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Abstract

One of the great important fields of computer vision is se-
mantic segmentation. As for single image semantic segmen-
tation, due to limited available information, it appears poor
performance when the occlusion and similar color interfer-
ence occur, and has difficulty exploiting the rich scene infor-
mation. In comparison, the special micro-len array struc-
ture of light field camera can record multi-view information
of the scene, which provides us with a new solution to solve
this issue. In this paper, we propose a multi-view semantic
information guidance network (MSIGNet) for light field se-
mantic segmentation. It can effectively utilize semantic in-
formation from multi-view images to guide pixel feature of
center view image. First, we extract feature of each view im-
age and further obtain semantic probability. Then all prob-
abilities are aggregated through a self-adaptive multi-view
probability fusion module. Last, the resulting coarse fu-
sion representation interacts with center view feature to ob-
tain the refined segmentation result. The proposed method
shows excellent performance on both real-world and syn-
thetic light field datasets.

1. Introduction
Semantic segmentation is an important task in the field

of computer vision, especially showing great significance
for scene understanding. The main aim of it is to assign a
class label to each pixel of the specified image [24]. Early
scholars carry out conventional methods to solve this issue.

*represents the corresponding author.
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Figure 1. Illustration of the light field camera imaging. The light
emitted by the object first passes through the main lens of the cam-
era and then passes through the microlen array to form a light field
sub-aperture image array on the surface of the sensor.

The proposal of Fully Convolutional Network (FCN) [16]
has greatly promoted the development of semantic segmen-
tation. Based on this, some approaches explore the multi-
scale context relationship [3, 30] or introduce the attention
mechanism [7,13,18,31] to improve accuracy. Furthermore,
other methods attempt utilizing additional data to change
the situation. With the help of depth information, RGB-D-
based methods [25] achieve superior results. Video-based
methods [8] use multi-frame information to increase effec-
tiveness while ensuring accuracy. Recently, [21] opens up
a new research direction for semantic segmentation called
light field semantic segmentation. It shows outstanding seg-
mentation performance through the 4D scene information.
Inspired by this, we focus on this novel issue of light field
semantic segmentation in this paper.

As illustrated in Fig. 1, a light field camera records the

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3454



scene as a 4D light field with two parallel planes. It can cap-
ture the intensity and direction of light rays at the same time.
The direction information is recorded by the microlens at
different position and represented as sub-aperture images
(SAIs), which clearly show that light field provides scene
geometry information. By aggregating pixels at the same
spatial position from different viewpoints, we can form the
macro-pixel image (MacPI). Another visualization for light
field is Epipolar Plane Image (EPI) representation. It con-
tains multiple 2D image slices and reflects scene depth in-
formation through slope of line. Regardless of any afore-
mentioned approaches used to describe light field, regular
transformation relation always lies in different views, which
makes it possible to use other view images to supplement
the details of center view image.

In recent years, with the appearance of the commercial
and industrial light field cameras Lytro [9] and Raytrix [17],
complete 4D light field structure information represented as
L(u, v, s, t) [15] can be obtained by their microlens array.
Specifically, the (u, v) records angular resolution, (s, t) is
the image resolution. The abundant geometric information
embedded in light field can improve the neural network per-
formance. As a result, a series of experiments about light
field in conjunction with computer vision have been con-
tinuously increased in recent years, such as depth estima-
tion [27], image super-resolution [29], intrinsic decomposi-
tion [2]. This attempt even extends to semantic segmenta-
tion. For instance, [14] tries to organize the light field into
a 2D MacPI and then leverages a 2D semantic segmenta-
tion technique to process it. [21] proposes a large-scale light
filed dataset tailored for semantic segmentation, and de-
signs a method through using disparity extracted from EPI
as additional information to solve the segmentation prob-
lem. However, none of above consider the supplement of
4D information to center image feature.

In light of above analysis, we propose a multi-view se-
mantic information guidance network called MSIGNet for
light field semantic segmentation, which uses other view in-
formation in SAIs to guide the segmentation of the center
image. First, it adopts backbone to extract features of the
SAIs and generates semantic prediction probability from an
FCN module. Followed by a self-adaptive attention mod-
ule, the probability of all view images are aggregated to
form a coarse segmentation result on the basis of attention
weight matrix. For the sake of establishing the relationship
between image pixel and semantic class, the initial center
image feature is interacted with semantic class representa-
tion derived from the coarse result. In the end, the proposed
network fuses pixel feature and the relationship to acquire
refined semantic segmentation result of center view.

In summary, our main contribution can be summarized
as follows:

1) We propose a network that can use semantic informa-

tion of light field multi-view images to guide segmen-
tation of the center image.

2) We design a self-adaptive multi-view probability fu-
sion module to fuse semantic prediction probability of
different views via channel attention mechanism.

3) We prove the effectiveness of the proposed MSIGNet
through extensive experiments on existing light field
semantic segmentation datasets.

2. Related Work
In this section, we first review the light field image,

which is the foundation of our work. And then we briefly
demonstrate the development of semantic segmentation and
light field semantic segmentation.

2.1. Light Field Image

Light field is a complete representation of the ray of light
in a 3D world. E.Adelson [1] proposes to utilize a 7D func-
tion L (x, y, z, θ, φ, λ, t) to describe the light field. The
(x, y, z) show the position in 3D space, (θ, φ) demonstrate
the horizontal angle and vertical angle of the light, λ is the
wavelength, and t represents the time of observation. Con-
sidering that the 7D function brings too many parameters,
leading to a heavy computation burden, Marc Levoy [15]
reduces the dimension of the 7D light field function and use
a 4D light field model (u, v, s, t) composed of two paral-
lel planes to describe the light field. In this model, (u, v)
and (s, t) are the coordinates of two points on two parallel
planes respectively. From these two coordinates, we can en-
sure a ray of light. Based on this 4D light field model, the
commercial Lytro [4] and industrial Raytrix [17] light field
cameras come out one after another. They greatly simplify
the difficulty of capturing light field, conveniently forming
SAI array which usually consists of 9×9 view images. Dif-
ferent images in a SAI array are the result of observing the
same scene from different perspectives, and there is a regu-
lar transformation relationship between them.

2.2. Semantic Segmentation

Since the FCN [16] is proposed, semantic segmentation
has reached to a new stage. Based on FCN, in order to im-
prove the accuracy of prediction, some approaches attempt
to explore multi-scale relational context. PSPNet [30] ac-
quires the multi-scale feature by applying different scale
pooling operations in pyramid pooling module. DeepLab
[3] uses dilated convolutions with different sizes in atrous
spatial pyramid pooling module to obtain various feature
representation relationships. There are also some methods
exploring different attention mechanisms to enhance feature
representation ability. CCNet [13] adopts the recurrent criss
cross attention module to get the weight of the pixel fea-
ture and reduce the computation burden. DANet [7] uses
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self-attention to acquire the feature relation between spatial
dimension and channel dimension. In recent years, some
transformer-based approaches have been proposed. SETR
[31] and DPT [18] make great efforts to move the vision
transformer [6] to the semantic segmentation problem and
achieve excellent results.

2.3. Light Field Semantic Segmentation

The composition of light field and semantic segmenta-
tion is in the preliminary stage. Chen et al. [14] synthesize
light field image as MacPI, and use the method tailored for
2D image segmentation to process the MacPI. However, this
approach loses mass of angular information. UrbanLF [21]
proposes the first mature light field semantic segmentation
dataset and introduces a method that extracts the disparity
feature from four EPI stacks to guide the semantic segmen-
tation of the center image. This method exploits the spatial
geometric information contained in light field and proves its
effectiveness on light field dataset. However, it only lever-
ages disparity information in light field image and wastes
half of view images. Different from these two light field se-
mantic segmentation methods, our approach makes full use
of spatial and angular information of light field to guide the
semantic segmentation of the center view image by learning
the multi-view semantic feature.

3. Approach
In this section, we will describe well-designed MSIGNet

elaborately. In section 3.1, we introduce the overall archi-
tecture of the proposed network framework. In section 3.2,
we introduce the self-adaptive multi-view probability fusion
module based on channel attention mechanism. In section
3.3, we introduce the detailed implementation that uses fu-
sion semantic class feature representation to guide the seg-
mentation of center view image.

3.1. Network Architecture

Considering that the light field records structured multi-
view information embedded in SAIs, and contains a strong
as well as regular complementarity among different view-
points. We extract multi-view semantic information of light
field to guide the image segmentation of the center view,
and further design an innovative network according to this
idea. The overall network framework is shown in Fig. 2.

The proposed MSIGNet takes K light field SAIs as in-
put. After feeding to the feature extraction backbone, we
can get the feature map of K SAIs, with a resolution re-
duced to 1/8 of the original image size. Here we denote the
i-th feature map as Frefi ∈ RC×H×W (i = 1, . . . ,K) for
simplicity. In particular, the feature map of the center im-
age from the K SAIs is represented as Fcen ∈ RC×H×W .
For the SAI feature map array, we apply an FCN mod-
ule to acquire the semantic prediction probability Pri ∈

Rcls×H×W (i = 1, . . . ,K) of each view, in which the cls is
the number of semantic classes. Considering the relevancy
level distinction between different SAIs and center view im-
age, we design a channel attention module to generate a
self-adaptive weight matrix, which aims at fusing all prob-
abilities to form a coarse semantic segmentation prediction
probability Pr ∈ Rcls×H×W . Then, Fcen interacts with Pr

to learn the semantic class representation for the center view
image, resulting in SCRcen ∈ RC×cls. Through associat-
ing SCRcen with Fcen to acquire the context relation be-
tween pixels and semantic classes, Fcen is further optimized
to obtain F cen ∈ RC×H×W . Processed by a segmentation
head, we generate the final refined semantic segmentation
probability Pcen ∈ Rcls×H×W of center view image.

3.2. Self-adaptive Multi-view Probability Fusing

The multi-view images in light field SAIs can provide
abundant information for semantic segmentation of center
view image. However, due to the divergence between SAIs,
different view images offer supplements to the center view
image in varying degree. Therefore, we propose a self-
adaptive multi-view probability fusion module to aggregate
multi-view information. Specifically, we fuse the semantic
probability Pri of each view from the FCN module to gen-
erate the coarse semantic segmentation result Pr. During
the fusion process, we give greater weight to more mean-
ingful view images. Because they are more complementary
to center view image, which can benefit more to the seman-
tic segmentation of the center view image.

The input of the self-adaptive multi-view probability fu-
sion module is Pri . First, we concatenate them along the
channel dimension. Then, a global average pooling opera-
tion is adopted to generate the initial channel attention. Fol-
lowed by two fully connected layers and a sigmoid layer,
we obtain the final channel attention weight that models the
importance of different view semantic probabilities. The
process is formulated as:

W = softmax(FC2(AvgPool([Pr1 , . . . , PrK ]))) (1)

where W ∈ RK∗cls×1×1 represents the channel attention
weight, [·] denotes the concatenation operation, AvgPool
denotes global average pooling and FC2 represents two
cascaded fully connected layers. Finally, we fuse all pre-
diction probabilities to build the coarse segmentation result
Pr ∈ Rcls×H×W , which is defined as:

Pr = C1×1(W ⊙ [Pr1 , . . . , PrK ]) (2)

where C1×1 represents 1 × 1 convolution layer that shrinks
the channel dimension from K ∗ cls to cls.

3.3. Multi-view Semantic Representation Guidance

The single image semantic segmentation only utilizes the
information itself, which seriously limits the segmentation
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Figure 2. Architecture of the proposed network. Our MSIGNet takes K SAIs as input. They are processed by a feature extraction backbone
to generate K SAI feature maps, including the center view image feature. After passing to an FCN module to obtain semantic probabilities,
a self-adaptive multi-view probability fusion module is applied to generate a coarse result on the basis of channel attention mechanism.
In order to introduce semantic class representation into center view, the coarse fusion probability interacts with center image feature for
optimization. Finally, the resulting feature is fed to a segmentation head to form refined semantic segmentation result of center view.

inference performance. As a comparison, the special struc-
ture of light field stores 4D scene geometric information,
making it possible to take advantage of the multi-view cues
to supplement center view image and form a more distinct
pixel feature. Therefore, we use aggregated coarse seman-
tic probability Pr from the multi-view images to guide the
image segmentation of the center view.

Specifically, we reshape Pr to form Pcls ∈ Rcls×HW ,
in which each line of Pcls stands for the semantic class
probability of all pixels. At the same time, we reshape
the Fcen to F ′

cen ∈ RC×HW , which represents the multi-
dimension feature of all pixels in center image. Then we
get the semantic class representation for center view image
SCRcen ∈ RC×cls by the following formulation:

SCRcen = F ′
cen ⊗ Pcls

T (3)

where each column in SCRcen represents multi-dimension
feature of each semantic class. We further interact SCRcen

with Fcen to calculate the similarity between the pixel of
center image and the semantic class through cross-attention
mechanism. The Q,K, V matrix are generated by:

f(x) =


Q = fq(Fcen)

K = fk(SCRcen)

V = fv(SCRcen)

(4)

Then we get the class similarity Wcls ∈ RHW×cls by:

Wcls = softmax(
QKT

√
C

) (5)

After weighting value matrix V via Wcls, the obtained re-
sult is combined with Fcen through a local skip residual

connection to acquire optimized feature F cen ∈ RC×H×W .
The overall process is formulated as:

F cen = Wcls ⊗ V + Fcen (6)

Finally, the optimized feature is fed to a segmentation head
to achieve the final refined semantic segmentation result of
center view Pcen ∈ Rcls×H×W .

4. Experiments

4.1. Training Settings

Dataset All experiments involved in this article are based
on UrbanLF dataset [21]. As a light field semantic seg-
mentation dataset, UrbanLF has currently the largest scale
and most semantic categories in the world. UrbanLF can
be divided into two subsets termed as UrbanLF-Real and
UrbanLF-Syn, respectively. In UrbanLF-Real, it contains
824 real world data samples, and each light field sample
includes 9 × 9 SAIs, and ground-truth segmentation value
of center view image. UrbanLF-Syn contains 250 synthetic
samples, in which each light field sample includes 9 × 9
SAIs, ground-truth segmentation value and depth informa-
tion as well as disparity information of all 9 × 9 views. In
this paper, we evaluate our approach in both UrbanLF-Real
and UrbanLF-Syn.

Experiment Details We implement our MSIGNet with
the open-source mmsegmentation framework [5]. We set
the learning rate as 0.01, the momentum as 0.9, and the
weight decay as 0.0005. We select SGD function [10] as
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Method Backbone Type Params Acc mAcc mIoU↓ Acc∗ mAcc∗ mIoU∗

DAVSS [32] Xception-65 Video 56.0M 91.04 83.54 75.91 91.74 84.54 77.68
DeepLabv3+ [3] ResNet-101 RGB 59.3M 91.02 83.53 76.27 91.50 84.30 77.35

PSPNet [30] ResNet-101 RGB 65.6M 91.21 83.87 76.34 91.74 84.68 77.75
TDNet [12] ResNet-50 Video 65.3M 91.05 83.38 76.48 91.79 84.85 78.36

MSIGNet(Ours) ResNet-101 LF 65.6M 91.12 83.91 76.65 91.66 85.46 77.81
TMANet [26] ResNet-50 Video 33.4M 91.67 84.13 77.14 91.87 84.55 77.91

SETR [31] Vit-Large RGB 96.9M 92.16 84.27 77.74 92.71 84.93 79.05
MSIGNet(Ours) HrNetV2-W48 LF 76.2M 92.08 85.31 77.95 92.47 85.95 79.12
PSPNet-LF [21] ResNet-101 LF 127.8M 92.14 84.86 78.10 92.77 85.73 79.55

Table 1. Comparison with different types of state-of-the-art methods for semantic segmentation on UrbanLF-Real. Our methods achieve
excellent performance with proper model size. * signifies multi-scale testing. LF-based methods and notable values are in bold. All
methods are ranked based on the ascending order of mIoU value from top to bottom.

Method Backbone Type Params Acc mAcc mIoU↓ Acc∗ mAcc∗ mIoU∗

DAVSS [32] Xception-65 Video 56.0M 89.47 82.94 74.27 90.94 85.15 77.33
TDNet [12] ResNet-50 Video 65.3M 89.06 83.43 74.71 89.79 84.32 76.39

DeepLabv3+ [3] ResNet-101 RGB 59.3M 89.60 83.55 75.39 90.99 85.35 78.05
PSPNet [30] ResNet-101 RGB 65.6M 89.39 84.48 75.78 90.76 85.64 78.16

TMANet [26] ResNet-50 Video 33.4M 89.76 84.44 76.41 90.99 86.30 78.87
MSIGNet(Ours) ResNet-101 LF 65.6M 89.94 85.13 76.79 91.19 87.02 79.46

SETR [31] Vit-Large RGB 97.0M 90.97 85.26 77.69 91.74 86.60 79.32
PSPNet-LF [21] ResNet-101 LF 127.8M 90.55 85.91 77.88 91.55 87.54 80.09

OCR [28] HRNetV2-W48 RGB 70.4M 91.50 86.96 79.36 92.44 88.18 81.22
ESANet [20] ResNet-34 RGB-D 46.9M 91.81 86.26 79.43 92.63 86.97 80.97

MSIGNet(Ours) HrNetV2-W48 LF 76.2M 92.00 87.71 80.33 93.12 89.37 82.70

Table 2. Comparison with different types of state-of-the-art methods for semantic segmentation on UrbanLF-Syn. Our methods achieve
excellent performance with proper model size. * signifies multi-scale testing. LF-based methods and notable values are in bold. All
methods are ranked based on the ascending order of mIoU value from top to bottom.

the optimizer. Two NVIDIA RTX 3090 are used for dis-
tributed training. For the dataset, we adopt random scaling,
cropping, flipping, and photometric distortion for data aug-
mentation [22]. The image in UrbanLF-Real is cropped to
432 × 432 and the image in UrbanLF-Syn is cropped to
480× 480. We perform 80k training iterations and take one
validation for every 2000 iterations.

Model Selection The proposed MSIGNet can be flexibly
combined with different feature extraction backbones. Af-
ter considering the balance between the accuracy and the
speed of inference calculation, we choose ResNet-101 [11]
and HRNetV2-W48 [23] as the backbones for our exper-
iments. For these two backbones, ResNet-101 can make
all network more lightweight, while HRNetV2-W48 shows
better ability in the aspect of feature representation. Based

on the ResNet-101 and HRNet-48, we acquire two models:
MSIGNet-Res101 and MSIGNet-HR48. Note that we use
5 reference views (i.e. K = 5) in our experiment owing to
the memory limit.

Evaluation Criteria We use pixel accuracy (Acc), mean
pixel accuracy (mAcc), and mean intersection-over-union
(mIoU) [19] to evaluate different methods.

Acc =

nc∑
i

(
nii

s
) (7)

mAcc =
1

nc
·

nc∑
i

nii

s
(8)
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Center Image Label Image PSPNet-LF SETR DAVSS TMANet MSIGNet-Res101 MSIGNet-HR48

Center Image Label Image PSPNet-LF SETR DAVSS TMANet MSIGNet-Res101 MSIGNet-HR48

Figure 3. Qualitative result for the proposed MSIGNet on UrbanLF-Real. The colorful boxes show the detailed discrepancy among
different semantic segmentation methods.

Center Image Label Image PSPNet-LF ESANet OCRNet TMANet MSIGNet-Res101 MSIGNet-HR48

Center Image Label Image PSPNet-LF ESANet OCRNet TMANet MSIGNet-Res101 MSIGNet-HR48

Figure 4. Qualitative result for the proposed MSIGNet on UrbanLF-Syn. The colorful boxes show the detailed discrepancy among different
semantic segmentation methods.

mIoU =
1

nc
·

nc∑
i

nii

si +
∑nc

i nji − nii
(9)

where nij is the total number of pixels whose ground truth
semantic label is the i-th class and predict label is the j-th
semantic class. s is the total number of pixels. nc is the
total number of semantic classes.

4.2. Experimental Results

We compare our method with state-of-the-art light field
semantic segmentation methods. Besides, considering there
are only a few numbers of light field-based methods, we
carry out the comparison with some single image, video,
RGB-D-based semantic segmentation approaches. The re-
sults are shown in Tab. 1 and Tab. 2.

Results on UrbanLF-Real As listed in Tab. 1, our well-
designed MSIGNet makes a higher accuracy value com-
pared with the generic semantic segmentation methods.
As for the light field-based approaches, the small base-
line in UrbanLF-Real makes different view information
similar, leading to limited complementary information be-
tween multi-view images and center view image. Therefore,
our method is not conducive to superior performance on
real-world data samples. Compared with PSPNet-LF, our

MSIGNet is worse than it with 0.15% mIoU with single-
scale testing. Fig. 3 shows the qualitative results of our
proposed method on UrbanLF-Real dataset.

Results on UrbanLF-Syn Tab. 2 shows the reliable re-
sults for different types of semantic segmentation methods.
Compared to UrbanLF-Real, UrbanLF-Syn has marked dis-
tinction between different view images. Thus we can ac-
quire more complementary information from other views,
allowing the proposed model realising its full potential. For
instance, our MSIGNet-HR48 exceeds PSPNet-LF with a
value of 2.45% mIoU with single-scale testing and a value
of 2.61% mIoU with multi-scale testing. The outstanding
performance demonstrates the effectiveness of our method.
Fig. 4 shows the qualitative results of different segmenta-
tion methods on UrbanLF-Syn.

4.3. Ablation Studies

This section introduces the ablation studies to validate
the effectiveness of different modules in our method. Con-
sidering the inference speed, all experiments utilize ResNet-
101 backbone with the same training strategy. In addition,
we use single scale testing as the test mode.
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Attn Dataset Acc mAcc mIoU

✓ UrbanLF-Syn 89.94 85.13 76.79
× UrbanLF-Syn 89.70 85.11 76.61
✓ UrbanLF-Real 91.12 83.91 76.65
× UrbanLF-Real 90.98 81.99 75.22

Table 3. Ablation study with the probability fusion module. ✓ and
× indicate using and not using this module, respectively.

Performance of probability fusion module Our method
applies a self-adaptive multi-view probability fusion mod-
ule to fuse different view prediction probabilities to gen-
erate the coarse prediction result. As shown in Tab. 3,
we abandon the original channel attention mechanism, in-
troducing a baseline that just concatenates all multi-view
prediction probabilities to generate the coarse segmenta-
tion result. In this situation, we get the 76.61% mIoU in
UrbanLF-Syn and 75.22% mIoU in UrbanLF-Real. The
mIoU value has been decreased by 0.18% and 1.43% in
UrbanLF-Syn and UrbanLF-Real respectively compared to
MSIGNet, which demonstrates the effectiveness of our pro-
posed probability fusion module.

Influence of multi-view information Our method uses
multi-view information to guide the semantic segmentation
of the center view image. We select UrbanLF-Syn as the ex-
periment dataset. As shown in Tab. 4, We take the number
of view images as 1, 3, 5 to perform experiments respec-
tively. When the view number is 1, our MSIGNet only gets
the mIoU 76.57%. And then we increase the view number
to 3, finding that the mIoU value turns to 76.64%. We fur-
ther set the view number as 5 to acquire 76.79% mIoU. The
continuously increased performance shows the significance
of introducing multi-view information.

Impact of semantic information guidance Our method
applies the semantic information to guide the image seg-
mentation of center view. To prove the effectiveness, we
construct a baseline that utilizes an FCN module to generate
the segmentation result after acquiring the fused multi-view
semantic probability, rather than use the probability from
multi-view to further guide the center view image feature.
As shown in Tab. 5, without the semantic information guid-
ance, the mIoU decreases by 5.21%. This result proves the
effectiveness of the semantic information guidance of the
proposed method.

5. Conclusion
Light field includes the 4D scene geometric information,

which provides us with a new solution to alleviate seman-
tic segmentation problem. Previous semantic segmentation

View-num Dataset Acc mAcc mIoU

1 UrbanLF-Syn 90.01 85.05 76.57
3 UrbanLF-Syn 89.85 84.97 76.64
5 UrbanLF-Syn 89.94 85.13 76.79

Table 4. Ablation study with the multi-view information. We se-
lect UrbanLF-Syn as the experiment dataset. The view-num rep-
resents the number of view image used as input in our network.

Guidance Dataset Acc mAcc mIoU

× UrbanLF-Syn 87.56 82.23 71.58
✓ UrbanLF-Syn 89.94 85.13 76.79

Table 5. Ablation study with the semantic information guidance.
We select UrbanLF-Syn as the experiment dataset. ✓ and × in-
dicate using and not using the semantic information to guide the
center view image feature, respectively.

methods only focus on the image itself but ignore the other
view information. Therefore, we propose a novel network
that can adopt the multi-view semantic information from
light field to guide the semantic segmentation of the center
view image. The proposed MSIGNet primarily consists of
three parts. First, it applies a backbone to extract features
from SAIs and acquires the prediction probability via FCN
module. Then, by using a self-adaptive multi-view proba-
bility fusion module, it generates the coarse segmentation
result. Finally, the center image feature is interacted with
the coarse result to get the final refined semantic segmen-
tation result. We evaluate our approach on the light field
semantic segmentation dataset UrbanLF and achieve excel-
lent results.
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