. Learning-based
approaches are proved to achieve higher performance re-
cently. To identify spatiotemporal representations, models
have been built based on CNN [27] and RNN [5, 21]. The
work [30] uses pre-trained AlexNet [38] and Siamese CNN
to extract global and local features. Reference [34] applies
Regional Maximum Activation of Convolution (R-MAC)
[35, 57] to find feature descriptors. In [12], an encoder-
decoder ConvLSTM model that explores multi-embedding
of a video is proposed. For feature aggregation, traditional
approaches have combined frame-level features into video-
level representations using Global Vector [19,23,35,40,61],
hash codes [54, 56, 63] and Bag-of-Words [6, 35, 43]. How-
ever, these methods may be dominated by certain frames
and disregard the temporal relation of frames. Other ap-
proaches consider frame transition information in similarity
calculation, such as dynamic programming [16,44], tempo-
ral networks [30], and temporal hough voting [18, 29].

We observe that extracting and merging distant features,
both spatially and temporally, plays a critical role in video
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Figure 1. Basic idea: multi-stream (top) vs. single-stream archi-
tecture (bottom).

retrieval, especially for lengthy or edited videos. Most
works resolve this issue by a multi-stream architecture,
where each stream handles a particular spatial/temporal res-
olution [12]. Although effective, the number of resolutions
and their resolutions are handcrafted and fixed once a model
is finalized. In SSD (Single Shot MultiBox Detector) [45], a
single-stream network for predicting the bounding boxes of
objects at multiple scales is proposed. By applying dilated
convolutions in certain network layers, the spatial receptive
field is increased without reducing the resolution of feature
maps and its multi-scale feature maps can handle different
scales of objects. While being simpler and faster than multi-
stream networks, SSD achieves remarkable performance on
several benchmarks. The work [9,10] uses dilated convolu-
tion or dilated recurrent skip connections as one of the key
components in their architectures. They show that dilated
operations can cover a larger receptive field without increas-
ing the number of parameters and speed up the process of
the network. By using different dilation rates, the network
can extract features at different spatial and temporal scales.

Inspired by [9, 10, 45], we propose a video embedding
network that tries to learn both dilated spatial and dilated
temporal representations under a single-stream architecture.
Fig. 1 illustrates the main idea. Our model is constructed
by a denoising encoder-decoder framework, and the di-
lated convolution structure and the dilated LSTM structure
capture multiscale fine- and coarse-grained spatiotemporal
characteristics through learnable parameters. At the end, a
comparative network trained with the triplet loss and binary
cross-entropy loss calculates the similarity between a pair
of videos.

2. Related Work

Generally, we obtain video representations by two pro-
cesses, feature extraction and feature aggregation. Early

work often builds video representations from the frame
level. First, local feature-based approaches, such as SIFT
[29, 61] and LBP [32, 54], generate frame-level descrip-
tions. Second, global feature-based approaches, such as
Color Histograms [61] and Auto Colour Correlograms [6],
form representations from a video sequence containing both
spatial and temporal information. Feature aggregation is
to incorporate frame-level information into global represen-
tations. Popular aggregation methods include Global Vec-
tor [19, 23, 35, 40, 61], Fisher Vector [47, 50], and Bag-of-
Words [6, 35, 43]. Global Vector can easily be controlled
by frequently-appeared patterns as it simply averages all
frames. Bag-of-Words is more discriminative since it cre-
ates the visual codebook by mapping each frame into visual
words and utilizes the TF-IDF weighting scheme to acquire
a video-level representation. Other approaches take into ac-
count the alignment of the temporal sequence using Tempo-
ral Hough voting [18,29], Temporal Network [30], and Dy-
namic programming [16, 44]. These methods can perform
well on regular patterns, but are not capable of capturing
diverse patterns.

Recently, deep learning solutions have attracted more at-
tention. The construction of video representations usually
aggregates the results from pre-trained neural networks, e.g.
Maximum Activation of Convolution (MAC) [34, 57] and
variants of MAC [24, 35, 65]. To be rich in video represen-
tation, some approaches [21, 27] consider more spatiotem-
poral information by combining CNN with commonly used
recurrent neural networks such as Long Short-Term Mem-
ory (LSTM) [25] and Gated Recurrent Unit (GRU) [14].

To recognize the similarities between video representa-
tions, distance metrics such as dot product and Euclidean
distance can be applied. Several video hashing methods
[55, 63] choose to use the Hamming distance. The perfor-
mance of these methods depends on a suitable hash func-
tion. Recently, the approaches [34, 51] achieve competitive
performance using Chamfer similarity between frame-level
and video-level video descriptors. Other approaches such
as the Bag-of-Words and its variants [6, 16] rank videos ac-
cording to TF-IDF values. Contrastive learning learns from
positive and negative pairs of data. Contrastive loss [15]
is one of the earliest versions of loss functions used for
deep metric learning (DML) [27, 36, 42]. The purpose is to
minimize the embedding distances of the same class but to
maximize those otherwise. Triplet loss, which involves one
anchor, one positive, and one negative sample, encourages
dissimilar pairs to be distant from similar pairs by at least a
specific margin value. The recent training objective is to in-
clude multiple positive and negative pairs in one batch, such
as Multi-Class N-pair loss [53] and Soft-Nearest Neighbors
Loss [22, 49].
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Figure 2. The proposed video retrieval architecture. The denoising autoencoder has a single-stream structure containing two dilated feature
extraction paths.

3. Proposed Architecture

Given a query video, the objective is to rank all videos
in the database according to their relevance to the query.
Fig. 2 shows the proposed architecture. The model consists
of four components: video preprocessing, feature extractor,
embedding generator, and similarity calculation. The video
preprocessing samples representative frames. The feature
extractor is a single stream network with a denoising au-
toencoder as its backbone. It prevents learning an identity
mapping as opposed to a standard autoencoder and still per-
forms well on corrupted data. There are three loss func-
tions in our model that include Mean Squared Error (MSE)
to compare the original frame sequences and the recovered
output from the decoder, and triplet loss combined with bi-
nary cross entropy for the similarity score calculation step.
Below, we introduce the details. Throughout our presen-
tation, the notations used are as follows: X (input tensor),
Y (output tensor), N (batch size), T (number of frames), H
(height), W (width), and C (channels).

3.1. Video Preprocessing

Videos may have different lengths. For each video, we
select representative frames by partitioning it according to
scene changes. To do so, there are several scene detection
methods available in the open source tool PySceneDetect
[7,8]. We choose content-aware scene detector, which iden-
tifies a scene change based on the frame-to-frame difference
in edges and HSV colors (hue, saturation, and brightness).
If the difference exceeds a preset threshold, a scene change
is detected. Then, from each scene, we select the midpoint
frame as its representative. The purpose is to retain mean-
ingful information per scene. These midpoint frames form
the trimmed video. As frames of videos may be of different

sizes, we resize each frame to the lowest height and width
in the dataset. Then we add Gaussian noise to these frames.
The frame sequence after the above processing, denoted by
a 4-D (T,H,W,C) tensor per video, is the actual input to
the model.

3.2. Feature Extractor

The goal of the feature extractor is to retrieve represen-
tative features from a video. Fig. 3 shows the extractor’s
architecture. It has an encoder and a decoder. The en-
coder starts with two common convolution layers. This is
because the subsequent dilation part is relatively wide and
shallow; increasing the depth can help learn more interme-
diate features, leading to better generalization capability. It
follows by two excitation paths, both with a dilation de-
sign, for identifying rich and distant features among frames.
At the ends of both paths, a squeeze-and-excite module is
added to improve the attention capability of our model. The
excitation results are denoted by Ys and Yt, respectively. Fi-
nally, the decoder is designed to recover noisy frames back
to noise-free original frames by Ys|Yt. Below, we detail the
two dilation paths.

3.2.1 Dilated Convolutional Excitation Path

Dilated convolution blocks have been explored by [3, 10,
11, 39], with the aim of expanding the field of view of fil-
ters without increasing the computation or the number of
parameters of a model. Unlike previous work designed for
1-D time series and 2-D images, we apply the structure to
our 3-D video tensors. Then an attention mechanism fol-
lows.

To emphasize the diversity in spatial resolution, we use
a hierarchy of 3D dilated convolution filters (sliding along
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Figure 3. The architecture of denoising autoencoder. It has a dilated convolutional excitation path and a dilated LSTM excitation path.

T , H , and W ) instead of pooling or downsampling mecha-
nisms. The standard convolution has a dilation rate r = 1.
In our case, we explore spatial dimensions (H and W )
and fix the temporal dimension (T ). Thus, we set our
dilation rate as r = (1, H,W ). Given an input X ∈
RN×T×H×W×C , we apply parallel convolution layers with
different dilation rates to X and then stack the results with
respect to the channel axis. Dilated convolutions expand the
receptive field without loss of resolution at the output layer
(we do not choose to use pooling and stride convolutions
because they would reduce resolution). We set the padding
the same as the dilation rate to fix dimensions H and W .
There are l parallel layers, each with k kernels. So the final
stacked tensor S ∈ RN×T×H×W×C′

, which C ′ = k × l.
The above parallel dilated convolutions enrich S, but

also add lots of channels to S (k × l). Therefore, applying
weights to C ′ is meaningful. Inspired by SENet [26], we
adopt the Squeeze-and-Excitation (SE) network for channel
attention. So tensor S is fed into a SE block to learn the
importance levels of channels. In the squeeze operation, we
opt for a global average pooling to generate channel-wise
statistics:

F =
1

H ×W

H∑
i=1

W∑
j=1

S[:, :, i, j, :] (1)

where F ∈ RN×T×1×1×C′
. In the excitation operation,

we first reduce the number of channels of F by a ratio r

to Fr ∈ RN×T×1×1×C′
r . To map the scaling weights and

project the output back to the same dimension as S, we un-
squeeze Fr by employing fully connected layers with Sig-
moid activation:

Fex = σ(W2δ(W1F )) (2)

where σ refers to the Sigmoid function, δ refers to the ReLU
function, W1 ∈ RC

r ×C , and W2 ∈ RC×C
r . Subsequently,

Figure 4. An illustration of dilated connections of a multi-layer
RNN.

the output Fex is applied to S by simple element-wise mul-
tiplication. The final weighted tensor is denoted as Ys.

3.2.2 Dilated LSTM Excitation Path

The design of dilation is similar to the previous path, except
that we shall focus on the temporal axis (T ). This dilated
block is derived based on [9, 52] and we stack ConvLSTM
layers with dilations. ConvLSTM is a type of recurrent neu-
ral network for spatiotemporal prediction. It applies convo-
lution operations instead of matrix multiplications. The key
equations of ConvLSTM are shown below, where Ht is the
hidden state, Ct is the cell state, Xt is input information,
it, ft, and ot are various gates, ∗ denotes the convolution
operator, and ⊙ denotes the Hadamard product:

it = σ(Wxi ∗Xt +Whi ∗Ht−1 +Wci ⊙ Ct−1 + bi)

ft = σ(Wxf ∗Xt +Whf ∗Ht−1 +Wcf ⊙ Ct−1 + bf )

ot = σ(Wxo ∗Xt +Who ∗Ht−1 +Wco ⊙ Ct + bo)

Ct = ft ⊙ Ct−1 + it ⊙ tanh(Wxc ∗Xt +Whc ∗Ht−1 + bc)

Ht = ot ⊙ tanh(Ct)
(3)

We adopt the dilated recurrent skip connection design
proposed in [9] to extract nearby as well as distant temporal
data dependencies. The basic idea is illustrated in Fig. 4.
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We base our structure upon the stack and temporally con-
catenate multiple ConvLSTM units, in which the output of
a ConvLSTM hidden layer is fed as the input into the subse-
quent ConvLSTM hidden layer. To capture distant tempo-
ral features, we skip a different number of timestamps after
each layer hierarchy. This forms a pyramid-like structure
such that every layer can focus on different temporal reso-
lutions. The first and the bottom layers build the solid and
overall information base, which are the same as the vanilla
ConvLSTM cells, having a dilation of r = 1. For a higher
hidden layer l, we set its dilation as r = (l − 1)× 2, which
means fetching the previous state output by skipping r − 1
timestamps. For example, in Fig. 4, the dilation rates are
r = 1, 2, and 4. The deep architecture allows quickly fetch-
ing distant temporal features from a frame sequence. Since
we intend to have the final output contain a variety of re-
ceptive fields, we concatenate the outputs from all the lay-
ers to form the final tensor S. This design provides mul-
tiscale receptive fields without changing the sizes of ker-
nels/filters, helping our model memorize historical infor-
mation and tackle the challenge of vanishing and exploding
gradients.

The rest of the module also contains a squeeze-and-
excitation network. The steps are similar to the previous
path. It contains applying S to find tensors F , Fr, and Fex

for attention purpose. So we omit the details. Finally, Fex

is applied to S by element-wise multiplications. The final
weighted tensor is denoted by Yt.

3.3. Embedding Generator

After the denoising autoencoder has been well trained,
we take out the trained encoder and use it to generate the
embedding of a video. Rather than extracting encoding out-
put directly, we translate it from a high-dimensional space
to a low-dimensional one by taking the average among the
channel and temporal axes, in hope of keeping semantic
meanings. Recall that the outputs of the spatial and the
temporal excitation paths are Ys and Yt, respectively. To
obtain the embedding, we reshape Ys and Yt as follows.
First, we compute the mean across the dimensions T and
C and reshape the tensor (N, T, H, W, C) to (N, H, W), de-
noted as Y ′

s and Y ′
t . Now the two tensors have the same

size. Then, we concatenate them, resulting in the embed-
ding Y ′

st ∈ (N, 2, H,W ). Note that the second axis (2) is
regarded as the channel axis, which will facilitate the pro-
cessing of the 2D convolution layer in the upcoming simi-
larity calculation.

3.4. Similarity Calculation

Similarity calculation is based on a triplet comparative
model with flows of anchor, positive, and negative videos.
The embedding obtained above is able to distinguish, as
well as recovery, a video. However, our purpose is to use

it to compare the similarity of two videos. Therefore, we
transform it with a 2D convolution layer and two fully con-
nected layers. These layers are to learn the mappings from
video embedding to a compact vector that is able to measure
the distance, i.e., similarity, between videos. The input ten-
sor from the previous phase is (N, 2, H, W). The convolution
layer first reduces the tensor’s height, width, and channel by
a factor of 2. Then flatten it and connect to the fully con-
nected layers to generate a 1-dimensional vector with 1024
nodes. Note that the triplet scheme has only one model,
whose weights are shared by three input tensors: anchor,
positive, and negative. Our distance vectors are obtained by
calculating the absolute value of the element-wise subtrac-
tion, which can be indicated as follows: the anchor-positive
and anchor-negative distances are v|a−p| and v|a−n|, respec-
tively. Then we feed these distance vectors to the last fully
connected layer to generate one node to compute a similar-
ity score sap and san.

3.5. Loss Functions

There are three loss functions associated with our model,
as reflected in Fig. 2. We choose MSE for the optimiza-
tion of the denoising autoencoder, which is the mean of the
squared difference between a denoised video and its ground
truth:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (4)

where n is the number of frames, yi is the i-th frame of the
ground truth sequence and ŷi is the recovered frame.

To optimize the comparative model, we leverage both
the triplet loss and the binary cross-entropy loss. Tradi-
tional triplet loss is applied on the distance vector, which
means minimizing the distance from the anchor to the pos-
itive and maximizing the distance from the anchor to the
negative with a margin threshold. In our case, we force the
network to directly result in higher similarity scores for the
similar video pairs and lower for the dissimilar ones:

Ltr = max(san − sap +m, 0) (5)

where m is a margin value. Then we also use the binary
cross-entropy to compare each of the predicted probabilities
to actual output. The formula is the negative average of the
log of corrected predicted probabilities:

BCE = −[g log x+ (1− g) log(1− x)] (6)

where g is the ground truth, and x is the predicted value
ranging between 0 and 1. We set the same weight to Ltr

and BCE.

4. Experiment Results
The proposed approach is evaluated on three datasets

and compared with several state-of-the-art methods. In all
cases, we use the mean Average Precision (mAP) metric.
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4.1. Datasets

FIVR-200K consists of 225,960 videos associated with
4,687 Wikipedia events and 100 queries, which has been
used as a benchmark dataset for fine-grained incident video
retrieval. In this dataset, they define three types of retrieval
tasks: (1) Duplicate Scene Video Retrieval (DSVR): Two
videos that are regarded as the “same incident” share at
least one scene captured from the same camera but regard-
less of any applied transformation. Relevant videos are an-
notated with ND (near-duplicate) and DS (duplicate-scene)
labels. (2) Complementary Scene Video Retrieval (CSVR):
Two videos that are regarded as the “same incident” con-
tain at least one spatiotemporal overlapping segment and
can be captured from different viewpoints. The task consid-
ers the labels ND, DS, and CS (complementary-scene) as
relevant. (3) Incident Scene Video Retrieval (ISVR): Two
videos that are regarded as the “same incident” can be spa-
tially and temporally close but have no overlap, where ND,
DS, CS, and IS (incident-scene) are considered relevant. In
conclusion, the relationship between three tasks is DSVR
⊆ CSVR ⊆ ISVR and we assume the difficulty as follows
DSVR ≤ CSVR ≤ ISVR. We managed to download 63,247
videos and 36 queries due to some videos are missing and
deleted.

CC WEB VIDEO contains 24 query sets and 12,790
videos. This dataset focuses on duplicate and near-duplicate
videos from the Web video search, which are approximately
identical videos with some image transformations and mod-
ifications. Each query video is chosen by the most popular
video in the set of clips. In this dataset, they detect the
boundaries of the shot and provide keyframes of each shot.
The study [34] provides a cleaned version of the dataset
since the original one has some mislabeled ones in the anno-
tations. Our model evaluates both the original version and
the cleaned version.

EVVE was developed for the problem of event video
retrieval, which consists of 2,375 Youtube videos and 620
queries. The dataset contains 13 major events, such as hu-
man and natural events, which were annotated by the first
annotator that produced the precise definition. Due to the
reason for the removal of the video from YouTube, only
1,732 videos and 377 queries were downloaded.

4.2. Implementation Details

For frame extraction, we download the keyframes
provided in the CC WEB VIDEO dataset and use the
PySceneDetect tool to detect scene changes for the other
two datasets. Then we resize frames according to the lowest
resolution in the dataset. The frame size H×W is 96×108
for FIVR-200K and CC WEB VIDEO, and 112 × 160 for
EVVE. For the encoder-decoder model, we build our di-
lated convolution and dilated LSTM blocks with kernel size
3 and implement 4 stacked layers with the dilation rates of

(1, 2, 4, 6). The reduction rate in the following S/E block is
set as 4 for our baseline model. For the decoder, we build
two simple convolution layers. During the training process,
we adopt the Adam optimizer for our denoising autoencoder
and comparative model, with the learning rate set to 10−2.

Since the number of representative frames per video may
vary (according to the scene detection results), the input
shape of each video may also vary. Although the encoder
is able to process videos of variable lengths, the batch size
of each iteration may differ from each other. To solve the
dynamic input shape problem, we design a batch genera-
tor that only includes video clips of the same length in the
same batch and that limits the maximum number of frames
per batch to a constant 1000. Then we fill in equal-length
video clips into a batch until the limit 1000 is reached. Note
that while the lengths of the embeddings of videos may dif-
fer, the embedding generator will compress the dimension
T , making tensors of the same size for comparison. To train
the comparative model, we set the batch size to 128.

We train the denoising autoencoder for about 20-25
epochs, and the comparative model for about 10-15 epochs.
Using the Early-Stopping callback function, we reduce the
training time and save the best model with the lowest vali-
dation loss for further evaluation. There is a serious imbal-
anced issue in these datasets because irrelevant video pairs
are much more than relevant pairs, making model train-
ing more difficult. For the FIVR-200K dataset, we ran-
domly pick some 0-labelled video pairs to equal the num-
ber of replicated 1-labelled video pairs. We exploit MSE
loss function for denoising autoencoder and triplet loss with
BCE loss function for similarity calculation. The margin
value we set in the triplet loss function is 0.9.

To evaluate the quality of video rankings, we use the
mean Average Precision (mAP) metric as defined in [33].
The Average Precision (AP) for each query is calculated as

AP =
1

N

N∑
i=0

i

ri
(7)

where N is the number of relevant videos to the query video
and ri is the rank of the i-th retrieved relevant video. The
mAP is calculated by averaging the AP scores of all queries
in the dataset. For example, AP = 1 means that all N
relevant videos are ranked in the first N of the list. The
higher the AP score, the higher the retrieval accuracy.

4.3. Comparisons with State-of-the-Arts

The proposed approach is compared with several state-
of-the-art methods on FIVR-200K, CC WEB VIDEO, and
EVVE. The comparison results are given in Tab. 1, Tab. 2,
and Tab. 5, respectively.

FIVR-200K: We compare our model against the fol-
lowing state-of-the-arts. Deep Metric Learning (DML)

6171



Method DSVR CSVR ISVR
DML [36] 0.3460 0.3293 0.2880
LBoW [35] 0.6123 0.5858 0.5208
UTS+FRP [42] 0.7686 0.7239 0.6127
ViSiL [34] 0.8790 0.8475 0.7210
A-DML [60] 0.627 - -
TCA [51] 0.877 0.830 0.703
DnS [37] 0.921 0.875 0.741
Multi-2 [12] 0.8819 0.8795 0.7898
Ours 0.9240 0.8807 0.8356

Table 1. mAP comparisons of three video retrieval tasks on FIVR-
200K.

Method CC WEB CC WEB cleaned
PPT [16] 0.958 -
CTE [48] 0.996 -
DML [36] 0.971 0.979
ViSiL [34] 0.985 0.996
DnS [37] 0.984 0.995
TCA [51] 0.983 0.994
Multi-2 [12] 0.976 0.986
Ours 0.975 0.986

Table 2. mAP comparisons of the NDVR task on
CC WEB VIDEO.

Task DSVR CSVR ISVR
1P 651,381 654,862 726,809
2P 1,283,283 1,278,868 1,419,085
4P 2,556,416 2,531,028 2,800,476

Table 3. Ablation study on data replication: numbers of triplets
after replication (FIVR-200K).

[36] trains a network using the triplet loss scheme; Layer
Bag-of-Words (LBoW) [35] compacts visual information
based on BoW schemes incoporating with tf-idf weight-
ing; UTS+FRP [42] proposes an unsupervised teacher-
student model and a frame-level retrieval pipeline to ac-
quire discriminative video representations; ViSiL [34] con-
tributes a similarity computation method by combining a
frame-to-frame scheme with video-to-video scheme; A-
DML [60] proposes a two-stream attention network for
RGB and combines optical flow features based on DML
approach; TCA [51] applies contrastive learning to train a
transformer-based architecture; DnS [37] trains several stu-
dent networks via a Teacher-Student setup at performance-
efficiency trade-offs; Muiti-2 [12] develops a multi-stream
encoder-decoder ConvLSTM model to extract spatiotempo-
ral embeddings. As can be seen, the proposed model is su-
perior to the state-of-the-arts in all three tasks.

CC WEB VIDEO: This dataset simulates the NDVR
problem. We provide the comparison results on both the

Task DSVR CSVR ISVR
1P 0.6083 0.5424 0.3502
2P 0.7802 0.7016 0.6870
4P 0.9240 0.8807 0.8356

Table 4. Ablation study on data replication: comparison on mAP
by varying replication times (FIVR-200K).

original and the cleaned versions. We compare to DML,
ViSiL, DnS, TCA, and Multi-2. Two more approaches
are included in the comparison: PPT [16] presents a re-
ranking pattern-based method with a BoW-based scheme;
CTE [48] encodes spatiotemporal representations by the
Fourier transform. Tab. 2 shows that our model remains
quite competitive compared to these state-of-the-arts.

EVVE: We calculate the mAP per event since in this
dataset each event has several query videos. The order of
the event categories is the same as in [48]. The difficult part
of this data set is that each event has particular depictions
and characteristics. For example, #2 describes the wed-
ding of Prince William and Kate Middleton, which counts
a slideshow in other weddings as positive; #10 describes
the major autumn flood in Thailand in 2011, which covered
video of the flood in different places; and #12 describes the
eruption of the Strokkur geyser in Iceland, which are reoc-
curring events. The comparisons in Tab. 5 show that our
method performs better in events #3, #6-#10, and the av-
erage score, indicating the ability of our model to integrate
distant visual information and semantic meanings.

We measure the feature extractor model size and FLOPs
of our and Multi-2 to get more insight into single- and multi-
stream networks. The number of parameters of one single-
resolution stream in Multi-2 is 15,371 and the FLOPs is
0.632G. Our model with complete two paths (i.e., four spa-
tial resolutions and four temporal resolutions) has 34,746
parameters and 3.59G FLOPs.

4.4. Ablation Experiments

There is an imbalanced data issue in these datasets–a
video usually has much less relevant videos than irrelevant
ones. To alleviate the insufficient positive pairs problem,
we replicate 1-labelled video pairs 2 or 4 times to form a
dataset. We conduct an experiment on FIVR-200K. Among
all the triplets, each positive pair can contribute 1, 2, or
4 times to the dataset (the negative pair of a triplet is se-
lected in a random manner since they outnumber the for-
mer). Tab. 3 shows the numbers of triplets in our three
datasets after such replications, where P is the original num-
ber of positive pairs and 2P and 4P mean the two replication
cases. Tab. 4 shows the effectiveness of such replications–
we achieve the best performance in the case of 4P. Although
using more replications may gain further improvement, we
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Method avg #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13
CTE [48] 0.376 0.694 0.394 0.111 0.486 0.260 0.281 0.202 0.132 0.212 0.371 0.246 0.774 0.719
LAMV [4] 0.587 0.837 0.500 0.126 0.588 0.455 0.343 0.267 0.142 0.230 0.293 0.216 0.950 0.776
TCA [51] 0.630 - - - - - - - - - - - - -
ViSiL [34] 0.631 0.918 0.724 0.227 0.446 0.390 0.405 0.308 0.223 0.604 0.578 0.399 0.916 0.855
DnS [37] 0.651 - - - - - - - - - - - - -
Multi-2 [12] 0.6561 0.5001 0.6027 0.2993 0.7322 0.6828 0.7045 0.7957 0.5299 0.5312 0.6072 0.6824 0.6563 0.6039
Ours 0.6852 0.8137 0.6576 0.6910 0.6730 0.6713 0.7193 0.8471 0.6591 0.7013 0.8802 0.6776 0.6788 0.6858

Table 5. mAP comparisons on EVVE. (avg means the average of #1 ∼ #13)

(a) DCDL2 with two dilation rates of (1,2) (b) DC with upper path only

(c) DL with lower path only (d) CL with no dilation

Figure 5. Ablative study cases. Shaded areas are not implemented.

Method DSVR CSVR ISVR
DCDL4 0.9240 0.8807 0.8356
DCDL2 0.8694 0.8333 0.7762

DC 0.8162 0.8053 0.7877
DL 0.7829 0.7758 0.7640
CL 0.7924 0.7748 0.6797

Table 6. Ablation study on the model architecture (FIVR-200K).

found 4P to achieve an excellent trade-off among perfor-
mance, computing speed, and storage requirement. There-
fore, we choose 4P in our experiments.

Next, we investigate the contributions of different mod-
ules in our model. We name the model in Fig. 2 DCDL4
since there are four stacked Conv3d layers and four stacked
ConvLSTM layers in the upper and the lower paths, respec-
tively (i.e., four dilation rates). We test the four configura-
tions in Fig. 5 on FIVR-200K. DCDL2 keeps the two-path
structure, but has only two dilation rates (1 and 2) in each
path. DC keeps the whole dilated convolutional excitation
path, but deletes the lower path. DL keeps the whole di-
lated LSTM excitation path, but deletes the upper path. To
validate the necessity of multiple resolutions, CL keeps the

two-path structure, but there is no dilation at all. Tab. 6
presents the comparisons. DCDL4 performs the best. CL
performs the worst, which validates the importance of us-
ing dilation. DC outperforms DL, which indicates that spa-
tial characteristics play a more important role than temporal
characteristics in the video retrieval task. DCDL2 surpasses
DC and DL, which indicates the notable impact of using our
two-path excitation structure.

5. Conclusions
In this paper, we have proposed a denoising autoencoder

framework for the video retrieval problem that employs hor-
izontally stacked dilated convolution and dilated LSTM lay-
ers with the attention mechanisms. The model learns the
multi-scale spatiotemporal representation of a video in a
single-stream network. The model outperforms the other
non-dilated counterparts that employ a multi-stream, multi-
resolution approach in most retrieval sub-tasks except the
NDVR sub-task. Recently, the transformer-based structure
is also proved to be able to handle distant features well,
which deserves further study.
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