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Abstract

This paper focuses on leveraging Human Object Interac-
tion (HOI) information to improve temporal action segmen-
tation under timestamp supervision, where only one frame
is annotated for each action segment. This information
is obtained from an off-the-shelf pre-trained HOI detector,
that requires no additional HOI-related annotations in our
experimental datasets. Our approach generates pseudo la-
bels by expanding the annotated timestamps into intervals
and allows the system to exploit the spatio-temporal con-
tinuity of human interaction with an object to segment the
video. We also propose the (3+1)Real-time Cooking (ReC)1

dataset as a realistic collection of videos from 30 partic-
ipants cooking 15 breakfast items. Our dataset has three
main properties: 1) to our knowledge, the first to offer syn-
chronized third and first person videos, 2) it incorporates di-
verse actions and tasks, and 3) it consists of high resolution
frames to detect fine-grained information. In our experi-
ments we benchmark state-of-the-art segmentation methods
under different levels of supervision on our dataset. We also
quantitatively show the advantages of using HOI informa-
tion, as our framework improves its baseline segmentation
method on several challenging datasets with varying view-
points, providing improvements of up to 10.9% and 5.3% in
F1 score and frame-wise accuracy respectively.

1. Introduction
Action segmentation is the task of temporally segment-

ing untrimmed videos and producing an action label for ev-
ery frame [9, 20, 23, 44]. Fully supervised action segmenta-
tion methods require as training data the start and end frame
of each action in each training video. However, manually
annotating these action boundaries is time-consuming and
simply not scalable to large datasets.

To alleviate the manual annotation bottleneck, weakly

*These authors contributed equally to this work
1https://github.com/saifsayed/rec-dataset

Figure 1. The continuity of human object interaction carries im-
portant information about the continuity of an action. The blue
bounding boxes in the video indicate the spatial locations of ob-
jects that the human is interacting with. In timestamp supervision
only one arbitrary frame per action segment is known (indicated by
vertical bars in the segmented video), but the action label of that
frame can be propagated to neighboring frames based on patterns
of human-object interaction around that frame.

supervised action segmentation approaches [4, 8, 15, 21, 22,
25, 35, 40] utilize the ordered sequence of action labels
present in the video, without specifying the start and end
frames of each action. Similarly [11, 26, 36] use action
sets to segment the video temporally. While these methods
have significantly lighter annotation requirements, they at-
tain much lower accuracy than their fully supervised coun-
terparts. This gap in accuracy has led to an alternative type
of supervision called time-stamp supervision [31] where, in
addition to the ordered sequence of actions, the training data
also contains a single frame number for each action, thus
placing significant constraints on when each activity may
be happening.

In this paper, we focus on timestamp supervision, given
its promising combination of lighter annotation require-
ments and accuracy that is closer to that of fully-supervised
methods. Within that context, we propose extracting and us-
ing human object interaction information to improve accu-
racy. Our approach extends the supervisory signal of single-
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frame timestamps to intervals around those timestamps, by
identifying neighboring frames where human object inter-
action occurs continuously, and labeling such frames with
the same action. Figure 1 illustrates this idea using an ex-
ample. In that figure, for the action of add pepper in a video,
the human takes the container, adds the pepper and puts it
back. Detecting the time interval of interaction between the
human and the pepper container allows us to propagate the
add pepper action label from the single frame included in
the training data to all frames in that interval.

As another contribution of this paper, we introduce and
will publicly release the (3+1)Real-time Cooking (ReC)
dataset, which consists of synchronized egocentric (1ReC)
and three third person (3ReC) view-points. The (3+1)ReC
dataset is a 109 hr collection of 1799 diverse videos, where
30 participants prepare 15 breakfast foods and drinks. We
refer to these drinks and foods as dish. Our proposed dataset
is an effort to create a benchmark to study human object in-
teraction more effectively in instructional videos, and has
three main properties: 1) It includes high quality videos
with a resolution of 1920×1080. 2) To the best of our
knowledge, it is the first public dataset to offer synchro-
nized third person and first person view-points. 3) It incor-
porates 102 types of actions that are diverse in their motion,
appearance, interaction with objects, and duration. In order
to encourage further studies on our dataset, we benchmark
segmentation results of state-of-the-art (SOTA) for each of
weak, full and time-stamp supervision levels. The main
contributions of the paper are as follows:

1) A key novelty is the idea of using HOI information
to improve action segmentation accuracy. Furthermore, we
show that in practice this idea does not require any extra
training data for new action recognition datasets. The pro-
posed framework demonstrates the feasibility and benefits
of using HOI information in action segmentation.

2) We propose, and benchmark the (3+1)ReC dataset as
the first instructional video dataset with synchronized third
person and egocentric views. As an advantage, our dataset
can be used to study the effect of human object interaction
by providing high quality videos and a diverse set of actions.

3) The proposed framework outperforms its baseline ac-
tion segmentation method using timestamped supervision
in four out of five following datasets: 1ReC, 3ReC, 50sal-
ads [41], MPII Cooking 2 [37], and GTEA [10]. The system
can be applied to varying environments and viewpoints.

In principle, our idea of using HOI information requires
additional, HOI-specific training data in order to train an
HOI detector. In practice, we have used the same pre-
trained off-the-shelf HOI detector in all our experimental
datasets. Thus, these extra HOI-specific annotations can be
treated as a one-off cost (that has already been paid if one
uses an off-the-shelf HOI detector), as opposed to being an
additional cost for each new action recognition dataset. The

source code and extensive documentation will be made pub-
lic.

2. Related Work
Timestamp Supervised Action Segmentation. Times-
tamp supervision [1, 29] has recently been explored as a
way to bridge the accuracy gap between weakly and fully
supervised methods while still not requiring the same anno-
tation burden as full supervision. [31] trained a fine-grained
acition classifier by employing a plateau function sampling
distribution centered around temporal timestamp annota-
tions. This work showed promising result on action local-
ization for trimmed videos. Later, [24] mined action and
background frames to extend the action localization sys-
tem. Recently, [1] proposed a constrained k-medoids al-
gorithm to generate pseudo-labels. Additionally, Li [29] in-
troduced a timestamp supervision method which uses the
model predictions and the annotated timestamps to estimate
action change. [29] also proposed a confidence loss that
forces model confidence to monotonically decrease as the
distance to timestamp increases. The approach of [29] led
to improved results compared to weakly supervised meth-
ods, and it serves as the baseline in our experiments.
Human Object Interaction. The task of human object in-
teraction(HOI) detection is to localize a human and an ob-
ject in their respective bounding boxes and then to spec-
ify the interaction between them, by outputting a tuple
<human bounding box,object bounding box, object class,
action class> given an image. This is an active research
area [5, 6, 14, 42] and further literature on image based HOI
can be found in HOI papers [42].

In the video domain, [13] formulated a Bayesian ap-
proach that integrates various perceptual tasks involved in
understanding HOI. Also, [17] formulated the problem as
a graph where the edges represented affordance and rela-
tion between human actions and objects and nodes repre-
sented objects. Environment affordance [32] was utilized
in applications involving action anticipation [33]. Another
method [38] on image-level HOI detection detects hands
and objects when they are in contact. That system not only
predicts the hand in contact with the object, but also finds
the bounding box of the object in contact. This system is
technically related to [12] but instead of predicting triplets
<human, verb, object>, they propose an alternative repre-
sentation based on physical contact and interaction. The
system is trained to recognize hands and active objects ir-
respective of object or activity class and thus can be gener-
alized to other domains. However, these approaches work
on single images or trimmed videos, and no prior work has
used HOI for action segmentation.
The Proposed Method in the Context of Related Meth-
ods. With respect to the action segmentation methods dis-
cussed above, our method falls under timestamp supervi-
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Table 1. Real-time instructional video dataset comparison. * indicates approximation due to a hidden test set. “Views” refers to 3rd person.
Some statistical discrepancies between 1ReC and 3ReC is due to frame loss in some videos. “Envir.” includes various camera setups.

Dataset #Subj. #Envir. #Vids Dur. #Tasks #Actions #Transcripts Mean Trans. Len. Mean Vid. Dur. #Views Egocentric Vid. Res.
EPIC 100 [7] 37 45 700 100 hr NA ≈3.8k∗ 700 128∗ 8.6∗ min × ✓ 1920×1080
GTEA [10] 4 1 28 0.6 hr 7 10 28 33 1.2 min × ✓ 720×404

EGTEA+ [28] 32 1 86 28 hr 7 106 86 239 > 19 min × ✓ 1280×960
CSV [34] 82 1 1940 11.1 hr 14 18 70 9.5 0.3 min × ✓ 1920×1080

Cooking2 [37] 29 1 273 8 hr 58 87 272 95 6 min 1 × 1624×1224
50 Salad [41] 25 1 50 4.5 hr 1 19 50 20 6.4 min 1 × 640×480
Breakfast [18] 52 18 1712 77 hr 10 47 256 6.9 2.3 min 2-5 × 320×240

IKEA [2] 48 5 1113 35 hr 4 33 359 22.7 1.9 min 3 × 1920×1080
1ReC 30 8 450 27 hr 15 102 418 11.7 3.6 min × ✓ 1920×1080
3ReC 30 10 1349 82 hr 15 102 441 11.7 3.6 min 3 × 1920×1080

(3+1)ReC 30 10 1799 109 hr 15 102 444 11.7 3.6 min 3 ✓ 1920×1080

sion. The key feature differentiating our method from ex-
isting action segmentation methods is the use of informa-
tion from human object interaction. Our method integrates
HOI information within the timestamp supervised action
segmentation framework of Li et al. [29], and the experi-
ments show that using HOI information leads to improved
accuracy compared to the original results of [29] in most
cases. The proposed method uses an HOI detection mod-
ule as a black box, so any HOI method can be plugged in.
Our implementation uses the off-the-shelf pre-trained sys-
tem described in [38]. Consequently, our method can be
applied to novel action recognition datasets without need-
ing any additional HOI annotations for those datasets.

Real-time Instructional Video Datasets. Among real-time
instructional video datasets, [7, 10, 28, 34] focus on only
egocentric while [2, 18, 37, 41] include only third person
videos. Notably, [39] has pairs of egocentric and third per-
son recordings, but each view-point is recorded separately
and video pairs are not synchronized. On the other hand,
our proposed dataset contains both egocentric and third per-
son views, which are also synchronized unlike previous
work. Among third person datasets, [18] contains low reso-
lution videos, and restricts the performance of human object
interaction models. While videos in [37, 41] and [2] are of
high quality, they are limited in sample size and diversity
of tasks respectively. In comparison, our dataset offers high
quality videos, and diverse actions with many instances for
each. This allows for a better study of human object in-
teraction in action segmentation and other long-range video
understanding problems for the community. Refer to Table
1 for a direct comparison with existing datasets.

3. (3+1)Real-time Cooking (ReC) Dataset

3.1. Data Collection

The (3+1)ReC dataset consists of 1799 ego enteric and
third person videos. Specifically, we recorded 30 partici-
pants cooking 15 breakfast dishes by three fixed Lorex wi-

fi security cameras and a GoPro HERO 7, where almost2

all videos are synchronized with a delay of maximum one
second (Fig. 2). Following IRB protocols, our human sub-
jects included volunteers and students who were given ex-
tra credit for their participation. All videos are muted and
recorded with a resolution of 1920×1080. In order to avoid
unexpected actions, we instructed all participants to follow
our verbal instructions of actions and scripted transcripts to
prepare each dish. In total, recording was done in 8 unique
kitchen environments using 10 different positional configu-
rations of the camera set. In the supp. material, we provide
a detailed list of videos, where we indicate their recorded
fps, and whether they lose any frames, and consequently
are not in sync with videos of other view points.

3.2. Statistics

The diversity of our dataset stems from cooking 15 dif-
ferent dishes and their constituent 102 low-level actions.
Furthermore, each action can be divided into verb and ob-
ject components resulting in overall 23 verbs and 57 objects.
For example, actions cut lemon and pour sugar take place
while making lemonade. We made sure all actions are fre-
quently represented in our dataset. In particular, 984 (take
spoon) and 60 (pour egg to pan) are, respectively, the maxi-
mum and minimum numbers of samples for an action class
in the (3+1)ReC dataset. The duration of videos range from
0.3 to 10.3 mins with a mean of 3.6 mins. There are in to-
tal 109 hrs of videos, and 444 unique transcripts with 11.7
actions per transcript on average (Table 1).

3.3. Annotations

Temporal annotations of action segments were done in
two stages. Firstly, we divided the videos into three groups,
and the label, start and end frames of all action segments in
each group of videos were marked by a separate expert an-
notator. Secondly, the three annotators cross checked label-
ing of other annotators to remove inconsistencies and mis-
takes. Also, in order to alleviate annotator subjectivity, an-

2About 7% of videos are not in sync due to frame loss
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Figure 2. Sample video set from the (3+1)ReC dataset showing
synchronized third person and egocentric views. The figure illus-
trates the sequence of actions taken for making avocado toast.

notating each action in videos was done based on when a
participant intends to start and finish an action. For exam-
ple, the action microwave bowl while making oatmeal starts
from the moment the subject aims to pick up the bowl, in-
cludes the waiting time while the oatmeal is cooked in the
microwave, and it ends when the bowl is taken out of mi-
crowave and placed on the counter. As a result, recogni-
tion of some actions in our dataset requires a long range
understanding of context and human object interaction in
the video.

4. Temporal Action Segmentation

Given a sequence of video frames X = [x1, ..., xT ]
where T is the length of the video, the goal in temporal
action segmentation is to predict action class label a1:T =
[a1, ..., aT ] for each frame. In Section 4.1 we explain the
problem formulation for action segmentation using times-
tamp supervision. In Section 4.2 we describe the proposed
framework for learning from timestamp supervision using
Human Object Interaction. Then we provide the details of
loss function in Section 4.2.3.

4.1. Timestamp Supervision

In a fully supervised setup, each training video
X = [x1, ..., xT ] is accompanied by frame-wise labels
[a1, ..., aT ]. However for timestamp supervision, the model
is only provided with a single frame annotation per action
segment during training. For a training video X containing
T frames and N action segments, where N << T , labels
ATS = [at1 , ..., atN ] specify one frame for each of the N
segments. It is reported in [30] that it is 6 times faster to
annotate a single frame per action than to annotate the start
and end frames of each action.

Figure 3. The proposed training framework. The secondary la-
bels generator creates new pseudo ground-truth, κ using the HOI
detections ρ and existing timestamp annotations. The binarized
pseudo ground-truth(α) also provides new supervisory signal to
the primary label generator for generating frame-wise labels β.

4.2. Action Segmentation and HOI

Compared to other weaker forms of supervision such as
transcripts (i.e., sequences of actions), timestamps provide
not only the action class label but also a concrete temporal
location when the activity is happening. This information
allows us to explore and exploit patterns around that time
frame. Commonly used datasets [10, 19, 37, 41] all display
a human performing activities that involve interacting with
objects. If we detect an interval of continuous human object
interaction around a specific timestamp, we can assume that
all frames in that interval belong to the same action as the
timestamped frame. This approach creates HOI-influenced
pseudo-groundtruth that enhances any other available real
or pseudo-ground truth.

Many HOI detectors predict the action verb and spatial
location of the interaction. There may be benefits to using
the action verb information, but that may also require HOI
training data more related to the specific action recognition
dataset. To keep training requirements minimal, our current
method does not use any action verb labels, and therefore
does not require the HOI module to produce such labels.

In our implementation, we use the off-the-shelf pre-
trained HOI detector of Shan et al. [38]. Given an im-
age, the model predicts hand sides and contact states either
with the hands or surrounding objects. Hand side values
are left or right, and hand state is represented as a 2D one-
hot vector. There are five contact states: none, self, other,
portable, and non-portable. The contact state is represented
as a 5D one-hot vector. Alongside these categorical out-
puts, the model also produces bounding boxes around the
hands and the interacting objects. In our method, we con-
sidered only those frames which had an interaction with a
portable object. So, every frame with a detected contact
state of portable is considered as a valid HOI frame, and the
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object bounding box bt is stored. Here t ∈ [1, T ] and T is
the length of the video.

4.2.1 HOI-Influenced Pseudo-Ground Truth

In the architecture diagram on Figure 3, the secondary label
generator uses HOI information to generate pseudo-ground
truth action labels. In this subsection we describe how the
secondary label generator works.

The inputs are a video X , single-frame timestamp anno-
tations ATS = [at1 , ..., atN ], and a sequence of frame-level
HOI predictions ρ. The output is pseudo-ground truth κ.
As shown in Figure 4, we start with a window of τ frames
around a given timestamp frame ti. We denote by banchor
the mean center location of the detected object bounding
boxes within that window of τ frames. Point banchor pro-
vides an approximate location of the human object inter-
action around timestamp ti. Neighboring frames will be la-
beled with the same action if the location of the detected hu-
man object interaction in those frames stays close to banchor.

Frame-wise labels κ are initialized to ground-truth
single-frame timestamp action labels ati for a video. Then,
for each anchor location ti, the algorithm considers adja-
cent intervals forward and backward in time, with a hop of
w frames at a time, to decide whether to propagate label ati
to each of those intervals. We denote by bi,j the mean loca-
tion of the object bounding box in frames xi, xi+1, . . . , xj .
We denote by δi,j the distance between locations banchor
and bi,j . Given this notation, for a hop index h starting
from 0 which increments by 1, h ∈ R and spatial threshold
σ in pixels, the forward expansion of timestamp action ati
proceeds as follows:

κ[ti+hw,ti+(h+1)w] = ati , if δ[ti+hw,ti+(h+1)w] < σ
(1)

The forward search terminates if δ[ti+hw,ti+(h+1)w] for
a hop h is greater than σ, if no valid HOI frames have been
detected in hop h, or if the time search range reaches the
end of the video.

Similarly the backward expansion of timestamp action
ati is as follows:

κ[ti−hw,ti−(h+1)w] = ati , if δ[ti−hw,ti−(h+1)w] < σ
(2)

Once the forward and backward expansion of action
timestamp ati terminate, the next timestamp ati+1 is con-
sidered for forward and backward expansion following the
same logic.

4.2.2 Fine-tuning Action Changes

In the architecture diagram on Figure 3, the primary la-
bel generator, given a video X and timestamp annotations

Figure 4. The proposed pseudo-ground truth generation method
for a given action segment in a video. Timestamps are indicated
in yellow. The black section in ρ indicates the frames where HOI
was detected. After subtracting banchor from the bounding boxes
of the neighbouring frames, the color spectrum in δ indicates mag-
nitude difference from blue(low) to red(high) . hoph indicates the
progression of search window in forward and backward direction.
Final pseudo ground-truth is indicated by the block κ.

ATS = [at1 , ..., atN ], generates frame-wise labels Â =
[â1, ..., âT ] such that âti = ati for i ∈ [1, N ] where N is
the number of segments. In this subsection we describe the
operation of the primary label generator.

Our formulation for this module builds on the method
of [29], which trains a TCN model M for action segmen-
tation. That TCN model is referred to as “segmentation
model” in Fig. 3. To generate frame-wise labels, the method
of [29] estimates the time tbi of action change between two
consecutive timestamps ti and ti+1, as follows:

tbi = argmin
t̂

t̂∑
t=ti

d(ht, ci) +

ti+1∑
t=t̂+1

d(ht, ci+1) (3)

s.t.

ci =
1

t̂− ti + 1

t̂∑
t=ti

ht, (4)

ci+1 =
1

ti+1 − t̂

ti+1∑
t=t̂+1

ht (5)

In the above, d(., .) signifies the Euclidean distance and
ht is the output of the penultimate layer of the TCN at time
t. Intuitively, the algorithm divides the the frames between
timestamps ti and ti+1 into two clusters by finding the lo-
cation tbi such that the average distance between the frame
outputs and cluster centers is minimized.

In [29], this approach is implemented using a forward-
backward algorithm. In the forward direction, frames from
the last computed boundary tbi−1

to the timestamp ti are
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assigned action label ati , and these frames are used in es-
timating the next action boundary tbi,FW . For the back-
ward direction, boundary estimate tbi+1

, is used to predict
the previous boundary tbi,BW . The average of the 2 esti-
mates is used to find the final estimate tbi . As initial con-
ditions, tb0 = 1 and tbN = T , where T is the number of
frames.

tbi,FW = argmin
t̂

t̂∑
t=tbi−1

d(ht, ci) +

ti+1∑
t=t̂+1

d(ht, ci+1) (6)

tbi,BW = argmin
t̂

t̂∑
t=ti

d(ht, ci) +

tbi+1∑
t=t̂+1

d(ht, ci+1) (7)

p =
tbi,FW + tbi,BW

2
(8)

In [29], the value of p from Eq. 8 is used as the esti-
mate for tbi . This is where our method diverges, and uses
human-object interaction information to improve upon this
estimate. Our modification is formulated as follows:

tbi =

{
p, αp = 0

f(p,G), αp = 1
(9)

f(p,G) =

{
min(G), G ̸= ∅

p, G = ∅ (10)

G = {t|t ∈ [tbi,FW , tbi,BW ], αt = 0} (11)

Here αt ∈ {0, 1}, for t ∈ [0, T ], indicates the interaction
label obtained by binarizing the pseudo ground-truths κ at
time t. Value 1 signifies interaction and 0 as no interaction.
Figure 3 illustrates the binarized results α where the black
segments indicate interaction and white segments indicate
no interaction. Thus, we improve upon the architecture by
adding a constraint that the detected boundary tbi is invalid
if there is an ongoing human object interaction at that time.
The boundary is re-adjusted to a temporal location where
there is no interaction. During training, the final estimate tbi
is estimated by the interaction label αp. If interaction exists
at time p then a subset of interaction values α[tbi,FW ,tbi,BW ]

is used to find a new action boundary. In the subset, the first
time frame when there is no interaction is assigned as the
new tbi . If there is interaction happening in all the frames
in α[tbi,FW ,tbi,BW ], then tbi = p .

4.2.3 Loss Functions

We use the already successful combination of classifica-
tion loss and smoothing loss used in traditional action seg-
mentation techniques [9, 16, 43] and the novel confidence
loss [29].

Classification Loss. For classification loss, we em-
ployed a cross entropy loss that computes the loss between
the prediction action probabilities and the generated target
labels as well as the generated pseudo ground-truths using

HOI. Here ỹt,â is the predicted probability from the model
for target action label â at time t.

Lcls =
1

T

∑
t

−log(ỹt,â), (12)

Smoothing Loss. To penalize for local inconsistencies
in the the predicted action class probabilities we adopted the
truncated mean square error as a smoothing loss [9]. This
loss encourages the network to avoid over-segmentation er-
rors.

LT−MSE =
1

TC

∑
t,a

∆̃2
t,a, (13)

∆̃t,a =

{
∆t,a, ∆t,a ≤ τ
τ, otherwise

(14)

∆t,a = |logỹt,a − logỹt−1,a| (15)

Where C is the number of action classes, ỹt,a is the action
a probability at time t.

Confidence Loss. The confidence loss [29] enforces
monotonicity on the model confidence as defined below:

Lconf =
1

T ′

∑
ati

∈ATS

(

ti+1∑
t=ti−1

δati
,t), (16)

δati
,t =

{
max(0, logỹt,ati

− logỹt−1,ati
), if t ≥ ti

max(0, logỹt−1,ati
− logỹt,ati

), if t < ti
(17)

Using this loss, the low confident regions which are sur-
rounded by higher probability regions are encouraged to
produce higher probabilities. This loss also penalizes out-
lier frames carrying high probabilities that are far from the
annotated timestamp and that are not surrounded by high
confidence regions.

The final loss of the action segmentation model is:

Ltotal = Lcls + αLT−MSE + βLconf (18)

Here α and β are the hyper-parameters that guide the con-
tribution of each loss.

5. Experiments
In this section, we compare our method with the first sys-

tems for action segmentation using timestamp supervision.
We also show the contribution of each component quanti-
tavely and qualitatively. We also benchmarked a fully su-
pervised [27] and weakly supervised [40] method that can
act as a baseline for further research on (3+1)ReC. Results
on the (3+1)ReC dataset are based on 6 fold-cross valida-
tion, where each fold includes five independent subjects.
Datasets. In our experiments, in addition to (3+1)ReC, we
have used three public datasets commonly used for evaluat-
ing action segmentation methods:
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(a)

(b)

(c)

Figure 5. Qualitative results on (a) 50Salads, (b) MPII Cooking2
and (c) GTEA datasets. The baseline method suffers from over-
segmentation, while our approach alleviates this issue by utilizing
the continuity in human object interaction.

1) The 50Salads dataset [41] contains 50 videos and 17
fine-grained action classes. Each video on average con-
tains 20 fine-grained action instances and is 6.4 minutes
long. The videos display human subjects preparing differ-
ent types of salads. There are 25 video-level class labels
(different salads) overall, and every actor prepares two dif-
ferent salads. 2) The GTEA dataset [10] contains 28 ego-
centric videos and 11 fine-grained action classes. There are
7 different video-level classes such as “preparing tea” and
“hot dog”, performed by 4 subjects. Each video contains
20 fine-grained action instances on average. 3) The MPII
Cooking 2 [37] contains 243 high quality videos, ranging
in length from 1 minute to 40 minutes, and 67 fine-grained
action classes. It includes 29 subjects who prepare 58 dif-
ferent dishes (video-level class labels) like “making pizza”.
Evaluation Metrics. We use evaluation metrics commonly
used in action segmentation tasks [9, 16, 43]: frame-wise
accuracy (Acc), segmental edit distance (Edit) and segmen-
tal F1 score at overlapping thresholds of 10%, 25% and
50%, denoted as F1@{10,25,50}. While frame-wise accu-

racy is the most commonly used metric in action segmenta-
tion research, it naturally places more importance on long-
duration actions over shorter actions, and it lacks an explicit
penalty for over-segmentation errors. Segmental edit score
and F1 score penalize the over-segmentation errors and treat
shorter and longer duration actions as equally important.
Implementation Details. For the action segmentation
module of Fig. 3 we use the multi-stage temporal convolu-
tion network of Li et al. [29]. For HOI detection, if there are
multiple objects detected, where the human is interacting
with an object in each hand, the bounding boxes are merged
to a bigger bounding box. We trained for 70 epochs using
Adam optimizer. The learning rate is 0.0005 and the batch
size is 8. For the loss function, we used τ = 4, α = 0.15
and β = 0.075. We used the same I3D [3] features as in [9].
We trained all models using the same timestamp annota-
tions as Li et al. [29], for fair comparison with other meth-
ods. Further implementation details, and all parameters can
be obtained in the supplementary material.

5.1. Results

5.1.1 Comparison with other segmentation baselines

In Table 2, we compare our method with timestamp super-
vised baselines [29] and [31] for action segmentation. Com-
pared to [29], our approach consistently attains higher accu-
racy in four datasets for all metrics. For GTEA, the F1 score
at 50% overlapping threshold improves by 10.9%. The
frame-wise accuracy improves by 5.3% when compared
to [29] and is now 92.5% of the fully supervised approach.
For 50Salads, the F1 score at 50% overlapping threshold
improves by 5.9% and the frame-wise accuracy improves
by 0.4% when compared to [29] and is now 97.45% of
the fully supervised approach. For MPII cooking2, the F1
score at 25% overlapping threshold improves by 4.5% and
the frame-wise accuracy is improved by 2.3% when com-
pared to [29] and is now 95.1% of the fully supervised ap-
proach. We include more results of fully supervised meth-
ods on GTEA and 50Salad datasets in the supp. material.

Table 2 also shows action segmentation results, sep-
arately, on third-person (3ReC) and egocentric (1ReC)
videos of our proposed dataset. It can be seen for Ego-
centric views, the performance of the baseline timestamp
segmentation is improved significantly in all metrics when
we utilized HOI in our method. However, the inferior per-
formance of our approach in the third person setting (3ReC)
shows our method’s limitation in tracking the HOI in more
complicated scenarios of the 3ReC dataset. We associate
this with the nuances introduced in our third person dataset,
e.g., objects are occasionally occluded or interaction with
objects is not always tactile when an item is in the mi-
crowave/toaster. Furthermore, in Table 2, we benchmark
results of sample SOTA methods under full [27] and weak
[40] supervision using their public source codes. Results in-
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F1 @ {10, 25, 50} Edit Acc
50Salads
Seg model + plateau [31] 71.2 68.2 56.1 62.6 73.9
Timestamp [29] 73.9 70.9 60.1 66.8 75.6
Ours 77.3 75.2 63.6 69.8 75.8
Full Supervision∗ 70.8 67.7 58.6 63.8 77.8
GTEA
Seg model + plateau [31] 74.8 68.0 43.6 72.3 52.9
Timestamp [29] 78.9 73.0 55.4 72.3 66.4
Ours 82.1 78.7 63.0 74.8 70.4
Full Supervision∗ 85.1 82.7 69.6 79.6 76.1
MPII Cooking2
Timestamp [29] 42.7 38.7 28.7 41.1 50.1
Ours 44.9 40.6 28.8 43.5 51.3
Full Supervision∗ 45.5 42.1 32.5 43.2 54.0
1ReC (Egocentric (3+1)ReC)
Timestamp [29] 34.1 24.9 10.2 36.6 27.5
Ours 37.5 28.2 12.3 39.2 28.9
Weak Supervision [40] 37.7 31.2 19.5 43.7 22.3
Full Supervision [27] 46.0 42.4 34.9 44.8 46.9
3ReC (Third Person (3+1)ReC)
Timestamp [29] 46.8 42.2 32.5 46.1 38.8
Ours 38.9 29.1 12.9 41.7 25.9
Weak Supervision [40] 38.7 32.6 21.3 43.5 21.5
Full Supervision [27] 42.8 39.7 32.8 43.9 46.3

Table 2. Comparison between our method and other action seg-
mentation baselines under different supervision levels. ∗ indicates
training [29] with real ground-truth as opposed to pseudo labels.

dicate the challenging nature of action segmentation on our
dataset and the potential to study further improvements.

5.1.2 Impact of loss with HOI

Table 3 shows the benefits of using HOI information. We
show results using the original loss function of [29], and
results obtained by incorporating two changes proposed in
this paper: “pg” denotes the pseudo-ground truth generated
using HOI, as described in Sec. 4.2.1. By “ft” we denote de-
tecting action boundaries using the proposed “fine-tuning”
equations 9-11 of Sec. 4.2.2, whereas versions not marked
with “ft” detect action boundaries as described in [29].

For 50Salads, the F1 score @50% overlap increased by
2.5% when compared to [29] when adding the “pg” com-
ponent, and increased further by 0.6% when using the “ft”
approach. The qualitative results showcase how our ap-
proach corrected some of the over-segmentation errors in
[29]. Similar improvements were seen in GTEA, where the
F1 score @50% increased by 2.7% by using just pseudo-
ground truth and by 4.9% with fine-tuning action changes
using HOI. Similar gains were seen in MPII Cooking 2.

5.1.3 Impact of fine-tuning.

Table 4 illustrates the benefits of re-adjusting the action
change boundaries using HOI information. The terms
“loss”, “pg” and “ft” have the same meanings that we de-
fined in discussing Table 3. Table 4 shows that, for the

F1 @ {10, 25, 50} Edit Acc
50Salads
loss [29] 73.9 70.9 60.1 66.8 75.6
loss+pg 76.5 74.4 62.6 69.3 75.7
loss+pg+ft 77.3 75.2 63.6 69.8 75.8
GTEA
loss [29] 78.9 73.0 55.4 72.3 66.4
loss+pg 79.9 75.5 58.1 74.2 68.2
loss+pg+ft 82.1 78.7 63.0 74.8 70.4
MPII Cooking2
loss [29] 42.7 38.7 28.7 41.1 50.1
loss+pg 44.4 40.0 28.3 42.1 50.5
loss+pg+ft 44.9 40.6 28.8 43.5 51.3

Table 3. Contribution of the original loss of [29], new pg genera-
tion and fine-tuning(ft) of the action change using HOI.

F1@{10,25,50} Edit Acc
GTEA
loss [29] 78.9 73.0 55.4 72.3 66.4
loss+ft 78.6 74.5 57.6 72.0 67.9
Improvement -0.3 1.5 2.2 -0.3 1.5
loss+pg 79.9 75.5 58.1 74.2 68.2
loss+pg+ft 82.1 78.7 63.0 74.8 70.4
Improvement 2.3 3.1 4.9 0.6 2.2

Table 4. Improvement in performance for GTEA using labels gen-
erated by adding constraint of HOI to detect action change.

GTEA dataset, our proposed improvements lead to higher
accuracy in almost all metrics. There are only two entries
in that table (out of a total of 10) where the proposed com-
ponents do not improve accuracy, but in both those cases the
drop is marginal (0.3%). In the other eight entries, our com-
ponents lead to improvements ranging from 0.6% to 4.9%.

6. Conclusion

We showed in this paper, that information from human-
object interaction can be used to improve action segmen-
tation accuracy under timestamp supervision. Our model
extends the single frame timestamp annotations using the
frame level predictions of a human-object interaction detec-
tor. We improve the segmentation results by adding a con-
straint that an action boundary cannot exist around frames
where the human is continuously interacting with the ob-
ject. We also proposed the (3+1)ReC dataset as a diverse
and high resolution instructional video dataset with syn-
chronized third and first person views. Results on public
datasets show that the key idea of using HOI information
can indeed improve action segmentation accuracy in most
cases and close the gap with fully-supervised models.
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