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Abstract

Localizing people and recognizing their actions from
videos is a challenging task towards high-level video un-
derstanding. Existing methods are mostly two-stage based,
with one stage for person bounding box generation and the
other stage for action recognition. However, such two-stage
methods are generally with low efficiency. We observe that
directly unifying detection and action recognition normally
suffers from (i) inferior learning due to different desired
properties of context representation for detection and ac-
tion recognition; (ii) optimization difficulty with insufficient
training data. In this work, we present a decoupled one-
stage network dubbed DOAD, to mitigate above issues and
improve the efficiency for spatio-temporal action detection.
To achieve it, we decouple detection and action recognition
into two branches. Specifically, one branch focuses on de-
tection representation for actor detection, and the other one
for action recognition. For the action branch, we design
a transformer-based module (TransPC) to model pairwise
relationships between people and context. Different from
commonly used vector-based dot product in self-attention,
it is built upon a novel matrix-based key and value for
Hadamard attention to model person-context information.
It not only exploits relationships between person pairs but
also takes into account context and relative position infor-
mation. The results on AVA and UCF101-24 datasets show
that our method is competitive with two-stage state-of-the-
art methods with significant efficiency improvement.

1. Introduction
The objective of action detection is to localize and rec-

ognize human actions in video clips along space and time.
Unlike general action recognition, the actions in this task
emphasize on actors’ interactions with the context. As a
fundamental and challenging task in video understanding, it
has been widely applied to various tasks, such as abnormal
behavior detection [50, 21] and autonomous driving [28].

Spatio-temporal action detection usually consists of two
sub-tasks, person detection and action recognition. Most
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Figure 1: Comparison between two-stage solution and our
one-stage solution to spatio-temporal action detection. Tra-
ditional two-stage methods use an off-the-shelf detector to
generate person bounding boxes suffering low efficiency.
The proposed DOAD model decouples detection represen-
tation and action recognition representation to accomplish
different sub-tasks in a single stage.

existing methods typically adopt two-stage solutions. As
shown in Figure 1, they typically follow the top-down strat-
egy [15, 36, 51, 46, 48, 38, 26] that employs off-the-shelf
detectors to localize person instances at first and then recog-
nize their action categories with various backbones. Though
with high performance, these methods are not efficient as
they require two-stage processing for detection and action
recognition separately. We observe that detection and ac-
tion recognition have different desired properties for con-
text representation in this task. Due to the existence of
interaction categories, action recognition requires to fuse
corresponding entity (e.g., other people or objects) features
from context to construct various interaction relationships.
In contrast, detection also benefits from context, but it tends
to incorporate the context features that support the bound-
ing box regression and is not sensitive to interaction. Take
Figure 2a as a toy example. We slightly change the pose of
the interested person from the left image to the right image.
The aggregated context features for detection are nearly un-
changed, but for action recognition they shall be learned
from scratch again due to the change of interaction objects.
The different objectives of the two sub-tasks need different
context supports for optimal learning. Moreover, entangled
modeling of the two sub-tasks leads to difficulty in opti-
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mization, especially in the case of limited video data with
annotations. Due to these reasons, it is difficult to integrate
them into entangled one-stage framework to achieve strong
performance.

To alleviate these issues, different from previous meth-
ods, we propose a novel decoupled one-stage architecture
to unify detection and action recognition into one backbone.
Our method decouples detection and action recognition into
two separate branches to make the two sub-tasks learn their
own optimal context support. In our architecture, person de-
tection is performed in the detection branch, which aggre-
gates context information from temporal supporting propos-
als, and action recognition is performed in the action branch
for person-person or person-context relationship mining.

Specifically, in the detection branch, a region proposal
network (RPN) is adopted to generate person bounding
boxes, and an ROI pooled person feature is served for
bounding box regression. Considering the detection is per-
formed on video frames, we employ a temporal aggregation
module to enhance the keyframe features by aggregating
its adjacent frame features. In the action branch, we de-
sign a transformer-based structure which unifies person and
context features to capture interaction representation. In
this task, action recognition shall understand actors’ inter-
actions with surrounding context, including environments,
other actors, and objects. Prior works [48, 38] focus on
building various interaction relationships, such as person-
person, person-object, and long-term temporal interactions.
However, they just model corresponding entity features in
each relationship and stack them independently, which ne-
glects the correlation among person features, context and
relative position information. Take Figure 2b as an example.
There are two person-person interaction categories, “watch
sb” and “listen to sb”, between the actor-of-interest in the
red bounding box and the supporting actor in the green
bounding box. Assuming the two actors exchange their
positions, their appearance features are nearly unchanged,
but there are no interactions between them any more. If
we do not consider the context and position information,
wrong results might be obtained. Therefore, we argue that
the relationships among people, context, and position shall
be considered simultaneously. Inspired by the vanilla trans-
former [42], we design a TransPC (Transformer for Person-
Context) layer which models pairwise person relationships
upon their holistic spatial structure to retain the context
and relative position information. We construct matrices of
pairwise person-context features as key and value. Differ-
ent from vanilla self-attention that deals with sequence in-
put, we propose the Hadamard product to compute attention
map between the sequence query and the matrix key. Our
TransPC is able to incorporate features from more informa-
tive entities and produce more accurate action prediction.

Our contributions are summarized as three-fold:

(a) Different context support for detection and action recognition.

(b) The importance of the context and position information for action
recognition.

Figure 2: (a) shows different context support for person de-
tection and action recognition. The heatmap represents the
informative context for detecting actor-of-interest. Chang-
ing his pose from the left image to the right image does not
change the context for detection, but does change the con-
text (supporting person) for action recognition to another
person in the image. (b) illustrates that the context and po-
sition information are crucial clues for action recognition.
In the right image, we exchange the positions of two peo-
ple, then they have no interaction.

• We propose a one-stage spatio-temporal action detec-
tion model, which decouples detection representation
and action representation for person detection and ac-
tion recognition, respectively, ensuring that they have
optimal context feature aggregation.

• We propose a novel transformer-based method,
TransPC, to explicitly integrate person and context
features with relative position information for action
recognition.

• We demonstrate the effectiveness of our method on
the mainstream datasets, AVA and UCF101-24. Our
method outperforms well established state-of-the-art
one-stage methods significantly and is comparable to
the two-stage methods with significant improvement
of efficiency.

2. Related work
Action recognition. Action recognition is a fundamental
task of video understanding. Convolutional networks have
long been the standard for this task. They can be roughly
separated into two groups, i.e., two-stream networks and 3D
CNNs. Two stream networks [33, 12, 43, 47] use 2D CNNs
to extract frame features from RGB and optical flow se-
quences, while 3D CNNs [39, 4, 27, 11, 22] adopt 3D con-
volutional layers to model the temporal information from
the original videos. Since 3D convolutional networks con-
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sume more computation, many methods explore to decou-
ple spatial and temporal dimensions or use grouped convo-
lutions [37, 40, 41, 49, 10]. With the significant success
of Vision Transformer (ViT) [8], a shift in action recogni-
tion from CNNs to transformers emerges recently. Benefit
from the self-attention mechanism which broadens wider
receptive field with fewer parameters and lower computa-
tion costs, those methods [3, 1, 25, 9, 52, 30] present state-
of-the-art performance and impressive potential. In this
work, besides traditional CNN-based networks, we also try
to adopt transformer-based networks as our backbone to ex-
tract video features.

Spatio-temporal action detection. Action recognition
processes well-trimmed videos, where the models only need
to classify short video clips to action labels. However,
most videos are untrimmed and long in practical appli-
cations. Recent works explored temporal action localiza-
tion [32, 55, 6, 23, 2, 54, 5] and spatio-temporal action de-
tection [13, 15, 36, 51, 20, 46, 48, 38, 26] on untrimmed
videos. Spatio-temporal action detection is more difficult
than action classification and temporal action detection be-
cause these models need to not only predict the action cat-
egories but also localize the action in time and space. Most
recent works focus on capturing various interaction rela-
tionships between actors and context. They normally adopt
a two-stage framework where actor boxes are first gener-
ated by an off-the-shelf detector and then classified. Wu et
al. [48] present a strong baseline network by simply expand-
ing actor bounding boxes and incorporating global feature,
which demonstrates the importance of the context informa-
tion. Tang et al. [38] explore nearly all the main interactions
including person-person, person-object, and long-term tem-
poral interaction. They model each interaction by the self-
attention mechanism and then stack them to improve the
performance. Moreover, an Asynchronous Memory Update
(AMU) algorithm is proposed to estimate the memory fea-
tures dynamically for long-term temporal interaction cap-
ture. Pan et al. [26] show an Actor-Context-Actor Relation
model to uncover the deeper level relationship between ac-
tors and context by applying a high-order relation reasoning
to build the actor-context-actor relations. Those methods
achieve significant performance. However, two-stage ap-
proaches are not efficient, which limits their application in
the real world. Girdhar et al. [13] adopt an RPN network
to generate bounding box proposals and use a transformer
head to generate classification and bounding box regres-
sion results. Their method is a one-stage method but lacks
finer interaction relationship construction and does not con-
sider the difference of optimal context support for two sub-
tasks. In this work, we propose a one-stage method that
contains our novel person-context interaction relationship
mining module and addresses these issues. Experiments
demonstrate that our method outperforms competitive base-

lines.

Attention mechanism for video context capture. Con-
text information capture plays a pivotal role in video under-
standing. Attention mechanism is one of the most effective
and common technique to solve it. Attention mechanism
is to compute the response at a position in a sequence by
accessing all positions and taking their weighted average in
the embedding space. Vaswani et al. [42] first introduce
a self-attention mechanism, called transformer, capturing
long-range context among words in one sentence to address
the machine translation task. Girdhar et al. [13] first utilize
transformer in video tasks to aggregate features from the
spatio-temporal context for recognizing and localizing hu-
man actions; after that, many related works [56, 31, 44] ap-
ply transformer in various video tasks. There are some other
ways besides transformers to utilize attention mechanism
to capture long-range dependencies. Wang et al. [45] em-
bed non-local structure into the action recognition network
to capture spatio-temporal context dependencies. Wu et
al. [46] introduce long-term temporal context feature banks
to compute interactions between the current short-term fea-
tures and the long-term features for video analysis. Recent
works [48, 38, 26] explore the interactions between peo-
ple and all kinds of context in this task, e.g., person-person
and person-scene. However, most works model each con-
text independently and are short of exploring the associa-
tions between different contexts. Although [26] proposes
the concept of actor-context-actor relation, we still think it
does not pay attention to the relative position relationship of
different entities.

3. Method
In this section, we present the proposed method which

targets to construct an effective and efficient one-stage
model. The overall architecture of our method is shown
in Figure 3. We first employ a video backbone to extract
features of the input video. Then, the video representation
is decoupled into two branches, i.e., detection branch and
action branch. The detection branch (Section 3.2) is based
on Faster-RCNN structure and deploys a temporal aggrega-
tion module to generate person bounding boxes. The ac-
tion branch (Section 3.3) mines person-context interaction
by TransPC module and long-term temporal interaction by
a memory feature bank to achieve action recognition.

3.1. Overall framework

Our method deals with a short video clip centered on the
center frame Fk (“keyframe”). Following the pipeline of
previous spatio-temporal action detection methods [13, 15,
36, 51, 46, 48, 38, 26], it generates a set of person bounding
boxes for all the people in the keyframe, and recognizes all
the actions for each person in this short time.
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Figure 3: Illustration on the architecture of our method. It first employs a video backbone network to extract a 3D video
feature. Then the detection and action recognition is decoupled into two branches. In the detection branch, we apply a similar
Faster-RCNN framework incorporating video temporal context by temporal aggregation module (TAM) to generate bounding
boxes and conduct pose action estimation. In the action branch, we adopt a TransPC to integrate person and context features
to capture interaction relationships. HP is short for Hadamard product.

We begin by extracting a T -frame short clip centered
on the given keyframe Fk from a video. We encode this
input using a backbone network (e.g. Video Swin Trans-
former [25] or SlowFast [11]) to obtain a T ×H ×W fea-
ture map X . We feed the feature map into the detection
and action branches. The detection branch aggregates adja-
cent frame features to enhance the keyframe person features
to generate person bounding boxes. For the action branch,
we propose a TransPC module combining person and con-
text features to capture interaction relationships. Finally,
we obtain the generated bounding box coordinates and ac-
tion categories as our final action detection results. We will
illustrate our detection branch and action branch in Section
3.2 and Section 3.3, respectively.

3.2. Detection branch

Our detection branch is similar to the Faster R-CNN ob-
ject detection framework [29]. We slice out the keyframe
feature Xk ∈ RH×W from feature map X and feed it into
a region proposal network (RPN). The RPN generates per-
son bounding box proposals with scores. We then select N
proposals (N = 300) according to the interaction of over-
lap (IoU) with ground truths. After that, person features are
extracted by align ROI pooling operation from the selected
proposals. These features are applied to classify proposals
into Person and Background, two categories, and regress to
a 4D vector of offsets to predict a more accurate bound-
ing box. Finally, we use NMS to remove redundant boxes
and set a threshold to filter out boxes with low confidence
scores. The final bounding boxes are regarded as actor spa-
tial location, and they are also served for action recognition
during inference.

Temporal aggregation module. Above operations be-
long to a general image detection pipeline. However,

our input is a video clip. Only using static images ig-
nores temporal context information and makes it hard to
deal with challenging situations in videos, e.g., occlusion
and motion blur. Therefore, we design a temporal ag-
gregation module to enhance the features of the keyframe
proposals. Besides keyframe feature Xk, we select two
frame features Xk−s and Xk+s with a distance of s from
the keyframe as reference frames. Both keyframe feature
and reference frame features are fed into RPN and ROI
pooling to generate keyframe proposal features and refer-
ence proposal features, notated as F k = {fk1 , fk2 , ..., fkN}
and F r = {fr1 , fr2 , ..., frN} respectively. Transformer is
adopted here to aggregate features of reference propos-
als to generate more informative keyframe proposal. The
transformer block is composed of self-attention layer and
feed-forward network (FFN). The attention map produced
by self-attention layer is computed by matching the trans-
formed keyframe proposals F k (a.k.a. the queries) Q =
φ(F k) to another transformation of the reference proposals
(a.k.a. the keys) K = θ(F r), with φ and θ being learnable
linear transformation.

Ad = Softmax(
φ(F k) ∗ θ(F r)>√

d
), (1)

where Ad ∈ RN×N is the generated attention map, d is the
dimension for F k and F r, and ∗ is the dot product. Consid-
ering that our goal is to enhance the features of the keyframe
proposals with the reference proposals, we use the original
reference proposal features as values instead of projecting
them with a linear transformation. In the FFN layer, we ap-
ply a linear projection on the aggregated feature and add it
to the keyframe proposals. Namely,

F k′ = F k + Linear(Ad ∗ F r), (2)
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where F k′ is the final aggregated proposal features, Linear
is the linear projection, and ∗ is the dot product.

3.3. Action branch

In the action branch, we emphasize on the variant in-
teractions for action recognition. We propose a TransPC
module to construct person-context interaction and it con-
siders entity features, context and position information syn-
chronously. Furthermore, we employ a memory feature
bank to capture long-term temporal interaction.

TransPC. In this module, we adopt transformer to inte-
grate person feature and context feature to explore the inter-
action relationships. For a keyframe Fk, its person bound-
ing box set P = {p1, p2, ..., pn} is obtained from our de-
tection branch, where n is the number of proposals. We
aim to compute the correlation between each person (tar-
get person pti ∈ P ) and other person (supporting person
psj ∈ P ). We use align ROI pooling to crop 3D person
feature from 3D feature map X . Then, the 3D person fea-
ture is converted to 1D person feature f t via temporal and
spatial pooling. We obtain the sequence of person fea-
ture set F p = [fp1 , f

p
2 , ..., f

p
n]. Different from using F p as

queries and keys in the conventional way, here we use new
person-context features as keys to embed context features
and position information. Specifically, for pairwise target
person pt and supporting person ps, we select a rectangle
box which encloses two person bounding boxes with a min-
imum area as our interested region. The four coordinates
of this new box, i.e., top-left and bottom-right coordinates
(x1, y1, x2, y2), are computed as:

x1 = min(xt1, x
s
1), y1 = min(yt1, y

s
1),

x2 = max(xt2, x
s
2), y2 = max(yt2, y

s
2),

(3)

where (xt1, y
t
1, x

t
2, y

t
2) and (xs1, y

s
1, x

s
2, y

s
2) are the coordi-

nates of target person and supporting person, respectively.
This box keeps the most critical context and their relative
position. We also use aligned ROI pooling following two
convolution layers with zero padding to crop our person-
context box from feature map X and project it to gener-
ate the key and value. The convolution operation benefits
retaining the spatial position and adding zero padding can
further strengthen this effect. Finally, a max pooling is em-
ployed to transform it as a 1D feature fpc. Because each
target person pt ∈ P need to compute the fpc with each
supporting person ps ∈ P , our person-context feature set
F pc is a n × n matrix but not a sequence. The F pc is de-
fined as:

F pc =


fpc11 fpc12 · · · fpc1n
fpc21 fpc22 · · · fpc2n

...
...

. . .
...

fpcn1 fpcn2 · · · fpcnn

 . (4)

The vanilla transformer deals with sequence key and
value. We cannot directly adopt it to compute our atten-
tion map. To enable attention map calculation between our
F p and F pc, we first repeat the person feature sequence F p

for n times along row dimension to produce a n× n matrix
F p∗ which is represented as:

F p∗ =


fp1 fp1 · · · fp1
fp2 fp2 · · · fp2
...

...
. . .

...
fpn fpn · · · fpn

 . (5)

Then, We compute the Hadamard product of F p∗ and F pc

to obtain attention map Aa:

Aa = σ(F p∗ � F pc)

= σ(


fp1 ∗ f

pc
11 fp1 ∗ f

pc
12 · · · fp1 ∗ f

pc
1n

fp2 ∗ f
pc
21 fp2 ∗ f

pc
22 · · · fp2 ∗ f

pc
2n

...
...

. . .
...

fpn ∗ f
pc
n1 fpn ∗ f

pc
n2 · · · fpn ∗ fpcnn

),
(6)

where � is Hadamard product, σ is a softmax function, and
∗ is the dot product of two vectors.

The person feature aggregation is performed as a
weighted summation of the person-context feature values
with the attention map as summation weights. Thus, we
compute the Hadamard product of attention map Aa and
value matrix, and sum the output along the row dimension
to generate the sequence of the aggregated features. Finally,
we apply a residual connection to sum the person features
and the aggregated features. Similar to [38], we also adopt
a dense serial structure to integrate our TransPC blocks.

Memory feature bank. Long-term memory features can
provide effective temporal information to assist recogniz-
ing actions. Inspired by the Long-term Feature Bank (LFB)
proposed in [46], we build a memory feature bank to store
both past and future person features for the long-term tem-
poral interaction capture. During training, we store the per-
son features according to the ground truth bounding boxes.
During inference, we use the bounding boxes provided by
our detection branch. We insert our memory feature bank
after our TransPC module.

4. Experiments on AVA
The Atomic Visual Actions (AVA) [15] dataset is col-

lected for spatio-temporal action detection. In this dataset,
each person on keyframes is annotated with a bounding
box and corresponding action labels at 1 FPS. There are
80 atomic action categories including 14 pose categories
and 66 interaction categries. This dataset contains 430 15-
minute videos splitting into 235 training videos, 64 valida-
tion videos, and 131 test videos.
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Since our method is designed for spatio-temporal action
detection, we adopt AVA dataset as the main benchmark to
conduct detailed ablation experiments. The results are eval-
uated with the official metric of frame level mean average
precision (mAP) at spatial IoU ≥ 0.5, and 60 categories
with at least 25 instances in validation and test splits are
used for evaluation following the conventional setup [15].

4.1. Implementation details

Backbone. With the modeling shift from CNNs to trans-
formers in the vision community, pure transformer architec-
tures have achieved top accuracy on the major video recog-
nition benchmarks [3, 1, 25, 9, 52, 30]. In this work, we
adopt state-of-the-art Video Swin Transformer [25] as our
backbone. Its base version (Swin-B) is selected, which
consists of 4 stages, each containing 2, 2, 18, and 2 Swin
Transformer Blocks. The original Swin-B performs 32×
spatial downsampling for the input videos. To maintain a
larger spatial resolution of feature map X , we remove the
last stage with the last patch merging layer to make the
downsampling rate to be 16. All other settings follow the
recipe in [25]. Our backbone is pre-trained on Kinetics-
600 [4] dataset for action recognition task. To the best of
our knowledge, this is the first work to explore the perfor-
mance of transform-based backbone for this task. Besides
the transformer-based backbone, we also use the 3D CNN
backbone for fair comparison. We choose SlowFast [11]
network with ResNet-101 structure which is pre-trained on
Kinetics-700 dataset.

Training and inference. The inputs of our network are
16 RGB frames, uniformly sampled from a 32-frame raw
clip centered on a keyframe. All the video clips are scaled
such that the shorter side becomes 256 and the longer side
becomes 464, and then fed into backbone network initial-
ized from Kinetics pre-trained weights. Random flipping is
used during training. We train our network using the SGD
optimizer with batch size 16. We train for 110k iterations
with a base learning rate of 0.001, which is then decreased
by a factor of 10 at 70k and 90k iteration. A linear warm-
up scheduler [14] is applied for the first 2k iterations. On
AVA dataset, pose categories are mutually exclusive and in-
teraction categories are not, so we use cross-entropy loss
function for pose categories classification and binary cross-
entropy loss function for interaction categories. To alleviate
the deficiency of training data for person detector, we first
use the data with “person” labels from MSCOCO [24] to
pre-train the detection branch. Since the data in MSCOCO
are static images, the same images are stacked repeatedly
to form video clips. During training, the person bounding
boxes produced by RPN with IoU greater than 0.8 predicted
will be fed into our action branch for action recognition.
During inference, predicted person bounding boxes with a
confidence score larger than 0.8 are used. In our memory

feature bank, both 30 past and future clips are used.

4.2. Ablation study

To verify the effectiveness of our method, we conduct
ablation experiments on the validation set of AVA v2.2. The
backbone we used is the modified Swin-B (more detail in
Section 4.1).

Decoupled vs. coupled. In our method, we use a decou-
pled structure to decouple detection representation and ac-
tion representation. Further, we experiment with decoupled
structure and coupled structure. The results are shown in
Table 1. The coupled structure refers to the structure of
[13]. After the RPN module generates person proposals,
the detection branch integrates into the action branch. Both
bounding box regression loss and action classification loss
are upon the person features produced by the action branch.
Our decoupled structure outperforms the coupled structure
with a large margin, which demonstrates the effectiveness
of our method.

Detection branch. Our detection branch is responsible
for generating person bounding boxes, which is the basis
of our framework. We evaluate our variants in our detection
branch by ablating its temporal aggregation module (TAM)
and MSCOCO data pre-training in Table 2. Baseline repre-
sents the model containing a basic faster-rcnn structure and
a completed action branch. We can see that the temporal
aggregation module can improve the results, which demon-
strates that the temporal information is effective for our de-
tection task but has been missed in previous methods. With
more complicated video object detection methods [16, 7]
having been developed, we believe that the performance of
detection branch still has lots of potential. One of the advan-
tages of two-stage methods is that the off-the-shelf person
detector can benefit from large-scale datasets in the person
detection community. Similarly, in our one-stage method,
extra pre-training data like MSCOCO dataset can also be
employed, which brings in a significant gain.

The effectiveness of TransPC. Experiments in Table 3
verify the effectiveness of our TransPC and compare
TransPC with its counterpart method. In this table, Base-
line represents the model without TransPC module, and
Person-person represents the general person-person interac-
tion module (similar to [38]) without considering the con-
text information. Our TransPC can largely enhance the
mAP of Baseline because the interaction relationships play
a core role in this task. Our TransPC is also much better
than the general person-person interaction method, demon-
strating that the interaction relationship benefits from con-
text information.

To further verify the effectiveness of our TransPC, we vi-
sualize attention weights from our TransPC and the general
person-person interaction module in Figure 4. The actors of
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Structure mAP

Coupled 26.16
Decoupled (ours) 28.82

Table 1: Performance evaluation on coupled structure and
decoupled structure.

Variants of model mAP

Baseline 27.34
Baseline + TAM 27.75

Baseline + TAM + MSCOCO 28.82

Table 2: Performance evaluation on different components
of detection branch.

Variants of model mAP

Baseline 26.50
Baseline + TransPC 28.82

Baseline + Person-person 28.29

Table 3: Performance evaluation on the effectiveness of
TransPC.

Number of TransPC blocks mAP

1 28.35
2 28.68
3 28.82
4 28.84

Table 4: Performance evaluation on different number of
TransPC blocks.

interest are in the red boxes and the other actors are in the
green boxes. In these multiple people cases, the general in-
teraction module cannot distinguish the importance of other
actors due to the lack of context and position information
during building person-person relationship. In contrast, our
TransPC can pay more attention to the actual supporting ac-
tors.

Number of TransPC blocks. We adopt dense serial
structure [38] to arrange our TransPC blocks. The effects
of different numbers of TransPC blocks are shown in Ta-
ble 4. Considering the trade-off between accuracy and time
consumption, we use three TransPC blocks in our method.

Our TransPC vs. other schemes. Furthermore, we ex-
plore different structures which could be an alternative to
our TransPC, including: (i) directly use Eq. 4 to generate
attention map, (ii) use general person sequence feature as
key to produce attention map and add the result of Eq. 4.
Note that, only one block is used here for simplicity. Table 5
compares all these variants, with our choice outperforming
other two variations.

Scheme mAP

Scheme i 28.01
Scheme ii 28.10
TransPC 28.35

Table 5: Comparison of our TransPC with other schemes.

Pipeline Model Modalities Input mAP

2-stage

ACRN [36] V+F 32× 2 17.4
SlowFast [11] V 32× 2 27.3

LFB [46] V 32× 2 27.7
CA-RCNN [48] V 32× 2 28.8

AIA [38] V 32× 2 31.2
ACAR-Net [26] V 64× 2 30.0

1-stage

YOWO [20] V 16× 1 19.2
Jiang et al. [18] V+F 20× - 21.7

VAT [13] V 64× - 25.0
Ours (SlowFast) V 16× 2 27.5
Ours (Swin-B) V 16× 2 27.7

Table 6: Comparison on AVA v2.1. V and F refer to visual
frames and optical flow respectively. The input is shown as
the frame number and corresponding sample rate.

4.3. Comparison with state of the art

We compare our results with existing state-of-the-art
one-stage and two-stage methods on the validation set of
both AVA v2.1 (Table 6) and v2.2 (Table 7). For fair com-
parison, our experiments only use a single model and a
single scale for testing. We provide results with Slow-
Fast backbone and popular transformer-based Video Swin
Transformer backbone. On both AVA v2.1 and v2.2, our
results outperform all the results of one-stage methods by a
large margin and are superior or comparable with two-stage
methods, which indicates our method is effective. Com-
paring two backbones, Swin-B achieves a slightly better
performance than SlowFast, which demonstrates that the
transformer-based backbone is effective in this task. The
per category results for our method are shown in our sup-
plementary material.

As a one-stage method, another advantage of our method
is the inference speed. We evaluate the average inference
time of a single video clip on a typical two-stage method
AIA [38] and ours in Table 8. Both use SlowFast backbone
with ResNet-101 structure. Our inference time is only 64%
of that of AIA, showing its efficiency.

5. Experiments on UCF101-24
Dataset. UCF101-24 is a subset of UCF101 [35] consist-
ing of 3207 videos with spatio-temporal annotations on 24
action categories. We conduct experiments on the first split
of this dataset following previous methods. We use the cor-
rected annotations provided in [34].
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Pipeline Model Modalities Input mAP

2-stage
SlowFast [11] V 32× 2 29.0

AIA [38] V 32× 2 32.3
ACAR-Net [26] V 64× 2 33.3

1-stage
YOWO [20] V 16× 1 20.2

Ours (SlowFast) V 16× 2 28.5
Ours (Swin-B) V 16× 2 28.8

Table 7: Comparison on AVA v2.2. V and F refer to visual
frames and optical flow respectively. The input is shown as
the frame number and corresponding sample rate.

Method Detector Action Recognition Total time

AIA [38] 0.106 0.156 0.262

Ours - - 0.168

Table 8: Comparison of the average inference time of each
video clip (s/video clip) between two-stage method AIA
and ours.

Figure 4: We visualize attention weights from our TransPC
and the general person-person interaction module. The ac-
tors of interest are in the red boxes and the other actors are
in the green boxes. In each image, we remove the weight of
actor of interest and re-normalize the rest attention weights
to 1.

Implementation Details. Following [26], we use Slow-
Fast with ResNet-50 structure as our backbone. The tem-
poral sampling for the slow pathway is 8 × 4, and the 32
frames as input are fed into the fast pathway. We pre-train
it on the Kinetics-400 dataset. Other hyper-parameters are
similar to the experiments on AVA.

Pipeline Model Modalities mAP

2-stage

T-CNN [17] V 67.3
ACT [19] V 69.5
STEP [51] V+F 75.0

I3D [4] V+F 76.3
Zhang et al. [53] V 77.9

S3D-G [49] V+F 78.8
AIA [38] V 76.8

1-stage
YOWO [20] V 70.5

Ours V 74.8

Table 9: Comparison on UCF101-24 split 1. V and F refer
to visual frames and optical flow respectively. The metric
we used is frame-mAP.

Quantitative results. Table 9 shows the result of
UCF101-24 test set in frame-mAP with 0.5 IoU thresh-
old. Our method surpasses another one-stage method with a
considerable margin and is also competitive with two-stage
methods. This outstanding performance illustrate the effec-
tiveness and generality of our method again. We argue that
UCF101-24 is not very suitable for most recent methods,
including ours, in this task because the categories in this
dataset are not interactive. Thus, many interaction relation-
ships exploited by these methods are not very beneficial.
Moreover, the quality of frames in this dataset is lower than
AVA and MSCOCO, which adversely influences our detec-
tion results.

6. Limitations
There are several limitations of this work. First, the pro-

posed DOAD method is only evaluated on the commonly
used AVA and UCF101-24 datasets. More evaluations on
other datasets will be better. Second, limited by the more
GPU memory consumption of our key matrix, our method
is difficult to be applied in crowded scenes.

7. Conclusion
In this paper, we propose a new effective and efficient

one-stage sptio-temporal action detection network, DOAD.
We decouple the person detection and action recognition
into two branches to alleviate the issue of different op-
timal context supports. Moreover, different from inde-
pendently utilizing kinds of context, we present a novel
TransPC module to integrate the person and context fea-
tures to capture the interaction relationships. Our method
significantly outperforms all the existing one-stage meth-
ods and is superior or comparable with two-stage meth-
ods on challenging benchmarks. Our method provides a
new and strong one-stage framework which still has tremen-
dous potential. In the future, we plan to further study how
to improve the performance of person detection and cap-
ture more fine-grained detail features for action recogni-
tion.
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