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Figure 1. Novel view synthesis and refocusing result of the proposed method.

Abstract

Recent advancements in learning-based novel view syn-
thesis enable users to synthesize light field from a monocu-
lar image without special equipment. Moreover, the state-
of-the-art techniques including multiplane image (MPI)
show outstanding performance in synthesizing accurate
light field from a monocular image. In this study, we pro-
pose a new variable layered depth image (VLDI) represen-
tation to generate precise light field synthesis results us-
ing only a few layers. Our method exploits LDI represen-
tation built on a new two-stream halfway fusion network
and transformation process. This framework has an effi-
cient structure that directly generates the region that does
not require network prediction from inputs. As a result,
the proposed method allows us to acquire high-quality light
field easily and quickly. Experimental results show that the
proposed method outperforms the previous works quantita-
tively and qualitatively for diverse examples.

1. Introduction
Light field captures the direction and intensity of rays

in space within a single image. It is a useful photographic
technique because it can be post-processed, such as view-
point change, refocusing, and depth estimation. Recently,
light field has received huge attention from the industry for
the possible use of immersive content creation, especially in
augmented reality (AR) and virtual reality (VR). However,

acquisition of light field remains problematic as it requires
professional equipment such as a plenoptic camera or mul-
tiple camera array [12, 23].

Srinivasan et al. [18]’s pioneering work has become
a dominant technique to synthesize a light field from a
monocular image. Nevertheless, this method is trained only
for a particular type of object and consequently poorly per-
forms in the general scene. Subsequently, Li et al. [10] pro-
posed a method that uses an additional monocular depth es-
timation model learned from various scenes for geometry
estimation. This method can deal with occluded areas ro-
bustly by using layered representation, that is, multiplane
image (MPI). For this purpose, it uses a method to learn the
geometrical scale of dataset through the extended represen-
tation, that is, variable MPI (VMPI).

In this paper, we propose a novel method that utilizes
an improved variable layered depth image (VLDI) for light
field synthesis. Unlike conventional MPI and VMPI which
have a single depth value per layer, our method exploits lay-
ered depth image (LDI) in which layer depth is encoded in a
per-pixel manner. Thus, it can produce more accurate light
field synthesis results using only a few layers. Fig. 1 shows
an example of the novel view synthesis and refocusing re-
sult.

To build VLDI, we specially design a framework con-
sisting of synthesis and transformation stages. It inputs
a monocular image and its normalized depth image that a
monocular depth estimation model predicts. Our synthesis
network simultaneously produces RGB and depth channels

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3399



of VLDI, which have different characteristics by using a
newly designed two-stream halfway fusion structure. Ow-
ing to the separated streams of the network, inter-channel
interference caused by simultaneously estimating different
types of channels might be minimized. Thus, the network
only estimates the in-painted RGB and scaled layer depth.
We demonstrate that the proposed method can quickly pro-
duce clearer and more accurate light field synthesis results
through various comparisons with state-of-the-art methods.
Our main contributions are summarized as follows.

• A novel VLDI scene representation that generates more
natural motion parallax results with only a few layers.

• An efficient VLDI construction framework, which com-
bines synthesis and transformation stages that minimizes
network prediction.

• A two-stream network in the form of halfway fusion so
that different types of channels configuring VLDI can be
synthesized with minimal interference.

2. Related Works
Light Field Synthesis. Light field synthesis began with a
study on an angular super-resolution (SR) method capable
of generating dense light fields through a small number of
input images. Wanner et al. [22] used depth as geometry in-
formation obtained by epipolar plane image (EPI) analysis.
Zhang et al. [26] utilized a phase-based method that can use
a tiny baseline stereo pair as input.

Kalantari et al. [8] pioneered a method of synthesizing
novel 8×8 sub-aperture images (SAIs) in fronto-parallel
baseline using a convolutional neural network that estimates
the parallax of each SAI from the four corner SAIs. Wu et
al. [24] proposed a method that uses EPI up-sampling and
deblur from several input images.

Srinivasan et al. [18] proposed a monocular-based light
field synthesis. Notably, this method includes approximat-
ing the occluded and non-Lambertian regions. In a similar
fashion, Ivan et al. [7] proposed a method of using geomet-
ric representation called appearance flow, and introduced
a new loss function which can avoid a reflection on pixel
brightness. In a recent study, Chen et al. [1] showed that
the generative adversarial networks (GAN) approach could
be applied in this work. Li et al. [10] demonstrated that the
MPI representation could generate light field type results
by learning the scale of geometry from dataset through a
extended structure, that is, VMPI.

Multiplane Image. MPI originated as a photographic
technique of film animation. It is a 3D scene representa-
tion that contains fronto-parallel multiple planes including
occluded areas. Zhou et al. [27] proposed a pioneering work
in generating MPI by using a learning-based method. The
original MPI method can produce enlarged baseline results

from a stereo pair with a small baseline. To construct MPI,
the network leverages the scene geometry extracted from
input and naturally handles occlusion areas by using differ-
entiable layered representation. Subsequently, Srinivasan et
al. [17] and Flynn et al. [3] proposed improvements to the
above method by extrapolating it with an extensive base-
line. These methods acquire the scene geometry required
for synthesis by constructing a plane sweep cost volume
from reference images.

However, pose information is necessary for construct-
ing the precise plane sweep cost volume. Moreover, the
model itself might be complex for handling. Furthermore,
MPI-synthesis-based methods that utilize multiple input im-
ages might not be convenient for synthesis. Thus, Tucker et
al. [19] proposed a monocular-based MPI synthesis method
to solve the aforementioned problems. Specifically, this
method utilizes a scale-invariant learning approach to over-
come the scale ambiguity of the monocular-based scene ge-
ometry estimation.

Layered Depth Image. Shade et al. [14] proposed the
original LDI as a 3D scene representation consisting of mul-
tiple layers containing occluded regions. LDI is similar to
MPI, but there is a inherent difference that all layers have
per-pixel depth value. Hereby, the layer is not a plane and
may be expressed as a sprite. This form can naturally repre-
sent motion parallax, even when the used number of layers
is less than MPI.

In fact, various methods can be used to divide layers in
LDI. For example, Tulsiani et al. [20] designed a method of
synthesizing two layers consisting of front and back. How-
ever, a limitation of this approach is the difficulty of cop-
ing with various occlusion on the basis of a few layers.
On the other hand, Shih et al. [15] exploited a segmenta-
tion method that can construct layers adaptively and detect
occlusion through depth edges. Interestingly, the occluded
areas are inpainted by their method of catching contextual
information. Although this method can generate extensive
baseline results, it does not support differentiable rendering
like MPI. Therefore, synthesizing non-Lambertian surfaces
through this method remains challenging.

3. Proposed Method

Fig. 2 shows the overall structure of our network. Given
an input monocular image I and target position p in u and v
directions, the proposed method synthesizes Î for estimat-
ing the target It. The total network consists of a monocu-
lar depth estimation network that estimates scene geometry
information and a VLDI synthesis network that performs
inpainting on the occluded region and estimates the scaled
depth of each layer. The VLDI synthesis network receives
input of monocular image I and its normalized depth im-
ages ID. The geometrical scale is fixed to the light field
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Figure 2. Our pipeline renders novel view using VLDI representation which is built on the synthesis network and transformation process.
MDE denotes monocular depth estimation. The network has a two-stream halfway fusion structure to estimate the RGB and scaled
layer depth simultaneously. The alpha channel which defines the layers and the visible region of RGB channel is generated through the
transformation process without network prediction.

dataset through training in the same manner as VMPI [10].
Furthermore, our method does not require any network to
generate the alpha channel defining the layers and the vis-
ible regions. We achieve such generation directly from in-
puts passed through our transformation process.

3.1. Monocular Depth Estimation (MDE)

The depth information required for light field synthesis
can use all kinds of normalized depth images. However,
we utilize a general monocular depth estimation model to
obtain the depth from an input monocular image in the
same manner as VMPI [10]. In fact, the depth estimation
model can increase generalization performance by means of
LeRes [25] model, which is pretrained on a wider variety of
scenes and larger amounts of data than light field datasets.
Such depth estimation model provides a state-of-the-art
performance compared with recently released monocular-
based models. Hence, we can obtain sophisticated scene
geometry information. However, the input image obtained
from the light field dataset generally has a dark tendency,
it is input to the model by improving brightness through
gamma correction. Finally, the depth estimation result is
normalized to remove inaccurate scale information esti-
mated by the monocular-based model.

3.2. Representation

The proposed VLDI representation designed by applying
VMPI [10] structure has N fixed number of layers. Each
layer of VLDI is combined with RGB channel C and trans-
parent map, alpha channel A, which can be expressed by
Li(x, y) = {Ci(x, y), Ai(x, y)}. Here, x and y denote
pixel position. In addition, VLDI estimates depth chan-
nel D together. Unlike the VMPI method, ours does not

make the depth of each layer as a single value through
average. Therefore, it can be expressed as D(x, y) =
{Di(x, y), ..., DN (x, y)}. To render a VLDI for generating
a targeted view, each layer is warped using a relative pose
and depth. Given that the depth channel is actually learned
as disparity and not as depth, warping can be expressed as
follows.

L̂i (x, y) = Li (x+ puDi(x, y), y + pvDi(x, y)) (1)

Generating a final target image by compositing the
warped layers can be expressed as follows, as in VMPI [10].

Îi =
(
1− Âi

)
Îi−1 + ÂiĈi , where Î1 = Ĉ1 (2)

3.3. Transformation

The existing MPI synthesis model estimates the alpha
channel that determines the layers through a network pre-
diction. Moreover, the final pixel value is determined from
values of several layers through compositing. However, the
proposed LDI-based method directly generates a binarized
alpha channel without network from the inputs. To perform
our transformation process, first, the mask V for the visi-
ble region of LDI is obtained as shown in Eq. (3) through a
quantization of the input depth.

Vi (x, y) =

{
1, if i = N − round ((N − 1)ID(x, y))

0, otherwise
(3)

where round(·) is a rounding function. The final alpha chan-
nel generated from V can be obtained as follows.

Ai = Vi +

N∑
j=i+1

Vj ,where AN = VN (4)
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The transformation alpha channel makes the pixel value of
the RGB channel determined by only one layer, even when
the composition is performed. Then, the visible area for the
RGB channel of the LDI is obtained, as shown in Eq. (5), to
replace it with an input image. We denote the RGB channel
estimated through the network as C

′
to distinguish it from

the final RGB channel. Although copying input images is
similar to the approach of [19], our approach has a substan-
tial difference. We obtain results that are inpainted by layer
rather than a single background, and the alpha channel is
not estimated over the network. This functionality can be
formulated as

Ci = IVi + C
′

i (1− Vi) . (5)

3.4. Synthesis Network

The network receives RGB image and normalized depth
image as inputs and simultaneously estimates depth chan-
nels and the occluded region of the RGB channel by the
two-stream architecture. However, given that RGB image
and depth image have different characteristics, interference
occurs between channels when the network has early-fusion
structure. Therefore, we design a novel LDI synthesis net-
work in the form of halfway fusion in which the features of
the two inputs can be appropriately fused in the middle and
decoders are separated to generate two different outputs.
This network consists of two encoders and two decoders,
but we do not use weight sharing between encoder-encoder
and decoder-decoder. Instead, we establish skip connec-
tions between encoders and decoders for transferring mean-
ingful features. In architectural level, our network modules
have similar structure presented in original VMPI [10], but
we replace ReLU and Tanh activations with leaky ReLU
and HardTanh activations respectively.

3.5. Training

Our model renders VLDI to induce learning in a di-
rection where the difference between the estimated target
SAI and ground truth is minimal. As the loss function, we
adapt L1 loss for areas where occlusion does not occur, and
straightforwardly calculate it using Eq. (6). The soft visi-
bility mask M [10] is used to mask the occluded part that is
revealed after rendering.

LLAD =
∥∥∥M(It − Î)

∥∥∥
1

(6)

Losses for the entire area including the occluded part use
SSIM-based [21] loss to increase structural similarity and
VGG-based [16] loss to increase perception similarity of
occluded areas. The SSIM loss can be expressed as follows,

LSSIM = 1− SSIM
(
It, Î

)
(7)

PSNR [dB] ↑ SSIM ↑
Method 8×8 15×15 8×8 15×15
Flower dataset
Srinivasan et al. [18] 37.568 N/A 0.920 N/A
Ivan et al. [7] 37.271 N/A 0.918 N/A
Li et al. [10] 36.784 35.180 0.909 0.855
Ours 38.196 36.155 0.933 0.884
Stanford dataset
Srinivasan et al. [18] 36.803 N/A 0.883 N/A
Ivan et al. [7] 35.857 N/A 0.854 N/A
Li et al. [10] 36.683 35.695 0.897 0.854
Ours 37.360 36.001 0.902 0.851
Kalantari dataset
Srinivasan et al. [18] 34.641 N/A 0.829 N/A
Ivan et al. [7] 34.273 N/A 0.828 N/A
Li et al. [10] 34.620 33.650 0.852 0.783
Ours 35.699 34.364 0.876 0.799

Table 1. Quantitative comparison. We evaluate the PSNR and
SSIM on three datasets by synthesizing 8×8 and 15×15 light field.
All models are trained using only the Flower dataset.

The VGG-based loss uses the method proposed in [27],
which compares λ̂i-weighted VGG outputs ϕi

V GG of multi-
ple layers by

LV GG =

5∑
i=1

λ̂i

∥∥∥ϕi
V GG (It)− ϕi

V GG(Î)
∥∥∥
1

(8)

As a result, the total loss can be expressed as follows,

L = λ1LLAD + λ2LSSIM + λ3LV GG (9)

where λ1, λ2 and λ3 are the weights to balance the output
of each loss.

4. Experimental Results
4.1. Setting

We train our model using Adam optimizer [9] with hy-
perparameters, learning rate 2e− 4, β1 = 0.9, β2 = 0.999,
ϵ = 1e− 8, and batch size 12. The loss function weights in
Eq. (9) are set to λ1 = 2.5, λ2 = 1 and λ3 = 2.5. The num-
ber of layer N is 8. Training and testing are performed on
Intel i7-9700K CPU with 32GB RAM and NVIDIA RTX
2080Ti GPU with 11GB VRAM. The dataset for training
is the flower light field dataset [18] taken using a Lytro Il-
lum camera. The total number of samples in the dataset is
3,243 from which 100 are separated for the test. In the train-
ing procedure, the sample SAIs are randomly selected and
cropped to 256×256.

The evaluation is performed through comparison with
state-of-the-art models. Models that cannot produce light
field-type result or are difficult to compare quantitatively
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Figure 3. Qualitative evaluation using error map and EPI slicing for different dataset (Flower [18], Stanford [2], Kalantari [8]). The error
map shows the overall difference of the predicted result and the ground truth. The prediction target is the corner SAI estimated from the
center. Our model shows results with little difference. The EPI shows the horizontal and vertical motion parallax of the estimated light
field. Likewise, our model is most similar to the ground truth.

due to scale-ambiguity are excluded from the evaluation.
During the test phase, we utilize the Stanford dataset [2] and
Kalantari dataset [8] consisting of various types of objects
and scenes. Similar to the Flower dataset [18], the number
of samples set to 100 and the models are not finetuned.

4.2. Novel View Synthesis

We perform a quantitative evaluation using PSNR [6]
and SSIM [21] metrics by estimating and comparing 8×8
and 15×15 light fields. Here, 8×8 means the light field ac-
quired by inputting the center SAI whereas 15×15 means
the wide-baseline result acquired by inputting the top-left
corner SAI. We exclude the model of Srinivasan et al. from
the 15×15 evaluation because it could only be estimated
from the center.

Table 1 shows the result for each test set. Our approach
outperforms in most cases. Unlike the method of Srini-
vasan et al. and Ivan et al., using a separately learned depth
estimation model has excellent results in all test sets, which
confirms better generalization. The result is similar to that
of Li et al., but our model outperforms on the flower dataset.
Thus, our proposed model can improve scene geometry es-

timation better. In addition, unlike the method of Li et al.,
our method shows better performance with only a single
LDI synthesis network. This result verifies that the pro-
posed network can be easily optimized.

As a qualitative evaluation, an error map and an EPI slic-
ing comparison are generated as shown Fig. 3. The previous
methods show noticeable error on occlusion boundaries, vi-
sual edges, and letters; whereas the proposed method shows
significantly less error. The EPI comparison results visu-
ally confirm that the proposed method is the closest to the
ground truth.

Fig. 4 shows the comparison of the undesired blur effect
on the occlusion area. Although minor artifacts appear, the
proposed method produces much clearer pixels than oth-
ers. Srinivasan et al.’s result shows the boundary is dragged
around. It is observed that the proposed method generates
significantly less blur enough to recognize the letters.

Although there appears little artifact around the bound-
ary, sharpness and unpleasing dragging are significantly im-
proved and they affect the quality of light field rendering
more. Boundary artifacts come from mismatched boundary
location between the input and the estimated depth from
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Figure 4. Qualitative comparison with other approaches through zoom and crop. In our method, the image rarely blurs and the boundary is
not dragged around.

Figure 5. Qualitative comparison of refocusing. Foreground and background focus are compared. Our method is most similar to the ground
truth.
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Figure 6. We compare the estimated depth map of each model. Given that no ground truth is available, we show the depth of LeReS as
input. The comparison shows that our method has the least outliers and is similar to the LeReS results, but scales and details produce
well-adjusted results.

MDE module, i.e. it appears less as the depth quality im-
proves. To reduce the artifact, we can consider adopting
preprocessing like bilateral median filter that sharpens the
unclear depth boundary [11]. Another feasible method is
to remedy those regions through depth completion with
boundary consistency [5].

4.3. Refocusing

If the light field synthesis is performed well, then the
refocusing results should also be natural. To verify it, we
perform a qualitative evaluation on refocused results. The
evaluation uses a method of generating a result of focus-
ing on the foreground as well as a result of focusing on
the background, and comparing it by cropping and zooming
it. Fig. 5 shows the results. Notably, the proposed method
demonstrates natural focusing results in most cases. In par-
ticular, more clear results are shown even when objects with
different depths overlap. By contrast, the other methods
produce results in which the focus is not well-matched in
some areas.

4.4. Depth Evaluation

The proposed method does not use the input depth as
scene geometry as it is. In fact, it helps to create al-
pha channels by simply grasping the relation between the
near and far, and provides coarse scene geometry with-
out scale. Therefore, the model is able to adjust the scale
through learning and generate more accurate depth. Fig. 6
demonstrates the results of checking and comparing differ-
ent methods. Given the absence of true depth information
for the light fields, the monocular-based depth estimation
results used as input and the depth results of several mod-
els are compared. Ivan et al.’s model is exempted because
it only produces flow-type result, not depth. In the case
of Srinivasan et al.’s method, severe outliers can be seen

Method Model size ↓ Processing Time ↓
Srinivasan et al. [18] 3 0.751
Ivan et al. [7] 59 0.865
Li et al. [10] 34 2.791
Ours 30 1.888

Table 2. Processing time (seconds) and model size (MB) to syn-
thesize 8×8 light field from a monocular image.

in several places. These outliers use to cause outliers in
the synthesis results too. In the case of Li et al. method,
the details of the background area are extremely damaged.
However, our method is similar to the input depth where the
details are increased, and the scale is well-adjusted. Given
that this accurate scene geometry can be estimated, motion
parallax of the proposed method appears accurately.

4.5. Processing Time

The proposed method uses fewer layers and a single LDI
synthesis network; hence, such elements are advantageous
in terms of processing speed. To confirm this statement, we
measure and compare the processing time taken to synthe-
size the light fields by different methods. Table 2 presents
the experimental results. Note that the model sizes of Li et
al. and ours do not include the size of the depth estima-
tion model. On the contrary, the processing time includes
the inference time of depth estimation model. The experi-
ment shows that the method of Srinivasan et al., which has
simple networks and does not use layered representation, is
the fastest method. Our model is slightly slower than this
method. However, ours takes much less processing time
than Li et al.’s method does, which uses a similar layered
presentation.
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PSNR [dB] ↑ SSIM ↑
Method 8×8 15×15 8×8 15×15
Structure of layered scene representation
MPI 37.265 35.397 0.908 0.845
N = 16 37.089 35.248 0.905 0.840
N = 32 37.542 35.607 0.917 0.858
Structure of network
w/o skip-connection 37.424 35.450 0.912 0.848
one-stream input fusion 37.639 35.631 0.920 0.859
two-stream input fusion 36.324 34.788 0.875 0.809
Loss function composition
w/o SSIM loss 36.638 34.913 0.890 0.820
w/o VGG loss 38.023 36.003 0.929 0.877
w/o SSIM and VGG loss 37.749 35.859 0.922 0.869
Monocular depth estimation
VLDI + Godard et al. [4] 37.538 35.652 0.918 0.861
VLDI + Ranftl et al. [13] 37.421 35.361 0.912 0.847
Ours 38.200 36.155 0.933 0.884

Table 3. Ablation study with different representation, structure, loss function configuration and monocular depth estimation model.

4.6. Ablation Study

4.6.1 Different Network Configurations

To verify the effectiveness of our proposed method, we per-
form an ablation study on its different configurations by
considering structure of layered representation and struc-
ture of network. We add models trained with different loss
function and Table 3 presents the result. It demonstrates that
our representation with eight layers performs better than all
other approaches. Structural similarity is reduced signifi-
cantly unless the LDI representation is employed. The mod-
els without proposed network structure also show relatively
poor performance. Through the ablation study, we can see
that our method encodes the 3D scene structure in a correct
manner and it is mainly learned with SSIM loss. Moreover,
it has an efficient network structure that reduces interference
when fusing inputs. Furthermore, increasing the number of
layers hardly improves performance. Considering the mem-
ory consumption and the processing time, the small number
of layers (8) is enough in the proposed method.

4.6.2 Different Monocular Depth Estimation Modules

Our method relies on a pretrained monocular depth estima-
tion model to acquire input 3D information. To check the
effect of depth estimation model, we perform an additional
ablation study on the different models as shown in the bot-
tom section of Table 3. The compared models are the model
of Godard et al. [4] trained by self-supervised manner and
the model of Ranftl et al. [13] trained by supervised man-

ner for various scenes. Note that both are well known as
SOTA monocular depth estimation models. However, the
model that we choose still shows better results because it
has been trained with more diverse and accurate depth data.
This means that using a better depth estimation model is a
more reasonable strategy as expected.

5. Conclusion
In this paper, we proposed a monocular-based light field

synthesis method, dubbed VLDI, which utilized only a few
layers as an extended LDI representation. We designed the
VLDI construction framework consisting of a synthesis net-
work and a transformation process. The network was de-
vised to reduce interference between channels by means
of the proposed two-stream halfway fusion structure. The
framework avoids additional network prediction through
transformation. Furthermore, extensive experiments vali-
dated that our model can generate significantly improved
results over various test images.
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[13] René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. In IEEE Trans. on Pattern Analysis and Machine In-
telligence, volume 44. 8

[14] Jonathan Shade, Steven Gortler, Li-wei He, and Richard
Szeliski. Layered depth images. In Proc. SIGGRAPH, pages
231–242, 1998. 2

[15] Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin
Huang. 3D photography using context-aware layered depth

inpainting. In Proc. IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 8028–8038, 2020. 2

[16] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 4

[17] Pratul Srinivasan, Richard Tucker, Jonathan Barron, Ravi
Ramamoorthi, Ren Ng, and Noah Snavely. Pushing the
boundaries of view extrapolation with multiplane images. In
Proc. IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 175–184, 2019. 2

[18] Pratul P Srinivasan, Tongzhou Wang, Ashwin Sreelal, Ravi
Ramamoorthi, and Ren Ng. Learning to synthesize a 4D
RGBD light field from a single image. In Proc. IEEE Inter-
national Conference on Computer Vision, pages 2243–2251,
2017. 1, 2, 4, 5, 7

[19] Richard Tucker and Noah Snavely. Single-view view synthe-
sis with multiplane images. In Proc. IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 551–
560, 2020. 2, 4

[20] Shubham Tulsiani, Richard Tucker, and Noah Snavely.
Layer-structured 3D scene inference via view synthesis. In
Proc. European Conference on Computer Vision, pages 302–
317, 2018. 2

[21] Zhou Wang, Alan Bovik, Hamid Sheikh, and Eero Simon-
celli. Image quality assessment: from error visibility to
structural similarity. IEEE Trans. on Image Processing,
13(4):600–612, 2004. 4, 5

[22] Sven Wanner and Bastian Goldluecke. Variational light
field analysis for disparity estimation and super-resolution.
IEEE Trans. on Pattern Analysis and Machine Intelligence,
36(3):606–619, 2013. 2

[23] Bennett Wilburn, Neel Joshi, Vaibhav Vaish, Eino-Ville Tal-
vala, Emilio Antunez, Adam Barth, Andrew Adams, Mark
Horowitz, and Marc Levoy. High performance imaging us-
ing large camera arrays. ACM Trans. Graphics, 24(3):765–
776, 2005. 1

[24] Gaochang Wu, Mandan Zhao, Liangyong Wang, Qionghai
Dai, Tianyou Chai, and Yebin Liu. Light field reconstruction
using deep convolutional network on EPI. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition,
pages 6319–6327, 2017. 2

[25] Wei Yin, Jianming Zhang, Oliver Wang, Simon Niklaus,
Long Mai, Simon Chen, and Chunhua Shen. Learning to
recover 3D scene shape from a single image. In Proc.
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 204–213, 2021. 3

[26] Zhoutong Zhang, Yebin Liu, and Qionghai Dai. Light field
from micro-baseline image pair. In Proc. IEEE Conference
on Computer Vision and Pattern Recognition, pages 3800–
3809, 2015. 2

[27] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: Learning
view synthesis using multiplane images. arXiv preprint
arXiv:1805.09817, 2018. 2, 4

3407


