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Abstract

Accurate depth estimation from light field images is es-
sential for various applications. Deep learning-based tech-
niques have shown great potential in addressing this prob-
lem while still face challenges such as sensitivity to occlu-
sions and difficulties in handling untextured areas. To over-
come these limitations, we propose a novel approach that
utilizes both local and global features in the cost volume
for depth estimation. Specifically, our hybrid cost volume
network consists of two complementary sub-modules: a 2D
ContextNet for global context information and a matching
cost volume for local feature information. We also introduce
an occlusion-aware loss that accounts for occlusion areas
to improve depth estimation quality. We demonstrate the ef-
fectiveness of our approach on the UrbanLF and HCInew
datasets, showing significant improvements over existing
methods, especially in occluded and untextured regions.
Our method disentangles local feature and global seman-
tic information explicitly, reducing the occlusion and untex-
tured area reconstruction error and improving the accuracy
of depth estimation.

1. Introduction

Light field imaging has emerged as a potent tool for
capturing and analyzing intricate three-dimensional (3D)
scenes. Through the capture of multiple views of a scene,
light field cameras permit the reconstruction of depth infor-
mation, thereby enabling various applications such as aug-
mented reality [12, 28], 3D modeling [7], and autonomous
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driving [9, 26]. However, accurate depth estimation from
light field images remains a challenging problem due to the
high dimensionality of the data and the large number of pos-
sible views.

In recent years, deep learning-based techniques [1, 15,
19, 22, 25] have exhibited considerable potential for ad-
dressing the problems mentioned. These techniques gen-
erally entail constructing a cost volume, which quantifies
the similarity between each pixel in the reference view and
its corresponding pixels in other views. The cost volume
is subsequently utilized to estimate the depth map by iden-
tifying the disparity that minimizes the cost. Despite the
achievements of these methods, they are associated with a
few limitations, such as sensitivity to occlusions, high com-
putational costs, and difficulties in handling untextured ar-
eas. To surmount these obstacles, we propose a novel ap-
proach for depth estimation that employs cost volume con-
sisting of both local and global features using light field im-
ages. Our approach employs a hybrid cost volume network
that learns both local matching information and global con-
textual information about the reference view. By focusing
more on global contextual information, our method miti-
gates untextured area reconstruction errors and enhances
depth estimation accuracy. Furthermore, we introduce an
occlusion-aware loss that accounts for occlusion boundaries
between views, facilitating more robust depth estimation in
the presence of occlusions.

Leading light field depth estimation models employ a
single fully 3D convolutional network for cost regulariza-
tion to learn both local feature matching information and
global context information [5, 11, 22, 24], which are crucial
for achieving accurate depth estimation. While local feature
information is necessary for matching texture-rich regions,
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Figure 1. The overview of our network. Features extracted from each SAI are utilized to construct the matching cost volume. Notably,
we propose a hybrid cost volume network with two sub-modules that separately focus on 3D local matching information and 2D global
context information. Lastly, a disparity aggregation and regression module predicts the disparity map with the supervision of the proposed
occlusion-aware loss

global context information is vital for scenes with texture-
less regions. However, existing networks tend to overlook
the importance of global context features and rely heavily
on deep neural networks or attention mechanisms to learn
local matching information. Consequently, such networks
face challenges in handling textureless regions. In this re-
gard, we propose a novel approach that explicitly disentan-
gles local feature information and global semantic informa-
tion by utilizing two separate networks for depth estima-
tion. Our hybrid cost volume network consists of two com-
plementary expert sub-modules: a 2D ContextNet, which
focuses on 2D global context information, and a matching
cost volume network, which concentrates on 3D local in-
formation. Our method significantly reduces the untextured
area reconstruction error, thereby improving the accuracy of
depth estimation.

Furthermore, image-based depth estimation of the light
field often faces challenges due to degraded geometry in
the occluded regions. To address this problem, we first in-
fer the occluded mask in the image domain to construct an
occlusion-aware loss. Through extensive experiments on

UrbanLF [17] and HCInew [4] datasets, we demonstrate the
effectiveness of our approach, especially in occlusion and
untextured areas.

Our contributions can be summarized as follows:

1. We present a hybrid cost volume that focuses on both
local feature information and global semantic informa-
tion to improve the accuracy of reconstruction results
in textureless regions.

2. We propose a occlusion-aware loss for depth estima-
tion of Light Field images to maintain geometry in the
occluded regions.

3. Extensive experimental results demonstrate the effec-
tiveness and universality of our method using the chal-
lenging test datasets UrbanLF and HCInew.

2. Related Work

In this section, we review traditional and deep learning
based methods in Light Field depth estimation.
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2.1. Traditional Methods

Depth estimation from light field (LF) images has been
a prominent area of research within the field of com-
puter vision for a number of years. Traditional methods
[10, 13, 16, 18, 21, 29] for estimating depth can be broadly
categorized into three distinct classes based on the proper-
ties of LF images.

Epipolar plane image (EPI)-based methods leverage the
epipolar geometry of light field (LF) images for predict-
ing depth. One such approach, proposed by Wanner et al.
[27], involves utilizing a structure tensor to estimate line
slopes in horizontal and vertical EPIs, which is further re-
fined through global optimization. Another method, intro-
duced by Zhang et al. [29], employs a spinning parallelo-
gram operator (SPO) to estimate line slopes for depth esti-
mation. Multi-orientation EPIs were introduced by Sheng
et al. [18] for slope estimation, which resulted in improved
results over SPO. Schilling et al. [16] proposed an inline
occlusion handling scheme that operates on EPIs. On the
other hand, multiview stereo matching (MVS)-based meth-
ods utilize the multi-view information of LF images for
depth estimation. These methods establish correspondences
between multiple views of the scene and estimate depth
from triangulation. For example, Jeon et al. [6] developed
a phase-based multi-view stereo matching technique that
enabled Fourier domain depth estimation. Tao et al. pre-
sented a shading-based refinement strategy to augment the
precision of depth estimation [21]. Williem et al. [13] pro-
posed an approach that employed angular entropy cost and
adaptive defocus cost. In contrast, defocus-based methods
measure the consistency at different focal stacks to calcu-
late the depth of a pixel. Tao et al. [20] presented a method
that combines defocus and correspondence depth cues from
LF images to obtain dense depth estimation. Additionally,
Wang et al. [23] introduced a new occlusion-aware cost
function to estimate the depth map.

While traditional methods have exhibited optimistic out-
comes, they encounter restrictions such as non-linear opti-
mization and manually crafted characteristics that demand
significant computation and are susceptible to occlusions,
weak textures, and highlights. Additionally, these methods
may exhibit subpar performance in intricate settings with
multiple occlusions and varying lighting conditions.

2.2. Deep Learning-based methods

The utilization of deep networks for depth estimation
has gained significant popularity in recent years [1, 19, 30],
exhibiting remarkable outcomes compared to traditional
methods. Heber et al. [2] were pioneers in introducing
an end-to-end network that learns the mapping between a
4D light field and its corresponding depths and uses high-
order regularization to refine depth estimation. Subse-
quently, Heber, Yu, and Pock [3] developed an efficient U-

shaped encoder-decoder architecture that extracts geometric
information from light field images to generate high-quality
depth maps. Shin et al. [19] presented a multi-stream net-
work and a range of data augmentation strategies that facil-
itate fast and precise light field depth estimation. Tsai et al.
[22] introduced an attention-based view selection network
that dynamically incorporates all angular views for depth
estimation. Furthermore, Peng et al. [14] proposed an unsu-
pervised technique for light field depth estimation that elim-
inates the requirement for ground-truth depth maps during
training. They later introduced a zero-shot learning-based
approach that performs unsupervised depth estimation with-
out relying on external datasets [15]. More recently, Chen
et al. [1] devised an attention-based multi-level fusion net-
work to address the occlusion issue in depth estimation,
while Huang et al. [5] employed a multi-disparity-scale
cost aggregation method to accelerate light field depth es-
timation. DistgDisp [25] disentangles light fields into view-
specific high-resolution images and a low-resolution dispar-
ity map, enabling super-resolution and accurate depth esti-
mation.

Prior research has evidenced the efficacy of deep neural
networks in Light Field (LF) depth estimation. Neverthe-
less, there has been inadequate attention devoted to the rel-
evance of global context features and occlusions in LF im-
ages, leading to challenges in dealing with textureless and
occluded regions. To address these limitations, in this paper,
we introduce a new approach that explicitly exploits global
context features and incorporates an occlusion-aware loss
function to enhance depth estimation accuracy.

3. Method
This paper introduces a novel approach for Light Field

(LF) depth estimation utilizing sub-aperture images (SAIs)
based on cost volume. Our proposed method comprises
multiple modules that collaborate to achieve accurate and
robust disparity estimation, as depicted in Fig. 1. The first
module is the shared feature extractor, which extracts fea-
tures from each SAI (Sec. 3.1). These features are then uti-
lized to construct the cost volume through pixel view shift-
ing in the second module. Notably, we propose a hybrid
cost-volume network with two sub-modules that separately
focus on 3D local matching information and 2D global con-
text information (Sec. 3.2). The third step uses the cost ag-
gregation module to synthesize the hybrid cost volume data.
Lastly, a disparity regression module predicts the disparity
map under the supervision of our proposed occlusion-aware
loss (Sec. 3.3). The subsequent subsections provide an elab-
orate description of each module.

3.1. Feature Extraction

To extract features from sub-aperture images (SAIs), we
employ the Spatial Pyramid Pooling (SPP) module, which
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has demonstrated effectiveness in multiple computer vision
tasks for multi-scale feature extraction [22]. We adopt the
SPP module to create a feature map F , which contains sig-
nificant information necessary for estimating disparity. This
feature map serves as an input component to our hybrid cost
volume network.

3.2. Hybrid Cost Volume

This paper employs a parallel plane parameterization to
represent the four-dimensional light field image. The light
traveling through space that passes through a point (u, v) on
the primary lens plane and a point (x, y) on the microlens
plane can be expressed as a four-dimensional light field im-
age L(x, y, u, v). Specifically, (u, v) denotes the angular
coordinate, representing the plane coordinates of the cam-
era, while (x, y) represents the spatial coordinate, indicat-
ing the plane coordinates of the image. The formulation of
LF disparity structure is given by:

L (uc, vc, x, y) = L (u, v, x+ (u− uc) ∗ d(x, y),
y + (v − vc) ∗ d(x, y)) .

(1)

To find the corresponding point (Xs, Ys) from another
viewpoint s given a point (xc, yc) on the central viewpoint,
we consider that each viewpoint is situated on a regular
grid and their internal camera parameters can be regarded as
equal. This allows us to formulate the corresponding point
as:

(Xs, Ys) = (du+ xc, dv + yc), (2)

The parameter d represents the disparity between adjacent
views. In our approach, we uniformly sample virtual dispar-
ities over a range of values that cover the observed ranges in
datasets, as previously done in relevant literature [5, 22, 24].

A raw cost volume for the center image is constructed
by shifting the source feature map Fs at the virtual dispari-
ties. Specifically, we warp the feature map of each SAI into
all virtual disparities to generate a feature volume with di-
mensions RC×D×H×W , which is termed the Matching Cost
Volume, which serves the purpose of exclusively learning
local features for matching.

In order to enhance depth estimation efficiency, we uti-
lize another network, namely ContextNet, to learn global
context information that complements the Matching Cost
Volume. The ContextNet produces a learned feature vol-
ume with dimensions RC1×H×W , where C1 denotes the
number of feature channels, which coincides with the num-
ber of virtual disparities D. To combine the 3D matching
volume and the 2D context volume, we expand the dimen-
sions of the context volume to R1×D×H×W . Finally, we
concatenate the regularized matching cost volume with the
expanded context volume to obtain a hybrid cost volume,
with dimensions R(C+1)×D×H×W . We repeat this hybrid
cost volume generation procedure for each SAI.

Figure 2. Based on photometric consistency, the projected view
Ik→c should possess identical values to the center view Ic at non-
occluded regions. Therefore, the occlusion mask Mk→c can be
determined by calculating the absolute residuals between the pro-
jected view Ik→c and the center view Ic. Then a generalized
occlusion mask is predicted by a shallow view-attention network
from all SAIs masks.

3.3. Cost Aggregation and Disparity Regression

The hybrid cost volume has dimensions
RD×H×W×(C+1), and we use a 3D CNN for cost
aggregation. Consistent with LFattNet [22], our cost aggre-
gation approach incorporates eight 3× 3× 3 convolutional
layers and two residual blocks. The final cost volume Cf

of size D × H × W is obtained after processing through
these 3D convolution layers. To produce the probability
of the disparity distribution, Ydist, we normalize Cf using
softmax operation along dimension D. Finally, the output
disparity d̂ can be computed as:

d̂ =

Dmax∑
dk=Dmin

dk × softmax (−Cdk
) (3)

where d̂ denotes the estimated center-view disparity, Dmin

and Dmax represent the minimum and maximum disparity
values, respectively, and dk represents the sampling interval
between Dmin and Dmax.

Occlusion-aware loss. Prior studies have typically
treated all pixels equally, without considering the chal-
lenges of occlusion regions. In this paper, we introduce an
occlusion-aware loss to supervise the network more effec-
tively in regards to occluded regions by aggregating occlu-
sion masks from source views, thereby achieving robustness
to occlusions. Specifically, rather than deriving the occlu-
sion mask of each view during cost volume reconstruction,
we compute the occlusion mask of the center view by warp-
ing other source views using the predicted disparity. In ar-
eas where occlusions occur, a scene point that is visible in
the center view may not be present in surrounding views,
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UrbanLF HCInew

Methods
hybrid

Cost Vol.
Occlusion

Loss MSE×100↓ BP(0.01)↓ BP(0.03)↓ BP(0.07)↓ MSE×100↓ BP(0.01)↓ BP(0.03)↓ BP(0.07)↓

Oursw/o ✕ ✕ 7.692 94.842 84.218 79.470 1.890 49.046 14.370 5.681
Oursw/o Hyb. cv ✕ ✓ 6.371 92.203 81.623 67.476 1.782 42.236 10.049 4.017
Oursw/o occ.loss ✓ ✕ 6.147 86.168 78.512 64.914 1.763 47.360 9.817 4.055

Ours ✓ ✓ 5.989 90.850 77.411 59.738 1.752 36.574 8.813 3.507

Table 1. Ablation studies on hybrid cost volume and occlusion-aware loss.

UrbanLF
Method MSE×100↓ BP(0.01)↓ BP(0.03)↓ BP(0.07↓)

Ours 5.989 90.850 77.411 59.738
OCV 10.217 97.171 91.563 80.928

Multi-Net 10.206 98.678 95.812 88.972
UOAC-T1 6.035 71.226 41.489 26.788
pixelplus 5.145 94.764 84.754 66.294

ASO 3.891 94.303 83.294 63.295
MultiBranch 2.776 86.35 64.915 43.402

SF-Net 0.936 26.69 15.331 9.869
HRDE 0.798 32.846 14.637 7.534

EPI-Cost 0.785 67.222 30.662 14.155
SF-Net-M 0.712 28.007 14.595 8.311

MS3D 0.61 47.261 18.957 9.254
HRDE-aug 0.395 33.504 15.322 7.312

Table 2. Quantitative evaluation: compared to the existing state-
of-the-art methods evaluating on UrbanLF. Our method is in the
top ten of all submitted methods.

resulting in occluded pixels in these views that do not corre-
spond to their equivalent pixels in the center view. However,
based on photometric consistency, the projected view Ik→c

should possess identical values to the center view Ic at non-
occluded regions. Therefore, the occlusion mask Mk→c can
be determined by calculating the absolute residuals between
the projected view Ik→c and the center view Ic:

Mk→c = |Ik→c − Ic| (4)

The previous calculation assumes that the depth pre-
dicted by the center view is entirely accurate, and utilizing
Mk→c(k = c) directly would inevitably result in errors.
To account for this uncertainty, we present a shallow 2D
view-attention network that predicts a generalized occlusion
mask Mc from occlusion masks of all SAIs, as shown in
Fig. 2. Our insight is that the occlusion areas of the central
view are somewhat related to those of surrounding views,
and the occlusion areas of surrounding views can also cause
corresponding pixels to be unmatched. Firstly, the M ∗M
raw occlusion masks are concatenated into R1×M∗M×H×W

and then processed by two 2D convolution layers, reduc-
ing their dimensions to R1×1×H×W . Next, a view average
pooling operation aggregates information across different
SAIs, resulting in a single aggregated occlusion mask for
the central view, namely Mc. Finally, the occlusion-aware
loss Locc supervises the predicted disparity as follows:

Locc = ∥Mc∥β ⊙ ∥d− d̂∥1, (5)

where d̂ represents the predicted disparity and d denotes the
ground truth disparity. The symbol ⊙ signifies the element-
wise multiplication operation, and β serves as the coeffi-
cient factor regulating the dynamic weight assignment ratio.
When β = 0, the occlusion loss is equivalent to the standard
L1 loss.

4. Experiment

In this section, we provide an overview of the datasets we
used and implementation details, followed by experiments
conducted to evaluate our models. Finally, we compare our
approach with several state-of-the-art LF depth estimation
methods.

4.1. Datasets

We use two datasets in our experiments, a novel and
challenging dataset released by [17] and the 4D Light Field
Dataset [4].

The UrbanLF-Syn dataset is generated through the use
of Blender software, specifically utilizing the Cycles and
Eevee renderer. The synthetic urban environment is care-
fully designed with various elements added to capture im-
ages under diverse lighting conditions. This is accom-
plished by equipping the environment with multiple light
sources to simulate different situations. The dataset is col-
lected using a camera array made up of 81 virtual cam-
eras with identical configurations, and disparity can be con-
trolled via adjustment of the distance between adjacent
cameras. The UrbanLF-Syn subset comprises 250 synthetic
LF samples, including 172 training, 28 validation, and 50
test samples. Each sample consists of 81 sub-aperture im-
ages with a spatial resolution of 480× 640 and angular res-
olution of 9× 9, along with disparity maps for all views.

The 4D Light Field Dataset, created by [4], is widely
regarded as the benchmark for evaluating disparity estima-
tion techniques for light field images. The dataset is com-
prised of 28 synthetic light field scenes, which have been
divided into four subsets: “Stratified”, “Test”, “Training”,
and “Additional”. These scenes are composed of various
materials, lighting conditions, and complex occlusions. The
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Figure 3. Disparity maps of the predicted scenes with and without
occlusion-aware loss.

resolution of the images is 512 × 512, and they were ren-
dered using the Blender renderer, with 9 × 9 sub-aperture
views. Since the scenes are synthetic, obtaining ground
truth depth is straightforward. For our experiments, we
utilized 16 scenes from the “Additional” subset for train-
ing, 8 scenes each from both “Stratified” and “Training” for
validation, and 4 scenes from “Test” for testing purposes.
During training, we randomly sampled 32 × 32 grayscale
patches from the training dataset, whereas we employed full
resolution 512× 512 images for validation.

4.2. Implementation Details

For our implementation, we employ patch-wise train-
ing by randomly selecting grayscale patches measuring
32×32 from the light field images present in the training set.
Our approach was trained using a supervised methodology
equipped with the proposed occlusion-aware loss function
and optimized through use of the Adam method [8] with
β = 0.2. The batch size is set to 12 and the learning rate
was assigned a value of 1 × 10−3. The range of dispar-
ity sampling varies according to the disparity range of the
datasets. Training was executed using PyTorch and com-
pleted on a PC equipped with a single Nvidia RTX 3090Ti
GPU, requiring approximately one week for completion.

4.3. Metrics

Regarding quantitative evaluation, we adopt standard
metrics, including mean square errors (MSE×100) and bad

Figure 4. Disparity maps of the predicted scenes with and without
ContextNet.

pixel ratios (BadPix(σ)). MSE×100 represents the mean
square error of all pixels within a given mask multiplied
by 100. Meanwhile, BadPix(σ) specifies the percentage of
pixels for which the absolute difference between the actual
label at a given mask and the algorithm’s predicted outcome
exceeds a threshold σ. Typically, σ is selected as 0.01, 0.03,
and 0.07.

4.4. Compared to state-of-the-art

We compare our proposed method with other approaches
submitted on the UrbanLF-Syn dataset. Table 2 presents
a summary of the results. In comparison, our proposed
method achieves a MSE×100 of 5.989 on the UrbanLF-
Syn dataset, outperforming most of the above-mentioned
methods. Our method utilizes a novel hybird cost volume
mechanism and occlusion-aware loss to better capture scene
geometry in textureless and occlusion regions.

4.5. Ablation Study

In this section, we present an ablation study to analyze
the individual contributions of various components in our
proposed method. We perform this study on UrbanLF-Syn
and HCInew datasets and report the results in Table 1.

Firstly, we compare our full model against a baseline
method that does not include the occlusion-aware loss or
any other additional components. The baseline obtains an
MSE×100 of 3.692 and a BadPix(0.01) of 84.842 on the
test set. Then, we evaluate the contribution of the occlusion-
aware loss by removing it from the full model. This results
in a decrease in both the MSE×100 and BadPixs, demon-
strating the effectiveness of this loss in addressing occlusion
challenges. The visualized results are shown in Fig. 3. We
also examine the effect of our hybird cost volume network
by removing it from the full model. This results in a slight
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decrease in the MSE×100, the BadPix(0.01) remains rela-
tively unchanged, and more qualitative results are shown in
Fig. 4. Overall, the ablation study confirms the efficacy of
our proposed method, demonstrating that each component
provides a valuable contribution towards achieving better
performance on both UrbanLF-Syn and HCInew datasets.

5. Limitations

Despite achieving better reconstruction results, our pro-
posed method still has some limitations, which we dis-
cuss in this section. Firstly, our method heavily relies on
the availability of high-quality light field data. The qual-
ity of the estimated depth maps is directly influenced by
the resolution, angular and spatial sampling density of the
input light field images. Therefore, the performance of
our method may degrade when applied to low-quality or
sparsely sampled light field data. Secondly, our method
assumes a static scene and does not consider moving ob-
jects in the scene. This is a particular limitation for dy-
namic scenes such as autonomous driving scenarios, where
objects may move at different speeds and directions. Future
work could explore incorporating motion estimation into
our framework to handle dynamic scenes. Lastly, our pro-
posed method is computationally expensive due to the use
of hybrid cost volume and the multi-scale architecture. This
limits its real-time applicability and could hinder its adop-
tion in resource-constrained settings. Future work should
focus on developing more efficient architectures that can
achieve comparable performance while reducing computa-
tional costs.

6. Conclusion

In this paper, we propose a novel method for light field
depth estimation by leveraging hybrid cost volume and an
occlusion mechanism. Our method achieves better perfor-
mance on the challenging UrbanLF and HCI datasets, out-
performing most existing approaches in terms of accuracy
and robustness. We introduce a hybrid cost-volume network
that focuses on both local matching information and global
context features while preserving details in textureless re-
gions. Additionally, we proposed a new occlusion-aware
loss function that encourages the network to focus more on
occlusion areas, which leads to more accurate depth esti-
mation. In conclusion, our proposed method shows promis-
ing results for various datasets and will stimulate further
research in this area.
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