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Abstract

In this paper, we show that transferring knowledge from
other domains of video understanding combined with large-
scale learning can improve robustness of Video Object Seg-
mentation (VOS) under complex circumstances. Namely, we
focus on integrating scene global motion knowledge to im-
prove large-scale semi-supervised Video Object Segmenta-
tion. Prior works on VOS mostly rely on direct compari-
son of semantic and contextual features to perform dense
matching between current and past frames, passing over
actual motion structure. On the other hand, Optical Flow
Estimation task aims to approximate the scene motion field,
exposing global motion patterns which are typically undis-
coverable during all pairs similarity search. We present
WarpFormer, an architecture for semi-supervised Video Ob-
ject Segmentation that exploits existing knowledge in mo-
tion understanding to conduct smoother propagation and
more accurate matching. Our framework employs a generic
pretrained Optical Flow Estimation network whose predic-
tion is used to warp both past frames and instance segmen-
tation masks to the current frame domain. Consequently,
warped segmentation masks are refined and fused together
aiming to inpaint occluded regions and eliminate artifacts
caused by flow field imperfects. Additionally, we employ
novel large-scale MOSE 2023 dataset to train model on var-
ious complex scenarios. Our method demonstrates strong
performance on DAVIS 2016/2017 validation (93.0% and
85.9%), DAVIS 2017 test-dev (80.6%) and YouTube-VOS
2019 validation (83.8%) that is competitive with alternative
state-of-the-art methods while using much simpler memory
mechanism and instance understanding logic.

1. Introduction
Video Object Segmentation (VOS) is a fundamental task

in Video Understanding, aiming to segment multiple ob-

jects through an entire video sequence. In this work, we
address semi-supervised video object segmentation, i.e. the
scenario where only the first frame annotations are given,
or the annotations are given only for the frames where the
corresponding object appears in the video for the first time.

The key feature of Video Object Segmentation is the
complete agnosticity of the actual class information for con-
sidered objects. This allows a very broad range of possible
applications, including but not limited to autonomous driv-
ing, sports and video editing.

Prior works achieved significant success in VOS, focus-
ing on making solution highly generalizable and robust un-
der different complex scenarios while maintaining real-time
efficiency and low GPU memory footprint. AOT [38] pro-
posed to map objects to a pre-defined set of feature vec-
tors making possible simultaneous processing of many in-
stances. While most works use feature memory to cor-
rectly treat occlusions and eliminate errors during propaga-
tion, XMem [7] points out the high memory consumption
of such an approach and designs efficient unified multi-type
memory inspired by Atkinson-Shiffrin model. DeAOT [39]
notes the poor performance of existing methods when the
objects drastically change in scale and appearance during
the video, presenting a novel feature decoupling block to
treat such cases more robustly. ISVOS [33] argues that in-
stance understanding matters in VOS and employ an in-
stance segmentation branch based on state-of-the-art in-
stance segmentation architectures increasing the VOS per-
formance for video clips with a high number of similar ob-
jects.

Existing approaches rely on dense attention-based fea-
ture matching [30] to propagate segmentation masks
through the video sequence. Even though this achieves re-
markably high scores on existing benchmarks, a single all-
pairs correlation search is not capable of capturing global
motion context and uncovering relevant motion patterns. In
this work, we argue that motion understanding matters in
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VOS. Inspired by ISVOS proposing to reuse existing in-
stance segmentation architectures to improve instance un-
derstanding for VOS domain, we propose to reuse existing
optical flow estimation architectures to propagate instance
information between video frames.

We present WarpFormer, an VOS architecture that ben-
efits from global motion structure knowledge. We adopt
a generic VOS architecture for spatial-temporal matching
similar to [38] and replace short-term memory mechanism
with optical flow warp, for which we employ a flow es-
timation network. The propagation process is tackled by
optical flow warp while the spatial windowed attention is
used to refine warped segmentation mask and inpaint occlu-
sions. Finally, refined mask is fused with long-term mem-
ory matches and passed to decoder.

We conduct additional training of our model on large-
scale MOSE 2023 [8] dataset to achieve robustness un-
der complex VOS scenarios. We evaluate our method on
DAVIS 2016 & 2017 and YouTube-VOS 2019 benchmarks.
Conducted experiments demonstrate that both exploiting
global motion structure and large-scale training improve
evaluation scores and qualitative results.

2. Related Work

2.1. Optical Flow Estimation

Optical flow is a critical component of our work. Its
main idea is to estimate the shift of all points from one
frame to another. Early approaches in that area were fo-
cused on optimization problems, maximizing visual simi-
larity with regularization terms [2, 3, 11, 27]. However, the
advent of deep neural networks, specifically convolutional
networks, propelled the field forward. Pioneering models
like FlowNet [9] and FlowNet2.0 [14] set the stage for more
advanced methods, such as SpyNet [24], PWC-Net [28],
and LiteFlowNet [13] which adopted coarse-to-fine and it-
erative estimation strategies.

Despite their advancements, these models struggled to
capture small, fast-moving objects during the coarse stage.
The RAFT model [29] introduced significant improve-
ments, a novel architecture employing a coarse-and-fine
(multi-scale search window per iteration), and a recurrent
approach to optical flow estimation. Subsequent works
based on RAFT, such as GMA [16] and DEQ-Flow [1],
aimed to improve computational efficiency or enhance flow
accuracy.

A recent example of a state-of-the-art recurrent approach
is FlowFormer [12]—an extension of the RAFT architec-
ture. It introduces a transformer-based method that aggre-
gates cost volume in a latent space. This approach builds
on the work of Perceiver IO [15], which was the first to
incorporate transformers [30] for establishing long-range
relationships in optical flow, achieving state-of-the-art per-

formance. FlowFormer retains the cost volume as a com-
pact similarity representation and pushes the search space to
the extreme by globally aggregating similarity information
using a transformer architecture. Another state-of-the-art
approach is GMFlow [35], which formulates optical flow
as a global matching problem and employs a customized
Transformer for feature enhancement, global feature match-
ing, and flow propagation. This approach outperforms the
RAFT on the Sintel benchmark while offering greater effi-
ciency [35].

2.2. Video Object Segmentation

One popular method that has achieved state-of-the-art
performance in VOS is AOT (Associating Objects with
Transformers for VOS) [38]. AOT exploits the Long
Short-Term Transformer (LSTT) block that includes self-
attention, short-term attention, and long-term attention to
extract features from input images. Long-term attention
is responsible for aggregating information from long-term
memory frames, while short-term attention propagates in-
formation from the previous frame. The outputs of long-
term and short-term attention blocks are combined in the
feed-forward network, which passes information to the de-
coder that returns mask estimation for the current frame.
AOT also uses a joint architecture that includes an attention
map for the attention blocks and a 4D correlation volume,
as in the RAFT [29] architecture, to calculate the same spa-
tial correlation between frames. The short-term attention
in AOT and 4D correlation volume in RAFT calculate the
same correlation between features from consecutive frames,
which can be combined in the shared part of the joint archi-
tecture as a unified motion representation.

DeAOT [39] (Decoupling Features in Hierarchical Prop-
agation for Video Object Segmentation) is a recent method
for semi-supervised video object segmentation that builds
on the hierarchical propagation introduced in the AOT ap-
proach. DeAOT decouples the hierarchical propagation of
object-agnostic and object-specific embeddings into two in-
dependent branches to prevent the loss of object-agnostic
visual information in deep propagation layers. To compen-
sate for the additional computation from dual-branch prop-
agation, DeAOT introduces a Gated Propagation Module
that is carefully designed with single-head attention. Exper-
imental results show that DeAOT outperforms AOT in both
accuracy and efficiency, achieving new state-of-the-art per-
formance on several benchmarks, including YouTube-VOS,
DAVIS 2016 and DAVIS 2017.

2.3. Optical Flow-based Video Segmentaiton

Optical flow-based Video Object Segmentation has pro-
gressed substantially over time. One of the early works in
this domain, MaskTrack [17], combined object segmenta-
tion and tracking by employing optical flow for object mask
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Figure 1. The architecture of a WarpFormer. Best viewed in color.

propagation and refining the results using a convolutional
neural network (CNN). Building on this foundation, OS-
VOS [4] further enhanced segmentation performance.

More advanced methods like PDB [40] and RVOS [31]
emerged, employing multi-stage frameworks and recurrent
neural networks, respectively, while still leveraging optical
flow. The Regional Memory Network (RMNet) [34] re-
cently introduced a local-to-local matching approach that
minimizes mismatches with similar objects using regional
memory embedding and optical flow-based tracking.

We build on these foundational works in our proposed
method, utilizing optical flow for short-term frames and at-
tention mechanism for long-term frames to enhance the seg-
mentation process.

3. Method
3.1. Background

Video object segmentation is a challenging task that of-
ten involves tracking multiple objects of interest in a sin-
gle video. Previous approaches to this problem have fo-
cused on matching and propagating a single object, requir-
ing independent matching and propagation of each object
in multi-object scenarios [32]. This can result in increased
GPU usage and inference time, hindering the efficiency of
the overall pipeline.

To address this challenge, AOT proposed an identifica-
tion mechanism for embedding masks of any number into
the same high-dimensional space, enabling multi-object

scenario training and inference as efficient as single-object
ones [38]. This mechanism involves creating a predefined
set of M trainable vectors, known as the identity bank, and
picking a vector from this bank for each pixel corresponding
to a specific class. During training, the vector correspond-
ing to each class is randomly selected to ensure uniform
training of the identity bank. To add object-specific infor-
mation to the feature maps in our architecture, which are at
the 1

16 spatial size of the input video, we adopt a patch-wise
identity bank strategy similar to AOT [38]. This involves di-
viding the input mask into non-overlapping 16×16 patches,
matching each pixel in the patch with the corresponding
vector from the identity bank, and obtaining the final result
for the identity bank by summing the values for the pixels
inside the patch. This operation also encodes some geom-
etry inside the patch and can be implemented as a single
16× 16 convolution.

3.2. Warp Refinement Transformer

The straightforward approach for VOS uses optical flow
to propagate masks from the previous frame to the current
frame. However, occlusions and optical flow imperfections
can lead to errors in mask propagation, degrading the qual-
ity of the propagated mask with each frame. Additionally,
this approach cannot handle newly appeared parts of an ob-
ject. Our proposed method, WarpFormer, aims to refine the
estimated mask using semantic information, which is easier
to interpret after motion was decoupled. The overall archi-
tecture of WarpFormer is shown in Figure 1.
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Figure 2. Warpformer Modules. Best viewed in color.
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To achieve this, some previous frame Ik and mask Mk

is used as a reference point. Our method calculates optical
flow using a given Flow Estimator:

fk→t = FE(Ik, It)

To estimate the current frame mask, the following equation
is used:

Mwarp
k = Warp(Mk, fk→t)

The method then warps the previous frame Ik using the
same optical flow fk→t to obtain Iwarp

k . Next, the fea-
tures Xt and Xk are extracted from the current frame It
and Iwarp

k using a Feature Encoder and embedding Yk of
our mask Mwarp

k is formed from an identity bank. Simi-
larly, we create features Xm and identification embedding
Ym from the long-term memory frames Im with masks Mm.
The resulting information is fed into our Refinement Trans-
former Block, which outputs the refined mask M̂t. Finally,
the decoder upsamples the refined mask estimation to the
spatial dimensions of the current frame.

3.3. Refinemenet Transformer Block

Many recent cutting-edge VOS methods have utilized
the attention mechanism and have demonstrated promising
results. To define the attention mechanism formally, we
consider queries (Q), keys (K), and values (V ). The at-
tention operation can then be defined as follows:

Att(Q,K, V ) = Corr(Q,K)V = softmax
(QKT

√
C

)
V

where C is the number of channels.

In our method, we incorporate the identification embed-
ding into the attention operation for mask refinement as fol-
lows:

AttID(Q,K, V, ID) = Att(Q,K, V + ID)

Following the common transformer blocks, our Re-
finement Transformer Block (RTB) first employs a self-
attention layer on the features of the images to learn the as-
sociation between the targets within our frames (Figure 2a).
Our RTB, similarly to the AOT [38], is then divided into
two branches: long-term and short-term.

The long-term branch (Figure 2c) is responsible for ag-
gregating information from long-term (reference) memory
frames. It utilizes simple cross-attention, defined as:

CAtt(Xt, Xm, Ym) = AttID(XtWk, XmWk, XmWv, Ym),

where Xm and Ym are the features and masks embeddings
of the long-term memory frames. Besides, Wk and Wv are
trainable projections for matching and refinement, respec-
tively.

The short-term (sensory memory) branch (Figure 2b)
propagates information from the previous frames by taking
a look at only some neighboring patches to apply match-
ing. Since image changes between consecutive frames are
smooth and continuous, this approach is only more power-
ful as we convert our previous frames to the current frame
domain after warp. The short-term branch utilizes win-
dowed cross-attention:

WCAtt(Xt, Xl, Yl|p) = Catt(Xp
t , X

N(p)
l , Y

N(p)
l )

where Xl and Yl are the features and masks embeddings of
warped previous frames, Xp

t - feature of Xt at location p
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Table 1. The quantitative evaluation on multi-object benchmarks YouTube-VOS 2019 and DAVIS 2017. * denotes training on MOSE
2023. Bold denotes the best or three best results. FPS in brackets denotes the value measured not including optical flow estimation time.

YouTube-VOS 2019 Val DAVIS 2017 Val DAVIS 2017 Test

Methods Js Fs Ju Fu J&F J F J&F J F J&F FPS

AOT-T 79.6 83.8 73.7 81.8 79.7 77.4 82.3 79.9 68.3 75.7 72.0 51.4
DeAOT-T 81.2 85.6 76.4 84.7 82.0 77.7 83.3 80.5 70.0 77.3 73.7 63.5
WarpFormer-S 79.0 85.1 73.5 82.8 80.1 77.6 84.2 80.9 66.2 76.1 71.1 27.7 (37.0)

WarpFormer-S* 79.0 85.3 73.1 82.5 80.1 77.8 84.3 81.0 65.9 76.1 71.0 27.7 (37.0)

CFBI+ 81.7 86.2 77.1 85.2 82.6 80.1 85.7 82.9 74.4 81.6 78.0 3.4
RMNet 74.0 82.2 80.2 79.9 77.4 81.0 86.0 83.5 71.9 78.1 75.0 -
STCN 81.1 85.4 78.2 85.9 82.7 82.2 88.6 85.4 73.1 80.0 76.1 19.5
XMem 84.3 88.6 80.3 88.6 85.5 82.9 89.5 86.2 77.4 84.5 81.0 20.2
ISVOS 85.2 89.7 80.7 88.9 86.1 83.7 90.5 87.1 79.3 86.2 82.8 -
Swin-B AOT-L 84.0 88.8 78.4 86.7 84.5 82.4 88.4 85.4 77.3 85.1 81.2 12.1
Swin-B DeAOT-L 85.3 90.2 80.4 88.6 86.1 83.1 89.2 86.2 78.9 86.7 82.8 15.4
WarpFormer-L 83.2 88.9 78.1 84.9 83.8 81.1 88.9 85.0 76.4 84.9 80.6 10.0 (23.9)

WarpFormer-L* 83.3 89.1 78.0 85.0 83.8 82.4 89.3 85.9 76.3 84.9 80.6 10.0 (23.9)

and N(p) is a λ× λ spatial neighborhood centered at loca-
tion p, where λ is window size. We implement windowed
cross-attention by including a relative position bias B:

WCAtt(Q,K, V ) = softmax
(QKT

√
C

+B
)
V

Finally, the outputs of the long-term and short-term
branches are combined together in one more self-attention
layer.

4. Implementation Details
4.1. Network details

To study performance capabilities and contributions im-
pact we introduce two variants of network architecture.
Namely, WarpFormer-S (Small) is an efficient implemen-
tation of the proposed method, which adopts MobileNet-
V2 [25] as encoder backbone, only a single reference
frame is exploited for long-term memory. Alternatively,
WarpFormer-L (Large) is a large-scale implementation,
for which we adopt cutting edge transformer-based encoder
Swin-B [19]; following [38], we append every 2nd frame to
long-term memory bank for training and every 5th frame for
evaluation. For both architecture variants we use FPN de-
coder with Group Normalization [18]. We employ Global
Motion Aggregation (GMA) [16] as an optical flow esti-
mating network for both WarpFormer-S and WarpFormer-
L; however, we set the number of flow optimization updates
to 4 for small architecture and to 12 for a large.

Following [38], we set the number of identification vec-
tors M to 10 in order to align it with the maximum object

number in most of benchmarks. For encoders and patch-
wise identity bank, their final resolution is 1

16 as of an in-
put image and mask. For self-attention and cross-attention
blocks in Warp Refinement Transformer we use traditional
multi-head architecture [30] with Feed-Forward layer and
Layer Normalization. The embedding dimension is set to
256, the number of heads is 8 and the hidden dimension of
Feed-Forward layers is 1024. For windowed cross-attention
used to refine warped sensory memory, we employ original
implementation [19] with relative position bias and addi-
tionally equip learned relative positional embedding [26].
The window size is set to 15. We also apply fixed sine spa-
tial positional embedding to the self-attention following [5].

4.2. Training details

We train both architecture variants in two stages. On
the first stage, the model is trained for 40K optimization
steps, while the second stage takes 60K steps. During the
entire training process, we employ a mixture of DAVIS
2017 [4, 23] train and YouTube-VOS 2019 [36, 37] train
datasets in 5 : 1 proportion. Additionally, we study adopt-
ing MOSE 2023 [8] as additional training data, in which
case we apply DAVIS, YouTube-VOS and MOSE mixture
with proportion 5 : k : p where k + p = 1. Initial value
of kstart = 0.5 linearly decays during the training to a final
value kend = 0.25. More detailed description of datasets
is presented in Sec. 5.1. For both stages we use curricu-
lum sampling strategy [21]. Notably, ground truth mem-
ory masks are used for temporal-spatial matching during the
first stage, while second stage only implies an utilization of
the first reference mask providing better supervision for in-
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ference setup. Identity banks are frozen after the first stage
following [38].

We adopt AdamW optimizer [20] with a one-cycle learn-
ing rate schedule. Initial learning rate of lrstart = 3×10−4

declines to a final value of lrend = 2 × 10−5 in polyno-
mial manner with 0.9 decay factor. We also use learning
rate warm-up [10] for 3000 steps. In order to prevent over-
fitting, we set the learning rate for the encoder to 0.1 of the
overall learning rate. Following [7], we use bootstrapped
cross entropy and dice losses with equal weighting. For
both stages, we use a batch size of 8. WarpFormer-L model
training is distributed across four RTX 3090 GPUs, while
for WarpFromer-S we use only two RTX 3090 GPUs. The
entire training process takes around 40 hours for the large
model and 35 hours for the small one.

4.3. Video augmentations

We employ a variety of video augmentations to prevent
overfitting on the seen data. Specifically, we apply random
scaling followed by object-balanced random cropping to the
sampled sequence. Additionally, color jitter, random Gaus-
sian blur and random grey-scaling are applied to RGB im-
ages.

Dynamic merge augmentation. In order to better adapt
our model to a multi-object scenario, we adopt dynamic
merging augmentation. To enrich generated sequence with
more objects, we generate another sequence of the same
length from a different video clip and overlay it on the top
of the first one. In details, the merging process is as fol-
lows: for pair of corresponding frames from the first and
second sequence the resulting frame at pixel (x, y), denoted
by Imerge(x, y), is set to I1(x, y) if no objects from the sec-
ond image are present at that pixel, and I2(x, y) otherwise.

For both training stages we employ the full set of aug-
mentations, for the DAVIS and YouTube-VOS dynamic
merge augmentation is applied with probability 0.4, for
MOSE merge augmentation is not used since it already fea-
tures complex multi-object scenes.

5. Results
5.1. Metrics and Dataset

In order to evaluate our models we use traditional VOS
metrics as proposed in [23].

J score for region similarity evaluation. J score (Jac-
card index) is defined as the intersection-over-union (IoU)
rate of the predicted and ground-truth segmentation mask.
Given a predicted mask M̂ and ground-truth mask G:

J =
|M̂ ∩G|
|M̂ ∪G|

F score for contour accuracy evaluation. To estimate
contour matching accuracy, one finds the contour-based pre-

Table 2. The quantitative evaluation on DAVIS 2016. Bold de-
notes the best result.

Methods J F J&F

AOT-T 86.1 87.4 86.8
DeAOT-T 87.8 89.9 88.9
WarpFormer-S 87.2 90.5 88.9

RMNet 88.9 88.7 88.8
STCN 90.8 92.5 91.6
XMem 90.4 92.7 91.5
ISVOS 91.5 93.7 92.6
Swin-B AOT-L 90.7 93.3 92.0
Swin-B DeAOT-L 91.1 94.7 92.9
WarpFormer-L 90.7 95.3 93.0

cision Pc and recall Rc between the boundaries of the pre-
dicted and ground-truth mask. Subsequently, one computes
a F1-score as a simple harmonic mean:

F =
2PcRc

Pc +Rc

Scores are averaged on whole video clip separately for
each object. J&F score is the average of J score and F
score presenting a good trade-off between boundary quality
and region matching.

DAVIS 2016 [22] is a single-object VOS benchmark
containing 20 video sequences. Even though single-object
scenario is significantly less complex then the multi-object
setup, the benchmark features various challenging scenar-
ios including heavy occlusions, objects changing in shape,
scale and appearance, fast movements and unfavorable en-
vironment settings.

DAVIS 2017 [23] benchmark complements DAVIS 2016
with multi-object video clips. It contains 205 different ob-
jects and features a 16.1% disappearance rate [8]. Bench-
mark presents train, validation and test-dev splits containing
60, 30 and 30 sequences respectively. While validation split
doesn’t introduce a high amount of unseen during training
classes, test-dev is much more challenging featuring com-
plex circumstances in most of videos.

We evaluate our method on DAVIS 2016 & 2017 using
the default 480p 24FPS videos, not benefiting from full-
resolution details. Also we do not apply any test-time aug-
mentations like multi-scale inference [6].

YouTube-VOS [36, 37] benchmark introduces a large-
scale VOS dataset covering a wide variety of in-the-wild
videos. YouTube-VOS 2019 training and validation splits
contain 3471, 474 video sequences respectively. Dataset
features 91 object categories (7755 objects in total), 26 of
which are not present in training split. The explicit annota-
tion of unseen classes is available and the official evaluation
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Query Frame Ground Truth RMNet DeAOT XMem Ours

Figure 3. Qualitative comparison between WarpFormer and several state-of-the-art VOS methods. Best viewed in zoom. We don’t
include ISVOS [33] since there is no source code available. For all methods we used DAVIS2017 val sequences in 480p.

Table 3. The quantitative evaluation on MOSE 2023. * denotes
training on MOSE 2023. Bold denotes the best result.

Methods J F J&F

STCN 46.6 55.0 50.8
RDE 44.6 52.9 48.8
SWEM 46.8 54.9 50.9
WarpFormer-S* 47.7 55.6 51.7

XMem 53.3 62.0 57.6
Swin-B AOT-L 53.1 61.3 57.2
Swin-B DeAOT-L 55.1 63.8 59.4
WarpFormer-L* 55.1 64.9 60.0

tool additionally computes separate metrics for seen and un-
seen classes to benchmark the generalization power of the
approaches. The disappearance rate is only 13% [8], so,
in general, YouTube-VOS implies less challenging circum-
stances compared to DAVIS.

While evaluation our method on YouTube-VOS 2019
validation split we exploit all intermediate frames of the
videos to benefit from smooth motion implying more ac-
curate optical flow. Even though we use 24 FPS sequences
during evaluation, 6FPS version is used during training and
for metric computation.

MOSE 2023 [8] (CoMplex video Object SEgmentation)
is a novel VOS benchmark featuring extreme scenarios of
the video sequence which are not handled good enough
by existing VOS methods. The main features of intro-
duced videos include: large number of crowded and similar
objects, heavy occlusions by similar looking objects, ex-

tremely small-scale objects and reference masks covering
only a small region of the whole object. MOSE contains
1507 training and 311 validation video clips with 36 object
categories (5200 objects in total). MOSE features overall
disappearance rate of 28.8% which is significantly higher
compared to classic VOS benchmarks.

5.2. Comparison with State-of-the-art Methods

Our method doesn’t adopt complex memory model used
in existing methods (XMem [7]), neither it features special
architecture injecting instance segmentation logic to benefit
from better instance-specific understanding (ISVOS [33]).
Also both our small and large models feature only a single
transformer block for spatial-temporal matching while ex-
isting methods (AOT [38], DeAOT [39]) use up to three
blocks. Instead, we incorporate additional training data
from MOSE 2023, allowing WarpFormer to tackle scenar-
ios with heavy occlusions, large number of overlapping sim-
ilar objects or objects dramatically changing in appearance
and scale.

Quantitative comparison. The comparison of Warp-
Former with other state-of-the-art methods on DAVIS 2017
validation, DAVIS 2017 test-dev and Youtube-VOS 2019
validation validation may be found in Table 1. The quanti-
tative comparison with relevant existing methods on DAVIS
2016 validation are listed in Table 2.

Without training on MOSE 2023, our Swin-B
WarpFormer-L achieves state-of-the-art performance
on DAVIS 2016 single-object benchmark scoring 93.0%
J&F . Being evaluated on multi-object benchmarks, model
demonstrates highly competitive performance wrapping
up with top-ranked scores i.e. 85.0% and 80.6% J&F
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on DAVIS 2017 validation and test-dev splits and 83.8%
J&F on Youtube-VOS 2019 validation.

Trained only on Youtube-VOS and DAVIS, our
MobileNet-V2 WarpFormer-S outperforms most of its com-
petitors on both single-object and multi-object benchmarks.
Namely, it scores 88.9%, 81.0% and 71.0% J&F on
DAVIS 2016 validation and DAVIS 2017 validation &
test-dev. YouTube-VOS 2019 validation score is 80.1%
J&F . We believe that strong and balanced performance
under different complex scenarios, simple architecture and
lightweight encoder along with agnosticity of actual flow
estimation method make WarpFormer-S ideal candidate for
usage in various industrial applications.

Qualitative comparison. The qualitative comparison of
state-of-the-art approaches and our method is visualized in
Fig. 3. Existing methods fail to reconstruct fine-grained
details under the rapid motion circumstances. In contrast,
our method benefits from global motion field and is much
more robust to motion blur. On the other hand, adopting
MOSE as additional training data gives enough supervision
to successfully handle overlapping similar objects without
having special architecture design, as instance segmentation
branch [33] or feature decoupling module [39].

5.3. Training with MOSE 2023

Adopting MOSE 2023 as training data gives a signifi-
cant boost on MOSE 2023 validation split so that both our
WarpFormer-S and WarpFormer-L models achieve state-of-
the-art performance among competitors, scoring 51.7% and
60.0% J&F respectively. One the other hand, perfor-
mance on the classic benchmarks experience an insignifi-
cant boost, likely because they doesn’t feature any similar
extreme scenarios. However, they focus on circumstances
with a large number of object classes and classes unseen
during training, along with a wide variety of challenging en-
vironments, while MOSE 2023 lacks such flexibility. Wrap-
ping up, even minor improvements on classic benchmarks
while training with MOSE 2023 indicate the high robust-
ness and performance capacity of the proposed method. The
quantitative comparison with other methods on MOSE 2023
validation are listed in Table 3.

5.4. Optical Flow benchmark

We benchmark different optical flow estimation meth-
ods during evaluation on DAVIS 2017. As our architec-
ture is completely agnostic to the actual implementation of
the flow estimator, we test various approaches in terms of
performance / resource requirements trade-off. For RAFT-
based models [12, 16, 29], we also try various numbers of
iterative flow updates. To demonstrate the impact of flow-
warped windowed attention refinement, we also include
”zero-flow”, which implies identity transformation; in this
case, our sensory memory processing degenerates to simple

windowed attention similar to [38]. The quantitative com-
parison may be found in Table 4.

The results indicate that our model is indeed optical flow
agnostic, and its performance is directly proportional to the
quality of the flow. Additionally, for iterative-based optical
flow approaches, we observed that a smaller number of it-
erations was sufficient to achieve fairly good results. This
may be attributed to the model’s ability to already capture
the global motion trend. However, the accuracy of ”zero-
flow” deteriorated, as our network was trained solely for
refinement, rather than direct matching.

Table 4. Optical Flow estimator benchmark. Subscript denotes
the number of flow optimization iterations.

Methods J&F #param. FPS

MobileNet-V2

Zero-Flow 76.1 7.7M 57.8
RAFT-S4 80.5 8.7M 34.7
RAFT4 80.7 13M 33.6
RAFT12 80.7 13M 18.4
GMA1 80.2 13.6M 37.0
GMA4 80.8 13.6M 27.7
GMA12 81.0 13.6M 12.6
GMA32 80.8 13.6M 6.1
FlowFormer 80.7 23.9M 3.9

Swin-B

Zero-Flow 80.7 64.9M 32.2
GMA1 85.0 70.8M 23.9
GMA4 85.7 70.8M 15.2
GMA12 85.9 70.8M 10.0
FlowFormer 85.9 81.1M 3.6

6. Conclusion
This paper proposes to reuse existing motion understand-

ing knowledge by adopting optical flow estimation net-
work to support a generic VOS architecture. To integrate
global motion structure we replace propagation with optical
flow warping and introduce Warp Refinement Transformer
block, which aims to inpaint occlusions and fuse warped
segmentation mask with long-term memory information.
Experimental results show that our method demonstrates
strong performance and generalization capabilities. We be-
lieve that combining WarpFormer with complex memory
mechanisms or specific architecture blocks for instance un-
derstanding may further boost it effectivness.
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[3] André Bruhn, Joachim Weickert, and Christoph Schnörr. Lu-
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