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Abstract

With the prevalence of smartphones equipped with a
multi-camera system comprising multiple cameras with dif-
ferent field-of-view (FoVs), images captured by two or three
cameras now share a portion of the FoV that are compati-
ble with reference-based super-resolution (RefSR). In this
work, we propose a novel RefSR model that utilizes ge-
ometric matching methods to enhance its performance in
two aspects. First, we integrate geometric matching maps
to improve feature fusion. Second, we train the matching
modules equipped in the RefSR models under the supervi-
sion of accurate geometric matching maps to increase their
robustness. Our experimental results demonstrate the effec-
tiveness and state-of-the-art performance of the proposed
method.

1. Introduction
Some of the recent mobile phones are furnished with

multiple cameras with the purpose of augmenting the over-
all photographic experience. The included cameras possess
different focal lengths, enabling users to capture photos and
videos with divergent fields of view (FoVs) in unison. For
instance, when two cameras with different FoVs capture the
same scene, the camera with a more restricted FoV gener-
ates a higher-resolution image within the overlapped FoV.
The incorporation of this image with the same scene image
captured by the other camera with a wider FoV can facilitate
an increase in image resolution.

The problem of enhancing the resolution of a low-
resolution (LR) input of a scene with the assistance of
a reference (Ref) image of a similar scene is referred to
as a reference-based image super-resolution (RefSR). Re-
searchers have recently explored this problem, resulting in
the development of several RefSR methods [5,10,28,29,32–
34]. These methods function by initially establishing corre-
spondences between the LR and Ref images, followed by
warping the Ref image to align it with the LR image, and
finally fusing the two images to generate high-quality SR
images. The LR and Ref image pairs obtained via a multi-

camera system can be regarded as a specific RefSR config-
uration, in which the LR and Ref images share a portion of
the field of view (FoV).

The primary challenge of RefSR is obtaining accurate
correspondences between low-resolution (LR) and refer-
ence (Ref) images. Previous works have typically employed
the patch matching method [1] to accomplish this objective.
In particular, they initially extract features of patches at each
position of LR and Ref images, and then establish corre-
spondences between LR and Ref images by selecting patch
pairs possessing the highest similarity. Such patch match-
ing is implemented as a sub-module of the entire network
for RefSR. To enhance the efficacy of the matching mod-
ule in producing high-quality SR outcomes, it is typically
trained via a supervised approach incorporating a recon-
struction loss evaluating the alignment of the two images
such as L1 loss. Despite the success achieved through this
design, there exists considerable room for further improve-
ment.

Firstly, the patch-matching method is so flexible and can
exhibit the capability to establish correspondences between
LR and Ref image pairs on all positions. However, they do
not incorporate geometric constraints pertaining to the LR
and Ref images. It is important to note that a geometric
transformation of the Ref image can enable its coarse align-
ment with the shared region of the LR image. Because ge-
ometric constraints are not utilized during the training pro-
cess, the matching module tends to generate matching maps
that are incongruent, even in the shared regions. Thus, there
is an opportunity to enhance the reliability of Ref feature
matching and fusion by integrating geometric matching into
the aforementioned methodology, with the aim of generat-
ing features that possess both smoothness and sharpness.

Secondly, although a portion of the scene is shared be-
tween the LR and Ref images, which enables the successful
establishment of correspondence between features within
the shared region, matching features in the unshared re-
gion still presents a significant challenge. This issue be-
comes more significant when training the model on real-
world images because the absence of a ground truth hinders
the supervision of SR generation. Previous works [10, 28]
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have adopted a self-supervised approach to train the RefSR
model on real-world datasets. Specifically, they leverage
images possessing narrower FoVs, such as telephoto im-
ages, as a pseudo-ground truth and minimize the texture
differences [12] between the SR output and these images.
However, this pseudo ground truth is not aligned with the
SR images, leading to considerable geometric misalignment
and color differences. Consequently, the texture difference
may not be reliable, causing the model to learn to generate
false textures, particularly outside the shared region. As the
matching module is trained alongside the entire framework,
it may be misled to produce false matches during back-
propagation, particularly for the matching module between
ultra-wide and telephoto images that share only a small re-
gion of the scene.

To address the aforementioned issues, we leverage pre-
trained geometric matching methods to enhance the RefSR
model’s performance. Geometric matching methods are ca-
pable of accurately estimating the geometric transformation
between the LR and Ref images. We mainly utilize the es-
timated maps in two ways to enhance the RefSR perfor-
mance. Firstly, we concurrently utilize both geometric and
patch matching maps to warp the Ref features. The use
of geometric matching maps enables the warped Ref fea-
tures to possess greater smoothness within the shared re-
gion. Furthermore, the independent matching module can
reduce the artifacts caused by the mismatching when de-
ploying the entire model to real-world images.

The second approach we employ to enhance the RefSR
model is to improve the matching robustness by utilizing
geometric matching maps. Prior attempts to develop an
effective patch matching method that can estimate match-
ing maps between ultra-wide and telephoto images have
been unsuccessful due to the significant difference in FoVs.
However, geometric matching methods can be employed
to obtain relatively accurate matching maps between them.
The estimated maps can then be employed as pseudo ground
truth to facilitate the training of patch matching method.
To achieve this, we adopt the margin triplet rank loss [4],
which is commonly utilized in image matching tasks, and
train patch matching method on pairs of real-world images,
such as ultra-wide and telephoto images.

The integration of the geometric matching method has
proven to be successful in enhancing the RefSR per-
formance on datasets collected from multi-camera sys-
tems. Additionally, by utilizing the patch matching method
strengthened with geometric information, we have miti-
gated artifacts resulting from mismatching and achieved an
improvement in the visual quality of the real-world SR re-
sults.

2. Related Work

2.1. Reference-based Super-Resolution

Reference-based super-resolution (RefSR) uses addi-
tional reference image(s) to super-resolve an input low-
resolution image. Previous studies have shown the effec-
tiveness of transferring information from a high-resolution
reference image to generate SR images. A critical problem
is accurately aligning the Ref image with the LR image,
which is important for fusing their image features in a sub-
sequent step to generate high-quality SR images. Zheng
et al. [34] estimate optical flows between them for their
alignment. Zhang et al. [32] propose using patch match-
ing [1], and Yang et al. [30] improve it by adopting atten-
tion mechanisms for feature fusion. Jiang et al. [8] inte-
grate patch matching with modulated deformable convolu-
tion, and have subsequently enhance the matching robust-
ness using a knowledge distillation method. Wang et al. [28]
propose an aligned attention method for better feature fu-
sion, which preserves high-frequency features via spatial
alignment operations well. Huang et al. [5] decouple ref-
based SR task into two sub-tasks: single image SR task and
texture transfer task, and train them independently. It re-
duces misuse and underuse of the Ref feature, which often
happens in Ref feature transfer. Lee et al. [10] propose Re-
fVSR, which integrates RefSR with VSR.

2.2. Dense Geometric Matching

Dense geometric matching aims to establish a dense
pixel-wise correspondence between image pairs under a ge-
ometric transformation. Some of previous works aim at ac-
quiring correspondences between instances that pertain to
the same class within a semantic plane. [2, 9, 14–16, 18].
To effectively manage the significant displacement result-
ing from geometric transformations, the majority of recent
works rely on dense flow regression approaches, which have
been widely adopted in the optical flow methods [3,6,7,19–
22]. Melekhov et al. [13] proposed DGC-Net, which em-
ploys a CNN-based approach to generate dense correspon-
dences in a coarse-to-fine manner. Rocco et al. [17] pro-
posed a neighborhood consensus network that can filter out
ambiguous correspondences by considering the similarities
of neighboring matches and enforcing a consensus among
them. Truong et al. [24] introduced GLU-Net, a method
that combines global and local correlation layers to estimate
dense geometric correspondence without restricting the in-
put resolution. Moreover, Truong et al. further enhanced
this network’s performance by devising an online optimiza-
tion approach that performs replacements in the feature cor-
relation layers [23]. Jiang et al. [8] utilized both dense and
sparse methods and proposed a transformer-based architec-
ture that recursively operates at multiple scales to achieve
accurate correspondence estimation. Truong et al. [26, 27]
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leverage warp consistency constraints to achieve enhanced
unsupervised learning of dense matching. These methods
have shown promising results in various applications and
provide a valuable contribution to the field of dense geo-
metric correspondence estimation.

3. Analysis on Feature Matching
In RefSR, we consider a low-resolution input image

ILR(∈ RH×W×C) and a reference input image IRef (∈
RH×W×C), where H , W , and C denote the height, width,
and number of channels of the input images, respectively.
Here, ILR is an image with a large field of view (FoV) cap-
tured at a low resolution, while IRef is an image of the
same scene with a narrower FoV captured at a higher reso-
lution (e.g., using wide and telephoto lenses). Our objective
is to generate a super-resolved image ISR(∈ RsH×sW×C)
of ILR with an upscaling factor s.

Recent works utilize the reference image to improve the
quality of the super-resolved output by estimating pixel-
wise correspondences between the input image pair. Specif-
ically, high-resolution features from the reference image
are warped using the estimated correspondences to refine
the low-resolution features. Two types of matching mod-
els can be used to accomplish this objective, namely patch
matching and geometric matching. The former is a preva-
lent method in recent RefSR studies.

3.1. Patch Matching Method

Methods based on patch matching establish correspon-
dence between extracted local feature patches from input
image pairs. The method first embeds the input image pair
into feature maps fLR

p and fRef
p using a feature encoder

ϕ1, and densely extracts 3 × 3 patches with a stride of 1.
Next, it computes the cosine similarity S(i, j) between all
pairs of LR feature patches and Ref feature patches, where
i, j are the indexes of LR and Ref feature patches. In order
to derive the matching map, the method selects the patch
with the highest cosine similarity from all the Ref feature
patches, and designates it as the matched patch of a LR fea-
ture patch. The cosine similarity score associated with this
matched patch is used as the confidence score. The match-
ing map and its confidence map can be formulated as fol-
lows:

Mp(i) = argmax
j

S(i, j), (1a)

Cp(i) = max
j

S(i, j). (1b)

The resulting matching map Mp is formed by aggregating
all the matched indexes from the Ref feature map to the LR
feature map, while the confidence map Cp reflects the reli-
ability of the matched features. The aligned Ref feature is
then obtained by warping Ref features with the estimated

index map, which is subsequently used to refine the LR fea-
ture. This method is typically trained together with the en-
tire RefSR model and supervised by an image reconstruc-
tion loss.

3.2. Geometric matching Method

Geometric matching methods are designed to estimate
geometric displacements between pairs of images. Similar
to patch matching methods, these methods typically rely on
estimating image correspondences or optical flow by com-
puting local similarities in the feature space. Recent works
have leveraged both global and local correlations [24] to
achieve precise correspondence across all locations in the
feature map pairs. Notably, the fundamental distinction
from patch matching methods lies in the training of the ge-
ometric matching model on a dataset that adheres to a ge-
ometric constraint, whereby the estimated correspondences
are subject to the constraints of a specific geometric trans-
formation. This constraint limits correspondence solely to
the content present in both the LR and Ref images. We de-
note the matching maps estimated by geometric matching
methods as Mg .

Figure 1. Warped Ref images using patch and geometric matching
methods. Specifically, the Ref and LR images are input into two
matching methods, after which the Ref image is warped based on
the estimated maps in order to align with the LR image.

3.3. Comparison of Two Methods

Both patch matching and geometric matching methods
share a similar fundamental principle, albeit with differ-
ent impacts on establishing feature correspondence, ow-
ing to their distinct training objectives. Figure 1 presents
the warped Ref features, where RGB images are employed
for enhanced visualization, by utilizing correspondences es-
timated by different matching methods. Patch matching
methods facilitate the matching of feature patches without
additional constraints, thereby enabling the flexible match-
ing of features from any image region. However, this ap-
proach inevitably generates mismatched patches, and nu-
merous inconsistent patches appear in the warped features,
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as it is not restricted to a specific geometric transforma-
tion. On the other hand, geometric matching methods are
trained on datasets that pertain to multi-view or optical flow
estimation. By constraining the output correspondence to
a specific geometric transformation, consistent transforma-
tion results can be generated. The warped results of geomet-
ric matching estimation methods, as depicted in Fig 1, treat
the image holistically and accurately determine the over-
lapped region’s location in the LR image. However, the
correlations cannot be intelligently established beyond the
overlapped region, even if the Ref image’s content is simi-
lar.

4. Proposed Method
The two matching methods have their own strengths and

weaknesses, as shown above. In order to establish improved
correspondence between images possessing differing FoVs,
a potential solution is to integrate these two approaches.
Accordingly, we present a novel method for enhancing the
performance of RefSR through the utilization of geomet-
ric matching methods. This is mainly accomplished in two
ways: firstly, by fusing Ref features warped using flows
estimated by both geometric and patch matching methods,
thereby generating better aligned Ref features. To achieve
this, we propose a neural module named the Dual Align-
ment and Aggregation. Secondly, we enhance the robust-
ness of the patch-based matching method by utilizing the
matching outcomes of the geometric matching method. An
overview of our proposed method is presented in Fig. 2,
wherein the left-hand part depicts the overall framework
consisting of three distinct matchers. The Patch matcher
is a conventional patch matching module employed in pre-
vious studies, while the Geometric matcher is a pre-trained
geometric matching model. The Geo-Enhanced matcher is
a patch matching module enhanced by geometric matching
maps, typically trained for matching features between ultra-
wide and telephoto images with large FoV differences.

The right part of Fig.2 illustrates the approach for utiliz-
ing a geometric matcher to enhance the robustness of the
patch matcher. The detail of this process is provided in
Sec.4.2.

4.1. Dual Alignment and Aggregation Module

The input LR and Ref images are denoted by ILR and
IRef , respectively. To generate correspondence maps us-
ing the two matching methods, we initially provide ILR

and IRef as input to both a patch matcher and a geomet-
ric matcher separately. As described in Sec. 3, the patch
matcher outputs the matching map and confidence map Mp

and Cp, respectively, while the geometric matcher outputs
the matching map Mg . Both of these matching maps can
be interpreted as the flow map between ILR and IRef . The
next step is to warp the Ref features fRef using these two

maps, resulting in two warped Ref features.

fRef
p = W(fRef ,Mp), (2a)

fRef
g = W(fRef ,Mg), (2b)

The suitability of the warped features is suboptimal due to
discrepancies in resolution, misalignment, and mismatch-
ing. In accordance with the methods used in previous re-
search endeavors [8, 28], we employ deformable convolu-
tion layers to achieve further alignment of the warped ref-
erence (Ref) features. By utilizing deformable alignment,
we can introduce offset diversity to enhance the quality of
the warped textures. In contrast to prior studies, we contend
with Ref features that have been warped from two distinct
flows. In order to maximize the benefits of these two match-
ing flows, we conduct simultaneous alignment of the Ref
features. Specifically, we concatenate the two warped Ref
features and calculate their corresponding offsets. We sub-
sequently apply a deformable convolution network (DCN)
to generate fusion results.

op,g = co(f
LR, fRef

p,g ) +Mp,g, (3a)

mp,g = σ(cm(fLR, fRef
p,g )), (3b)

fRef
fusion = DCN(fRef , op,g,mp,g), (3c)

where co and cm denote stacks of convolutional layers for
generating offset and mask, and σ is the sigmoid func-
tion. fRef

fusion is the resulting aligned Ref feature of two
matching methods. Directly fusing aligned features with
LR frame features may bring unreliable information due to
error-prone matching results [28]. So we first follow prior
works to adaptively select Ref features from aligned Ref
features. We take confidence map Cp to guide the Ref fea-
ture fusion.

f̂SR
p = g1(Cp) · g2(fLR, fRef

fusion), (4)

where g1 and g2 indicates two conv layers. Next, Ref fea-
tures aligned from different matching methods affect differ-
ent regions of the image.

4.2. Geometry-Enhanced Matching

The approach described in a previous study [10] was un-
able to effectively transfer the high-resolution features of
the telephoto image ITele to the ultra-wide image IUW .
This is due in part to the substantial difference in FoV be-
tween these two images, making it challenging to accurately
match features. Moreover, the unavailability of 8K ground
truth images exacerbates the challenges involved in training
the matching module in conjunction with the entire RefSR
model through a self-supervised approach. As discussed in
Section 3, matching methods based on geometry can pro-
duce more polished but less detailed warping flows, as they
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Figure 2. (a) The overview of the proposed method. Three real-world images are fed into the network with the objective of producing an 8K
ultra-wide image. The patch matcher and geometric matcher modules estimate two matching maps between the ultra-wide and wide-angle
images, which are then passed to the Dual Alignment and Aggregation module. Subsequently, the Geo-Enhanced Matcher is employed to
estimate matching maps between the ultra-wide and telephoto images, which are fused with the previously obtained features. Finally, the
resulting features are utilized to generate the 8K ultra-wide output. (b) The training process of the Geo-Enhanced Matcher involves the
initial estimation of geometric matching maps, which serve as the pseudo ground truth. These maps are subsequently utilized to train the
feature encoder, whereby the distance between feature patches at correspondence positions for the matching map is minimized. Following
this, the pre-trained feature encoder is employed in the Geo-Enhanced Matcher.

are trained with geometric constraints. One solution is to
develop an independent matching module, which can be
trained using geometric matcher outcomes as a surrogate
for ground truth.

Inspired by [4, 8], we leverage the triplet margin rank-
ing loss to attain the desired objective. We first embed
two images ITele and IUW into feature maps via two en-
coders and dense extract feature patches. Next, we employ
a pre-trained geometric matcher to estimate warping flows
between ITele and IUW , from which we derive the corre-
sponding pseudo pair ptele in ITele for every position puw
in IUW , which serves as positive examples. To obtain neg-
ative samples, we identify the most challenging pairs lying
beyond a square local neighborhood of dimension 2K.

N1 = argmin
q∈ITele

||fpuw − fq||2, where ||q − ptele||∞ > K,

(5a)

N2 = argmin
q∈IUW

||fptele
− fq||2, where ||q − puw||∞ > K,

(5b)

where fx denotes the feature patch located at position x. To
ensure that the matching module establishes accurate corre-
spondences among positive pairs, our aim is to minimize the
distance between feature patches of such pairs, while max-
imizing the distance between negative pairs. The positive
distance and negative distance are subsequently computed

from their respective pairs.

P (puw) = ||fpuw − fptele
)||2, (6a)

N(puw) = min(||fpuw − fN1)||2, ||fptele
− fN2)||2),

(6b)

The triplet margin ranking loss is calculated by

Ltriplet = max(0,M + P (puw)
2 −N(puw)

2), (7)

By utilizing the aforementioned methods to train the feature
encoders, it becomes possible to establish a correspondence
between the extracted feature patches of the telephoto and
ultra-wide images. These two Geo-Enhanced feature en-
coders can then be utilized to construct a patch matcher,
referred to as the Geo-Enhanced matcher, as shown in the
Fig. 2. To compare the efficacy of the patch-matching mod-
ules, we evaluated those trained using the proposed methods
against those trained concurrently with the RefSR model in
its entirety in Sec. 5.6.

After obtaining the estimated matching map and its cor-
responding confidence from the Geo-Enhanced matcher, the
Ref features are fused using the method presented in Eq. 4.
The resulting feature is then utilized for the purpose of gen-
erating the final SR output.

4.3. Training

The proposed model is trained using a Ref input with a
narrower Field of View (FoV) in the presence of an LR in-
put, with the resulting output, denoted as ISR, anticipated
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to closely approximate the ground truth image while incor-
porating more refined texture details. Note that 4× down-
sampled ultra-wide and wide-angle images serve as LR and
Ref inputs, respectively, and the original ultra-wide images
IUW are treated as ground-truth. Previous works [10, 28]
have typically employed two distinct losses. The first, a
reconstruction loss, is intended to preserve the contents of
the LR input, while the second, a reference fidelity loss,
is intended to facilitate the transfer of texture details from
the Ref inputs. More specifically, the reconstruction loss is
utilized to compute the low-frequency and high-frequency
bands between ISR and IUW .

ℓrec = ||ISR
blur − IUW

blur ||+ α
∑
i

δi(I
SR, IUW ), (8)

where Iblur indicates images are filtered by 3 × 3 Gaus-
sian kernels with σ = 0.5. The contextual loss, defined
as

∑
i δi(X,Y ) = minjDxi,yj

, calculates the distance be-
tween the SR pixel xi and its most comparable HR pixel yj
at a certain distance D. The reference fidelity loss serves
as guidance for feature fusion of the Ref images, and is ex-
pressed as:

ℓfid =
∑
i

δi(I
SR, IWide), (9)

where IWide is the original size wide-angle image. The loss
is the weighted sum of reconstruction loss and reference fi-
delity loss:

ℓtex = ℓrec + βℓfid, (10)

4.4. Adaption to the real-world images

To address the performance degradation associated with
training the model on down-sampled input, we follow pre-
vious works [10, 28], and undertake fine-tuning of the pre-
trained model using real-world images of the original size.
Specifically, the original ultra-wide images IUW are uti-
lized as LR inputs, while wide-angle images IWide and tele-
photo images ITele serve as Ref inputs, respectively. Given
the lack of ground-truth 8K ultra-wide images, we resort to
an approximate loss, whereby the original wide-angle and
telephoto images serve as pseudo ground-truths, in a self-
supervised manner. The training loss is formulated as fol-
lows:

ℓada = ||ISR
↓,blur − IUW

blur ||+ γℓfid(I
SR, ITele), (11)

where γ is a weighting constant.

5. Experiments
5.1. Datasets

We use two datasets in our experiments, the CameraFu-
sion [28] and RealMCVSR [10] datasets.

RealMCVSR [10] consists of 161 video triplets
recorded by a triple camera system equipped on iPhone 12
Pro Max. Each video triplet has three videos captured in the
same scene but with different FoVs: ultra-wide, wide-angle,
and telephoto. The dataset uses HD resolution(1080×
1920) and totally have 23107 frames.

CameraFusion [28] consists of 146 pairs of 4k wide-
angle and telephoto images with outdoor and indoor scenes.
All the image pairs are captured by a dual-camera system.
We only use it to evaluate the performance of the proposed
Dual Alignment and Aggregation module since it does not
have an ultra-wide image.

5.2. Implementation

We use VGG19 pre-trained on ImageNet1K for encoding
features in the patch matching module, and PDCNet [25]
pre-trained on MegaDepth [11] for generating geometric
correspondence between LR and Ref pair. All the geometric
correspondence are pre-generated using 4× down-sampled
image images. We train the proposed model using Adam
optimizer. The learning rate is initialized with 2.0 × 10−4

and steadily decreased to 1.0 × 10−6 using the cosine an-
nealing strategy. The size of the ultra-wide, wide-angle,
and telephoto input patches are 64 × 64 ,128 × 128, and
256×256, respectively. The loss weights α,β, and γ are set
to 0.01, 0.05, and 0.1, respectively.

To train models on images down-sampled by a factor of
4×, we employ down-sampled ultra-wide and wide-angle
images as LR input and Ref input, respectively. At this
stage, the Geo-Enhanced matcher is not utilized, as su-
pervision is provided by the ground truth, and the match-
ing results between wide-angle and ultra-wide images are
deemed trustworthy. The matcher is trained concurrently
with the entire framework. During the transition to real-
world image adaptation, we incorporate matching between
ultra-wide and telephoto images. Given the significant FoV
gaps between them and the inevitable limitations associ-
ated with a self-supervised approach, we leverage the pre-
trained Geo-Enhanced matcher to facilitate image matching
between them.

5.3. Quantitative Comparison

We quantitatively evaluate the proposed method on the
RealMCVSR test set. First, we evaluate methods on the
model without real-world adaption, i.e., using 4× down-
sampled ultra-wide and wide-angle images as the LR and
Ref inputs, respectively.

Table 1 shows the results. We select several SR meth-
ods, i.e., Bicubic, RCAN [31], TTSR [30], and DCSR [28].
Bicubic and RCAN do not utilize a reference, while oth-
ers are reference-based methods, which is indicated by ‘R-’
in the type column. The methods with ‘-ℓ1’ in the method
column of Table 1 indicate that they are trained with ℓ1loss
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alone, which are used for a fair comparison with previous
works. We can see that our method outperforms all the pre-
vious SR methods in each category. Both types of models
are trained and evaluated with 4× downsampled ultra-wide
and wide-angle frames.

5.4. Qualitative Comparison

We compare the performance of 4× on high-resolution
image inputs, and the SR results are 8K images. For
RCAN [31], we retrained them using the same training con-
figuration as proposed methods without reference input on
RealMCVSR. Fig. 4 shows qualitative comparison.

Model Ref PSNR SSIM
Bicubic % 26.65 0.800
RCAN-ℓ1 [31] % 31.07 0.915
TTSR [30] " 30.31 0.905
TTSR-ℓ1 [30] " 30.83 0.911
DCSR [28] " 30.63 0.895
DCSR-ℓ1 [28] " 32.43 0.933
Ours " 31.09 0.912
Ours-ℓ1 " 32.70 0.935

Table 1. Quantitative evaluation on the RealMCVSR dataset

5.5. Ablation Study

We have conducted ablation studies to evaluate the im-
pact of the proposed components on RealMCVSR and
CameraFusion dataset. Table 2 shows the PNSR perfor-
mance on 4× down-sampled images. The first row corre-
sponds to a model equipped with a geometric matcher only,
while the second row corresponds to a model equipped with
a patch matcher only. The performance of the geometric
matcher is inferior to that of the patch matcher, as it only
affects a portion of the region. In the third row, we have
employed both matchers, and directly fused the Ref features
warped using the two types of matching results with a set
of convolutional layers. The fourth row corresponds to the
model equipped with the proposed dual alignment and ag-
gregation module, which achieves the highest performance.
It should be noted that the RealMCVSR dataset employs
ultra-wide and wide-angle images as the LR and Ref inputs,
whereas the CameraFusion dataset utilizes wide-angle and
telephoto images as the LR and Ref inputs.

5.6. Analysis on Geo-Enhanced matching

To gain further insights into the effectiveness of the
proposed Geo-Enhanced matching methods, we conduct a
comparative analysis between the matcher trained with the
entire framework and that trained using geometric informa-
tion. Specifically, we visualize the warped Ref features in

RealMCVSR CameraFusion
Full Center Full Center

Geo 32.31 34.85 29.95 30.68
Patch 32.51 34.94 30.15 30.75
Patch+Geo 32.63 35.24 30.25 30.99
Patch+Geo+DAA 32.70 35.39 30.37 31.16

Table 2. Abaltion study on the proposed methods. Evalua-
tion(PSNR) is conducted on both full and center-cropped images,
where the latter pertains to regions that correspond closely to the
overlapping FoV between LR and Ref images.

Fig. 3, with RGB images being utilized to enhance visual-
ization. Our analysis of the matching results reveals that the
matcher trained under the self-supervised loss produces ac-
curate matching results within the shared FoV of the LR and
Ref images. However, it is observed to be less reliable in
predicting matching maps outside the shared regions. Con-
versely, the matcher trained using geometric matching re-
sults yields satisfactory matching results both inside and
outside the shared regions. Despite the presence of content
gaps resulting in mismatches within the matching output,
there is considerable potential for enhancing the generation
of 8K images.

(a) Input (b) Ref (c) w/o Geo (d) w Geo

Figure 3. Comparison between patch matcher trained with/without
geometric information.(a) and (b) are the HR input ultra-wide and
telephoto images. (c) and (d) are the warped telephoto images
trained with : (c) the whole RefSR model; (d) geometric informa-
tion.

We proceeded to evaluate the quality of the generated
8K images with and without a Geo-Enhanced matcher. We
conduct a comparative analysis of three variations of the
model: the first variant being without telephoto input, the
second variant incorporating telephoto input but lacking a
Geo-Enhanced matcher, and the third variant comprising a
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(a) HR inputs (b) Bicubic (c) RCAN [31] (d) DCSR [28] (e) Ours

Figure 4. Quantitative comparison of 8K super-resolution results.

Geo-Enhanced matcher. The corresponding results are pre-
sented in Fig. 5. Our findings demonstrate that the utiliza-
tion of an inadequate matching module in conjunction with
telephoto input leads to the degradation of SR generation.
Conversely, the integration of a Geo-Enhanced matcher re-
sults in the generation of superior letters and numbers, com-
pared to the other two variants. Furthermore, our proposed
method effectively mitigates artifacts stemming from mis-
matches.

(a) HR input (b) Bicubic (c) w/o tele (d) w/o Geo (e) w Geo

Figure 5. Qualitative comparison on HR inputs with/without tele-
photo inputs and with/without Geo-Enhanced matcher.

6. Summary and Conclusion
In this study, we have presented a new method for

reference-based super-resolution. Our approach integrates
both patch matching and geometric matching methods, with
particular attention paid to the often overlooked usefulness
of geometric constraints between images. In order to max-
imize the efficacy of both matching methods, we have de-
veloped a Dual Alignment and Aggregation module that in-
tegrates Ref features that have been warped from matching
maps obtained from two distinct sources. Given the chal-
lenges associated with training a precise patch matching for
adapting the model to real-world input in a self-supervised
manner, we leverage geometric matching maps to facilitate
image matching between image pairs that exist a substan-
tial FoV gap. Our experimental results demonstrate that our
approach achieves state-of-the-art performance on both LR
and real-world inputs.
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