
Supplementary Material for
Multi-scale Local Implicit Keypoint Descriptor for Keypoint Matching

JongMin Lee
Seoul National University
sdrjseka96@naver.com

Eunhyeok Park
POSTECH

canusglow@gmail.com

Sungjoo Yoo
Seoul National University
sungjoo.yoo@gmail.com

1. Architecture Details

Layer Description K Output Tensor Dim.
#0 Input RGB image 3 × H × W

Encoder
#1 Conv2d + BatchNorm + LReLU 3 32 × H × W
#2 Conv2d + BatchNorm + LReLU + Dropout 3 32 × H × W
#3 Max. Pooling (× 1/2) 32 × H/2 × W/2
#4 Conv2d + BatchNorm + LReLU 3 64 × H/2 × W/2
#5 Conv2d + BatchNorm + LReLU + Dropout 3 64 × H/2 × W/2
#6 Max. Pooling (× 1/2) 64 × H/4 × W/4
#7 Conv2d + BatchNorm + LReLU 3 128 × H/4 × W/4
#8 Conv2d + BatchNorm + LReLU + Dropout 3 128 × H/4 × W/4
#9 Max. Pooling (× 1/2) 128 × H/8 × W/8
#10 Conv2d + BatchNorm + LReLU 3 256 × H/8 × W/8
#11 Conv2d + BatchNorm + LReLU + Dropout 3 256 × H/8 × W/8
#12 Max. Pooling (× 1/2) 256 × H/16 × W/16

Score Head

#13 Conv2d + BatchNorm + LReLU (#11) 3 256 × H/8 × W/8
#14 Conv2d + BatchNorm 3 256 × H/8 × W/8
#15 Pixel Shuffle (× 2) 64 × H/4 × W/4
#16 Conv2d + BatchNorm + LReLU (#8 ⊕ #15) 3 256 × H/4 × W/4
#17 Conv2d + Sigmoid 3 1 × H/4 × W/4

Location Head

#18 Conv2d + BatchNorm + LReLU (#11) 3 256 × H/8 × W/8
#19 Conv2d + BatchNorm 3 256 × H/8 × W/8
#20 Pixel Shuffle (× 2) 64 × H/4 × W/4
#21 Conv2d + BatchNorm + LReLU (#8 ⊕ #20) 3 256 × H/4 × W/4
#22 Conv2d + Tan. Hyperbolic 3 2 × H/4 × W/4

Decoder

#23 Conv2d + BatchNorm + ReLU (#12) 3 64 × H/16 × W/16
#24 Conv2d + BatchNorm + ReLU 3 64 × H/16 × W/16
#25 Bilinear Upsampling (×2) 64 × H/8 × W/8
#26 Conv2d + BatchNorm + ReLU (⊕ #11) 3 64 × H/8 × W/8
#27 Conv2d + BatchNorm + ReLU 3 64 × H/8 × W/8
#28 Bilinear Upsampling (×2) 64 × H/4 × W/4
#29 Conv2d + BatchNorm + ReLU (⊕ #8) 3 64 × H/4 × W/4
#30 Conv2d + BatchNorm + ReLU 3 64 × H/4 × W/4

Table 1. Description of our model’s CNN parts, composed of an
encoder, decoder and two detector heads. The network receives as
input an RGB image and returns scores, locations and descriptor’s
feature maps. Numbers in parentheses indicate input layers and ⊕
denotes feature concatenation.

Tables 1 and 2 show the details of CNN part and LIKD
module, respectively. As mentioned in Figure 2 and Section
4.4 in the paper, the final descriptor is obtained from LIKD

Layer Description Output Tensor Dim.

Each corner’s feature (fθ in Eqn. 7)

#0 Input relative coordinate & feature vector N × (64×9 + 2)

#1 Linear + ReLU N × 512
#2 Linear + ReLU N × 256
#3 Linear N × 128

Each corner’s weight (gϕ in Eqn. 7)

#4 Input relative coordinate & feature vector (4 × N) × (64 + 2)

#5 Linear (4 × N) × 64
#6 Linear + ReLU N × 64
#7 Linear N × 4
#8 Softmax N × 4

Table 2. Description of LIKD. Each network receives feature vec-
tor and relative coordinate of keypoints from corners as input. N
denotes the number of detected keypoints.

module by feeding descriptor feature map (#24 & #30) and
keypoint’s coordinate (#22).

Figure 1. Description of fθ in LIKD.

Eqn. 7 in the paper is shown below for a better reference.

d′x =
∑
m

gϕ(Dxall
,∆xall,m)× fθ(D

′
xm

,∆xm) (1)

Figures 1 and 2 gives the details of each function fθ and
gϕ, respectively. We run fθ four times (for four different
corners of the keypoint) for each keypoint. Figure 1 shows



Figure 2. Description of gϕ in LIKD.

that for each corner m ∈ {00, 01, 10, 11}, fθ takes as input
D′

m and ∆xm and produces a 128-dim vector. Note that, as
shown below (Eqn. 5 in the paper),

D′
xij

= Concat({Dxi+l,j+k
}l,k∈{−1,0,1})

D′
m is derived from feature map D computed by CNN

parts, where the feature vectors in a window of size 3 are
concatenated to give a vector of 64×9 dimensions (unfold-
ing in PyTorch).

gϕ is executed to produce four weights of four corners.
As Figure 2 shows, we execute gϕ only once to obtain four
weights for the four corners. Given the four concatenated
Dm’s and xm’s, gϕ applies a linear layer and concatenates
the results, and then applies two linear layers finally to pro-
duce a weight vector of size 4.

The computation cost of CNN and LIKD parts, in Ta-
bles 1 and 2, amounts to about 36.5GFLOPS (CNN), and
3.7GFLOPS (LIKD), respectively, for obtaining 1,000 key-
points and descriptors from a 480×480 image.

2. Training Details

We first pretrain our model using the COCO 2017 dataset
[2] according to KeypointNet [6]’s training pipeline. The
training pipeline uses self-supervised learning with ran-
domly generated homography, and the dataset consists of
about 118,000 images. We pretrain the model with 5 epochs
with COCO dataset, and train the model with GL3D [3,5,7]
and [4] for 3 epochs.

When we train our model’s descriptor from GL3D
dataset, the number of negative samples for triplet mar-
gin loss and circle loss is determined by the number of
keypoints detected by location head. Since the training
dataset’s image resolution is 480×480 and the cell size is
4, the maximum number of detected keypoints is 120×120.
We found that this requires huge memory for calculating
loss in training, so we randomly sample 4,000 keypoints for
negative samples.

1 2 3 4 5 6 7 8 9 1011120.0

0.2

0.4

0.6

0.8

1.0

M
M

A

Overall

Desc x4
Desc x16
Desc concat

Figure 3. Comparison of Mean Matching Accuracy (MMA) on
HPatches dataset [1]. We evaluate each descriptor with varying
pixel error thresholds.

(a) Multi-scale concatenated descriptor

(b) Fine-grained (x4) descriptor

(c) Coarse-grained (x16) descriptor

Figure 4. Qualitative comparison of descriptors on the ”v graffiti”
subset of HPatches.

3. Analysis of Descriptors
Figure 3 compares coarse-grained (x16), fine-grained

(x4) and concatenated descriptors on MMA for HPatches
[1] dataset. The figure shows that Desc x4 outperforms
Desc x16 when the threshold is small (less than 9px). How-
ever, the performance of concatenated descriptor shows that
Desc x16 can offer additional performance gain even when
the threshold is small. As the threshold gets larger, Desc



(a) Multi-scale concatenated descriptor

(b) Fine-grained (x4) descriptor

(c) Coarse-grained (x16) descriptor

Figure 5. Qualitative comparison of descriptors on the ”v colors”
subset of HPatches.

x16 becomes dominant. Moreover, Desc x16 continues to
improve performance as the threshold gets larger, which
contributes to the monotonically increasing performance of
the concatenated descriptor. Overall, Figure 3 shows both
coarse- and fine-grained descriptors contribute, in a rather
complementary manner, to the performance of concatenated
descriptor. The qualitative comparisons are provided in Fig-
ures from 4 to 5.

Methods MMA@1 MMA@3 MMA@5 MMA@10

Desc x4 (before) 0.426 0.737 0.813 0.835
Desc x4 (after) 0.423 0.745 0.821 0.843

Desc x16 (before) 0.244 0.540 0.700 0.848
Desc x16 (after) 0.252 0.554 0.710 0.857

Table 3. MMA comparison on each descriptor before (V4 in Table
1 of the paper) and after (V5) negative sampling.

Table 3 demonstrates the effect of negative sampling.
Negative sampling consistently improves MMA on both
coarse- and fine-grained descriptors across all the thresh-
olds except one case (of 1px for Desc x4).

4. Qualitative Results
We show examples of successful matching under strong

illuminations, rotations and perspective transformations
with HPatches dataset in Figure 6. We show only the match-

ing cases which are filtered by inlier mask obtained from
findHomography of OPENCV.

We also show examples of successful matching in in-
door and outdoor image pairs with Scannet and Megadepth
dataset in Figures 7 and 8. We show only the matching cases
which are filtered by inlier mask obtained from findEssen-
tialMat of OPENCV.

Finally, we show examples of successful matching in
Aachen day-night dataset in Figure 9. We show only the
matching cases which are filtered by inlier mask obtained
from findFundamentalMat of OPENCV.

References
[1] Vassileios Balntas, Karel Lenc, Andrea Vedaldi, and Krystian

Mikolajczyk. Hpatches: A benchmark and evaluation of hand-
crafted and learned local descriptors, 2017. 2

[2] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva
Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft
coco: Common objects in context, 2015. 2

[3] Zixin Luo, Tianwei Shen, Lei Zhou, Siyu Zhu, Runze Zhang,
Yao Yao, Tian Fang, and Long Quan. Geodesc: Learning local
descriptors by integrating geometry constraints. In European
Conference on Computer Vision (ECCV), 2018. 2

[4] Filip Radenovic, Giorgos Tolias, and Ondrej Chum. CNN im-
age retrieval learns from bow: Unsupervised fine-tuning with
hard examples. CoRR, abs/1604.02426, 2016. 2

[5] Tianwei Shen, Zixin Luo, Lei Zhou, Runze Zhang, Siyu Zhu,
Tian Fang, and Long Quan. Matchable image retrieval by
learning from surface reconstruction. In The Asian Conference
on Computer Vision (ACCV, 2018. 2

[6] Jiexiong Tang, Hanme Kim, Vitor Guizilini, Sudeep Pillai,
and Rares Ambrus. Neural outlier rejection for self-supervised
keypoint learning, 2019. 2

[7] Yao Yao, Zixin Luo, Shiwei Li, Jingyang Zhang, Yufan Ren,
Lei Zhou, Tian Fang, and Long Quan. Blendedmvs: A large-
scale dataset for generalized multi-view stereo networks. In
Computer Vision and Pattern Recognition (CVPR), 2020. 2



(a) Illumination cases.

(b) Rotation cases.

(c) Perspective transformation cases.

Figure 6. Qualitative results of our method on images pairs of the HPatches dataset.

Figure 7. Qualitative results of our method on images pairs of the Scannet dataset.



Figure 8. Qualitative results of our method on images pairs of the Megadepth dataset.

Figure 9. Qualitative results of our method on images pairs of the Aachen day-night dataset.


