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Abstract

Light field plays an important role in many different ap-
plications such as virtual reality, microscopy and computa-
tional photography. However, low angular resolution lim-
its the further application of light field. The existing state
of the art light field angular super-resolution reconstruc-
tion methods can only achieve limited fixed-scale angu-
lar super-resolution. This paper focuses on a continuous
arbitrary-scale light field angular super-resolution via in-
troducing the implicit neural representation into the light
field two-plane parametrization. Specifically, we first for-
mulate a 4D implicit epipolar geometric function for light
field continuous angular representation. Considering it is
difficult and inefficient to directly learn this 4D implicit
function, a divide-and-conquer learning strategy and a spa-
tial information embedded encoder are then proposed to
convert the 4D implicit function learning into a joint learn-
ing of 2D local implicit functions. Furthermore, we design
a special epipolar geometric convolution block (EPIBlock)
to encode the light field epipolar constraint information.
Experiments on both synthetic and real-world light field
datasets demonstrate that our method exhibits not only sig-
nificant superiority in fixed-scale angular super-resolution,
but also achieves arbitrary high magnification light field
super-resolution while still maintaining the clear light field
epipolar geometric structure.

1. Introduction

Light field imaging [12, 16, 19], recording 4D spatial-
angular information of incident light rays, is always an im-
portant research hotspot in the field of computational imag-
ing [32]. Compared to traditional 2D imaging, the addi-
tional angular information in the light field contains more
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Figure 1. Implicit epipolar geometric function can preserve clear
light field epipolar geometric structure in arbitrary angular resolu-
tion light field reconstruction.

helpful multi-view cues for scene analysis and understand-
ing, and the angular resolution is also a key quality-control
factor for light field display. However, there is a tread-off
between light field spatial and angular resolution. In re-
cent years, light field angular super-resolution reconstruc-
tion (SR), as an alternative method, has attracted significant
research interest [31].

Although numerous state of the art light field super-
resolution methods has been proposed [1, 8, 11, 13, 28, 31,
35], they can only reconstruct a sparsely sampled light field
to a fixed angular resolution (up to 7 × 7 or 9 × 9), and
cannot achieve continuous arbitrary-scale resolution recon-
struction because the complexity of their methods is cou-
pled with a fixed resolution.

The most recently proposed implicit neural representa-
tion [3, 18, 36] provides a creative and innovative idea for
image super-resolution and view synthesis, via using neural
learning to parameterize an implicitly defined, continuous,
differentiable 2D/3D signal (image or scene). In this pa-
per, we introduce the implicit neural representation into the
4D light field two-plane parameterization, and design a 4D
light field implicit epipolar geometric function for light field
continuous angular representation. Obviously, it is difficult
and inefficient to directly learn this 4D implicit function,
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especially for limited light field data. Herein, following
the divide-and-conquer strategy, we decouple the horizon-
tal and vertical angular representation by fixing an angu-
lar and spatial coordinate of the 4D light field, and decom-
pose the 4D implicit epipolar geometric function into a set
of 2D local implicit horizontal/vertical angular functions.
Then we convert the 4D implicit function learning into a
joint learning of 2D local implicit functions. Moreover,
to preserve spatial consistency among local implicit func-
tions, a spatial information embedded encoder is designed
to embed the spatial consistency into the local latent angu-
lar codes. To our best knowledge, our method is the first
implicit function-based light field angular super-resolution.

In summary, our main contributions include:

• An implicit epipolar geometric function-based light
field continuous angular representation, which can re-
construct arbitrary angular resolution light field with
clear epipolar geometric structure.

• A divide-and-conquer learning strategy for 4D light
field implicit epipolar geometric function, which con-
verts the 4D implicit function learning into joint learn-
ing of 2D local implicit functions.

• An EPIBlock is designed to encode the spatial consis-
tency of adjacent epipolar plane images (EPIs) into the
local implicit function learning, which alleviates the
limitation of lacking spatial structure information and
constraints only using a single EPI,

2. Related Work
2.1. Light Field Super-resolution

Light field super-resolution reconstruction aims to en-
hance the spatial and/or angular dimensions of 4D light
field images. Here we mainly focus on the light field an-
gular super-resolution reconstruction, which are generally
divided into the sub-aperture image (SAI) based and the EPI
based methods.

SAI-based Methods The state of the art SAI-based
methods usually adopt deep learning to extract spatial and
angular semantic features from light field SAIs, and then
synthesize virtual views at specified angular coordinates.
Yoon et al. [35] first proposed a deep convolutional neu-
ral network (CNN) for light field spatial and angular super-
resolution reconstruction. LFNet [26] incorporated an im-
plicitly multi-scale fusion scheme into a bidirectional re-
current convolutional neural network to accumulate con-
textual information for light field super-resolution. Gul
et al. [8] took raw light field data as input, and used a
CNN to enhance the spatial and angular resolution. Ye-
ung et al. [33] designed a spatial-angular separable CNN
for light field spatial super-resolution. Ko et al. [15] pre-
sented an adaptive feature remixing approach for spatial

and angular super-resolution. Wang et al. [24] proposed
a class of domain-specific convolutions to disentangle the
spatial and angular coupling information and developed
three network, DistgSSR, DistgASR and DistgDisp, for
spatial super-resolution, angular super-resolution and dis-
parity estimation, respectively.

EPI based Methods Inspired by 2D image super-
resolution, Wu et al. [31,32] contributed a “blur-restoration-
deblur” framework to recover high frequency details of mul-
tiple EPIs, which can alleviate the the problem of asymme-
try information between the spatial and angular dimensions
caused by sparse angular sampling. They also proposed a
learning-based light field reconstruction approach by fus-
ing a set of sheared EPIs [30]. Wang et al. [25] proposed
a multi-EPI based approach, which applied a 3D convolu-
tion layer to recover details on horizontal and vertical EPIs
in turn. They further improved their method by adding the
EPI structural recovery loss function [27].

2.2. Implicit neural representation

Recent studies have demonstrated that implicit parame-
terization of continuous functions using a trained multilayer
perceptron (MLP) is an efficient alternative to traditional
convolution. Mildenhall et al. [18] used an MLP neural net-
work to implicitly learn a static 3D scene. Yu et al. [36] took
the pixel-aligned spatial image features as input, which al-
lows the framework to train and learn scene priors from a
set of multi-view images, and then synthesize views from
one or several input images. Li et al. [17] predicted a 4-
channel image (RGB and volume density) at arbitrary depth
values to jointly reconstruct the camera frustum and fill in
occluded contents from a single image. Peng et al. [20] pro-
posed a novel human body representation that assumes that
the learned neural representations at different frames share
the same set of latent codes anchored to a deformable mesh.
Wang et al. [34] developed a hybrid neural surface represen-
tation to impose geometry-aware sampling and regulariza-
tion, which can significantly improve the fidelity of recon-
structions. Chen et al. [4] performed the generation of 2D
shapes for simple numbers from the latent space. They fur-
ther proposed a local implicit image function (LIIF), which
takes image coordinates and 2D deep features as input, and
predicts the RGB values at a given coordinates [3]. Sitz-
mann et al. [23] used MLPs with periodic activation func-
tions for implicit neural representation instead of ReLU-
MLPs, and demonstrated that it can model natural images
with higher quality.

3. Method
3.1. Light field EPI representation

Light field EPI contains rich epipolar geometry informa-
tion of light field, such as the linear structure formed by the
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Figure 2. Examples of a horizontal neighborhood EPI array and a
vertical neighborhood EPI array, here m = 2.

intersection of the epipolar plane and the camera plane. An
EPI can be obtained by stacking pixels from a same row (or
column) of a row (or column) of SAIs.

Specifically, as for a two-plane parameterized light field
I (u, v, s, t) with resolution of U ×V ×W ×H , a horizon-
tal EPI I(vi,ti) (u, s) can be obtained by stacking the ti-th
row pixels of the vi-th row SAIs, and its horizontal neigh-
borhood EPI Ineib(vi,ti) (u, s) is built by stitching 2m + 1
adjacent horizontal EPIs together along the u axis, in-
cluding I(vi,ti−m) (u, s), ..., I(vi,ti−1) (u, s), I(vi,ti) (u, s),
I(vi,ti+1) (u, s), ..., I(vi,ti+m) (u, s). The resolution of a hor-
izontal neighborhood EPI is (2m + 1)U × W . Similarly,
a vertical EPI is defined as I(ui,si) (v, t), and its vertical
neighborhood EPI Ineib(ui,si) (v, t) can be built by stitch-
ing 2m+1 adjacent vertical EPIs together along the v axis,
including I(ui,si−m) (v, t), ..., I(ui,si−1) (v, t), I(ui,si) (v, t),
I(ui,si+1) (v, t), ..., I(ui,si+m) (v, t). The resolution of a ver-
tical neighborhood EPI is (2m + 1)V ×H . In our experi-
ments, the m is set to 2 by default, as shown in Figure 2.

We construct a light field EPI tuple with a light field
EPI and its neighborhood EPI. For simplicity, considering
U = V and W = H in most of synthetic light field datasets,
we uniformly denote the light field EPI (whether horizon-
tal or vertical ones) as Iepi basis and the neighborhood
EPI (whether horizontal or vertical neighborhood ones) as
Iepi neib. Then we combine each EPI Iepi basis and its cor-
responding neighborhood EPI Iepi neib into a light field EPI

tuple Iepi group = {Iepi basis, Iepi neib}.

3.2. Overview of our network

In this paper, we propose an implicit epipolar geometric
function based light field angular super-resolution (named
as “LFEIFASR”). It mainly includes a spatial-angular fu-
sion module, an epipolar geometry residuals dense net-
work, and an epipolar geometry implicit function learning,
as shown in Figure 3.

3.3. Spatial-angular fusion module

Although a light field EPI implies rich angular informa-
tion, it lacks spatial information because of itself construc-
tion limitation. To address this issue, we supplement the
spatial constraint information by building light field EPI tu-
ples during the generation of training set. We proposed two
specific convolution to extract angular and spatial informa-
tion from each EPI Iepi basis and its neighborhood EPI array
Iepi neib, respectively.

For a LR (low resolution) EPI Iepi basis, we apply a con-
volution layer with a 3 × 9 convolution kernel, named as
“Angular Conv”, to extract the angular continuous fea-
tures HAngular Conv from Iepi basis.

For a LR neighborhood EPI Iepi neib, we design an ex-
panded convolution, named as “Spatial Conv”, to extract
the spatial continuous features HSpatial Conv from pixels
of the same row in adjacent EPIs, by setting the convolu-
tion kernel size to be (2m + 1, 2m + 1) and the expansion
coefficient to be (2m+ 1, 1).

By summing up the angular and spatial continuous in-
formation, we obtain the spatial-angular fusion information
Fmixed as follows.

Fmixed =HSpatial Conv(Iepi neib)

+HAngular Conv(Iepi basis)
(1)

3.4. Epipolar geometry residuals dense network

Traditional convolution is only suitable for extracting
the features within the local receptive field, and it is dif-
ficult to effectively cover all pixels in EPI linear struc-
tures with various slopes. To alleviate this limitation, in-
spired by the skip connection structures of ResNet [9] and
DenseNet [37], we propose an Epipolar Geometric Convo-
lution Block (named as “EPIBlock”) and an epipolar geo-
metric convolution (named as “EPIConv”) to extract epipo-
lar geometric features from light field EPI tuples, as shown
in Figure 3.

Each EPIBlock contains C EPIConvs, and the structure
of EPIConv is shown in Figure 4. Specifically, the output
from the U × 1 convolution is reshaped to the same size
of the feature produced by the 1× 7 convolution. Then the
extracted feature is summed and fused by a 3×3 convlution
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Figure 3. Overview of the proposed network architecture.
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Figure 4. Structure of EPIConv.

to learn the slope information in EPIs, as shown in Eqs (2)-
(5):

EPIConv(F ) =Conv3×3(ReLU(ConvU×1(F ))

+ReLU(Conv1×7(F )))
(2)

Fd,c = EPIConv(Concat(Fd-1, Fd,1,

..., Fd,c-1))
(3)

Fd,epi = Hd
1×1(Concat(Fd-1, Fd,1, ...,

Fd,c, ..., Fd,C))
(4)

Fd = Fd-1 + Fd,epi (5)

where Fd,c denotes the epipolar geometric features obtained
after c-layer EPIConv in the dth EPIBlock, Fd,epi denotes
the obtained features after all local convolutions, and Fd is

the final output epipolar geometric features of the dth EPI-
Block.

Base on EPIBlock and EPIConv, we use a 3 × 3 con-
volution denoted as Head Conv to extract shallow fea-
tures first. The spatial-angular fusion information Fmixed

extracted by the spatial-angular information fusion module
will be entered into Head Conv to extract shallow features,
as described in Eq (6):

F0 = HHead Conv(Fmixed) (6)

Our epipolar geometry residuals dense network consists
of D EPIBlocks, and each EPIBlock comprising of C EPI-
Convs, which forms a DenseNet structure to fully extract
epipolar geometric features, that is each EPIConv accepts
feature information from all previous EPIConvs. Therefore,
our network leverages global residual connections to extract
deep feature information in the EPIs, and to fuse the outputs
of the EPIBlocks by concatenation operation. In our exper-
iments, the channel numbers of all convolutional layers in
EPIConvs are set to be 64, as shown in Eqs (7)-(8):

Fd =HEPIBlock,d(Fd-1) = HEPIBlock,d

(HEPIBlock,d-1(...(HEPIBlock,1(F0)))
(7)

Fepi global =HTailConv(F-1, F0, F1, ..., FD) (8)

where Fd denotes the epipolar geometry feature produced
by the (d− 1)th EPIBlock. The epipolar geometry global
feature denoted as Fepi global in the EPIs can be extracted
by applying a 3 × 3 convolution (denoted as TailConv)
to a tensor concatenating output from each EPIBlock, the
Fepi global has the same dimensions as the EPI image with
low angular resolution.
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3.5. Epipolar geometric implicit function learning

Traditional super-resolution methods primarily used 2D
interpolation based image upsampling [5, 6, 14, 21], which
usually recover the missing RGB pixels based on explicit in-
formation from surrounding pixels, by learning the discrete
representation of 2D images. Herein, we follow LIIF [3] to
use an epipolar geometric implicit function learning strat-
egy.

Firstly, we use the coordinate index matrix gener-
ation method to get the low-resolution (LR) coordi-
nate map (i.e., CoordMapLR) with LR epipolar geom-
etry implicit code (i.e., Fepi global), and then the high
angular resolution (HR) sampling coordinate map (i.e.,
CoordMapHR−Sampling) is obtained from CoordMapLR

through the nearest neighbor interpolation. The HR coordi-
nate (HR Coord) is used to generate high angular resolu-
tion coordinate map denoted as CoordMapHR, and finally
subtract CoordMapHR−Sampling to get coordinate offset
denoted as Coordoffset, as shown in Eqs (9)-(10):

CoordMapHR−Sampling =

UpSampling(CoordMapLR)
(9)

Coordoffset =CoordMapHR−
CoordMapHR−Sampling

(10)

Then, the nearest neighbor interpolation is applied to
Fepi global for HR sampling epipolar geometry implicit
code representation (i.e., FHR epi global).

Finally, we concatenate the coordinate offset and HR
sampling epipolar geometry implicit code as input to the
multilayer perceptron f which consists of four linear lay-
ers with 256 output channels and one linear layer with 3
output channels to get HR (high resolution) EPI denoted as
EPIHR, as shown in Eq (11):

EPIHR = f(Coordoffset, FHR epi global) (11)

3.6. Divide-and-Conquer Learning Strategy

To reconstruct dense sampled light fields from sparse
views, we need to train an implicit epipolar geometric func-
tion composed of MLPs. However, it is difficult to directly
learn a 4D implicit epipolar geometric function because of
limited resources and efficiency. Moreover, directly training
a 4D implicit function may destroy the spatial and angular
constraints of light field, because of the coupling relation-
ship between the spatial and angular information of the light
field. Therefore, we propose a divide-and-conquer learning
strategy. Specifically, we divide the 4D implicit epipolar ge-
ometric function into two 2D implicit functions learning by
fixing (u, s) and (v, t) respectively. When we fix (u, s), we
can represent the light field as L(ui, v, si, t), which corre-
sponds to the horizontal EPI. Similarly, when we fix (v, t),

Third stage

First stage

Second stage

Figure 5. Synthesis of high resolution light field. We take sparse
viewpoints marked in orange as input first, use the horizontal EPI
to synthesize the viewpoints marked in blue, and use the vertical
EPI to synthesize the viewpoints marked in green. Secondly, we
use the green viewpoint as input, and use the horizontal EPI to
synthesize the viewpoints marked in yellow.

the light field can be represented as L(u, vi, s, ti), which
correspond to the vertical EPI. By taking the horizontal or
vertical EPI tuples as input, we can reconstruct the light
field in the v or u dimensions.

As shown in Figure 5, we reconstruct high angular res-
olution light field (7 × 7) from low angular resolution light
field (3 × 3) through a three-stage strategy.

4. Experiments
We compare our method with existing methods on the 3

× 3 to 7 × 7 and 3 × 3 to 9 × 9 light field angular super-
resolution tasks, including the comparisons of PSNR and
SSIM metrics on synthetic and realistic datasets, as well as
visual comparison of experimental results. Our network is
trained using charbonnier loss [2] and is implemented in
PyTorch on a PC with one NVidia TITAN X GPU.

4.1. 3 × 3 to 7 × 7 task

We use 100 scenes [13] as the training dataset. All scenes
from 100scenes [13] are captured by Lytro camera [7] and
decoded as a light field array image of 14 × 14. We take
the middle 7 × 7 images as the light field data in our ex-
periments. Since the generation of the entire light field in-
cludes horizontal EPI super-resolution stages and vertical
EPI super-resolution stages, we recombine the sub-aperture
images with a 7 × 7 array of each scene into a set of ver-
tical and horizontal EPI tuples, taking the same size and
shuffling to improve the generalization performance of the
model when dealing with horizontal and vertical EPI.

We compare our method with 4 state of the art meth-
ods on 30scenes, occlusions, and reflective for the 3 × 3
to 7 × 7 tasks, including Kalantari [13], EPICNN [31],
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Table 1. PSNR/SSIM achieved by different methods for 3 × 3 → 7 × 7 angular SR. The best results are shown in bold.

Methods Task 30scenes occlusions reflective

Kalantari [13] 3×3→7×7 38.41/0.9601 33.21/0.9012 36.89/0.9462
EPICNN [31] 3×3→7×7 41.04/0.9782 36.85/0.9382 41.24/0.9703
EP4DCNN [27] 3×3→7×7 43.82/0.9926 34.69/0.9231 39.93/0.9594
DistgASR [24] 3×3→7×7 44.18/0.9912 42.21/0.9949 41.75/0.9757
LFEIFASR(ours) 3×3→7×7 44.46/0.9917 42.34/0.9902 41.77/0.9677

Table 2. PSNR/SSIM achieved by different methods for 3 × 3 → 9 × 9 angular SR. The best results are shown in bold.

Methods Task UrbanLF-Syn HCI old HCI new

Kalantari [13] 3×3→9×9 36.78/0.9455 32.76/0.9028 26.59/0.8720
DistgASR [24] 3×3→9×9 43.43/0.9910 38.91/0.9659 31.93/0.9501
LFEIFASR(ours) 3×3→9×9 43.55/0.9912 39.59/0.9444 32.43/0.9291

IMG_1528/30scenes Ours

(39.34/0.9886)

DistASR

(37.80/0.9824)
GroundTruth Kalantari

(30.41/0.9420)

DistASR

(37.80/0.9824)
GroundTruth Kalantari

(30.41/0.9420)

IMG_1528/30scenes Ours

(39.34/0.9886)

DistASR

(37.80/0.9824)
GroundTruth Kalantari

(30.41/0.9420)

(a) IMG 1528 in 30scenes

Rock/30scenes DistASR

(40.49/0.9904)

Ours

(41.57/0.9906)
GroundTruth Kalantari

(33.51/0.9521)
Rock/30scenes DistASR

(40.49/0.9904)

Ours

(41.57/0.9906)
GroundTruth Kalantari

(33.51/0.9521)

(b) Rock in 30scenes

occlusions_24_eslf DistASR

(45.19/0.9969)

Ours

(45.53/0.9943)

GroundTruth Kalantari

(38.36/0.9733)
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Ours

(45.53/0.9943)

GroundTruth Kalantari

(38.36/0.9733)
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reflective_29_eslf DistASR
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Ours
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(40.12/0.9858)
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Ours
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GroundTruth Kalantari

(40.12/0.9858)

(d) reflective 29 in reflective

Figure 6. Visualization comparison of LFEIFASR and other pub-
lished methods in 3 × 3 to 7 × 7 task

EP4DCNN [27] and DistgASR [24]. Table 1 lists the com-
parison results. Our model achieves the highest PSNR val-

ues on all datasets, and the highest SSIM value in 30 scenes.
In terms of specific PSNR metrics, our model outperforms
DistgASR by 0.28 dB on 30scenes dataset, by 0.13 dB on
occlusions dataset, and by 0.02 dB on reflective dataset.

Figure 6 shows the visual comparison results on 3 × 3 to
7 × 7 task. Our model shows the best rendering quality and
detail restoration effect in these scenes. For example, the
figures on the scene IMG 1528 (Figure 6(a)), plants on the
scene Rock ( Figure 6(b) ).

4.2. 3 × 3 to 9 × 9 task

The 3 × 3 to 9 × 9 task is compared with existing methods
on UrbanLF-Syn [22], HCI old [29], and HCI new [10], and
the PSNR and SSIM obtained for each method in the dataset
were calculated as shown in the Table 2.

LFEIFASR achieves the highest PSNR on all datasets. In
terms of specific PSNR metrics, there is 0.12 dB higher than
the latest method DistgASR [24] on UrbanLF-Syn [22],
0.68 dB higher than DistgASR on HCI old [29], and 0.50
dB higher than DistgASR on HCI new [10].

Figure 7 shows the reconstruction results of LFEIFASR
in some scenes from 3 × 3 to 9 × 9 tasks and the compar-
ison with DistgASR. LFEIFASR reconstruct more photo-
realistic results in these scenes, such as the letters ”HCI” on
the scene buddha2 (Figure 7(a)) and the number ”1851” on
the scene dishes (Figure 7(c)).

4.3. Light field rendering with arbitrary angular
resolution

Compared to other super-resolution with fixed angular
resolution, our method can reconstruct light field images
with higher angular resolution based on the input high-
resolution coordinate. We take the 3 × 3 to 17 × 17, 3 ×
3 to 25 × 25, 3 × 3 to 33 × 33, and 3 × 3 to 41 × 41 an-
gular SR tasks for discussion. Since the adopted light field
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Figure 7. Visualization comparison of LFEIFASR and other pub-
lished methods in 3×3 to 9×9 task

Table 3. PSNR/SSIM of our method in higher angular SR tasks.

Tasks Bedroom Bicyle Buddha

3×3→9×9 37.52/0.9664 35.10/0.9694 46.27/0.9945
3×3→17×17 36.12/0.9602 34.16/0.9631 43.37/0.9918
3×3→25×25 35.32/0.9533 33.59/0.9570 42.29/0.9892
3×3→33×33 34.89/0.9487 33.28/0.9531 41.77/0.9877
3×3→41×41 34.63/0.9456 33.10/0.9505 41.46/0.9867

dataset only has an angular resolution of 9 × 9 and there
is no ground-truth with 17 × 17 and higher angular resolu-
tions, we sample a regular 9 × 9 subaperture image array in
a higher angular resolution light field to calculate the evalu-
ation metrics when testing the synthesis result. We use the
scene bedroom and bicyle on HCI new and buddha on HCI
old for evaluation.

As shown in Figure 8, LFEIFASR can still generate high-
quality subaperture images when reconstructing higher an-
gular resolution light field. LFEIFASR is able to main-
tain the epipolar geometry constraint in the light field using
epipolar geometry convolution.
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(a) Performance of buddha scene in HCI old dataset with arbitrary angular
resolution light field drawin
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(b) Performance of bedroom scenes in the HCI new dataset at any angular
resolution light field drawing

Figure 8. Experimental results of LFEIFASR with multiple target
angular resolutions under arbitrary angular resolution light field
mapping

5. Ablation experiments

This section we discuss the influence of m and epipolar
geometric convolution EPIConv in LFEIFASR.

5.1. The value of m taken for the neighborhood EPIs
of the light field

We test LFEIFASR with different values of m for the
light field neighborhood EPIs in 30scenes. Different m
value will get different test results. As shown in Table 4,The
highest PSNR and SSIM achieved at m = 2. (i.e. the light
field EPI image is taken as an array of 5 EPI images).

Table 4. Effect of different values of m (PSNR↑/SSIM↑)

Values of m Task 30scenes

m=0 3×3→7×7 43.89/0.9901
m=1 3×3→7×7 44.44/0.9917
m=2 3×3→7×7 44.46/0.9917
m=3 3×3→7×7 44.45/0.9917
m=4 3×3→7×7 44.39/0.9916
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5.2. Comparison with residual dense network

The normal convolutional block is replaced by epipo-
lar geometry convolution block to extract epipolar geom-
etry information from the light field. We discuss the ad-
vantages of EPIBlock over RDB [37] in the light field an-
gular super-resolution. 30scenes is used as test dataset, as
shown in Table 5. It can be concluded that the LFEIFASR

Table 5. Effect of normal convolution block and epipolar geomet-
ric convolution block in 30scenes (PSNR↑/SSIM↑).

Type Task 30scenes Params

RDB 3×3→7×7 44.34/0.9911 22.4M
EPIBlock 3×3→7×7 44.46/0.9917 13.7M

with epipolar geometric convolution block EPIBlock can
obtain higher accuracy than the light field angular contin-
uous domain plotting network with ordinary convolution
block RDB, and reduce the number of parameters of the
network model by about 40% at the same time.

6. Conclusions

In this paper, we propose a framework for learning con-
tinuous angular domain of light fields using light field
epipolar geometry information. The framework learn the
constrained properties of the epipolar geometry in light
fields by a four-dimensional light field implicit epipolar ge-
ometric function. We decompose the learning process of
the 4D implicit function into two sub-processes to solve the
problem that learning the 4D implicit function is hard. We
use a divide-and-conquer learning strategy to learn two two-
dimensional implicit functions by fixing one angular coor-
dinate and one spatial coordinate in the four-dimensional
coordinates of the light field. In order to solve the prob-
lem of lack of spatial information after the fixed dimension,
we take the multi-line EPI as the input of the network, and
embed the spatial information into the angular information.

The experimental results demonstrate that we not only
can synthesize high-quality LF image in low-magnification
angular super-resolution tasks, but still achieve state-of-the-
art performance in arbitrary and high-magnification light
field reconstruction.
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