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Abstract

In the last decade, the supply of online video content ex-
ploded. Automatic video summarization has become nec-
essary to allow content consumers to briefly glance at the
video’s content. However, the notion of video summary is
subjective and thus requires multiple annotators to define
the ground truth. Existing video summarization techniques
are limited in many ways. First, existing summarization
techniques aggregate multiple annotations using the aver-
age operation and use these estimates to train a learning
model to make predictions on unseen videos. Second, the
use of RNN-based architecture to model long-range depen-
dencies. Third, the amount of annotated data available for
general video summarization is too small to train visual
models from scratch. To mitigate these issues, this work
proposes a new end-to-end probabilistic framework called
Multi-Annotation Attention Model (MAAM) optimized us-
ing the Expectation-Maximization algorithm where the true
label is treated as a latent variable. The MAAM frame-
work has several advantages: (i) it exploits multiple an-
notations from different human-labelers and thus combines
model training with the label aggregation, (ii) it models
the temporal dynamics representations of videos through an
attention mechanism, and (iii) benefits from the power of
pretrained visual encoders namely the Vision Transformer
(ViT). The proposed approach is evaluated on two public
datasets TVSum and SumMe. Our method significantly out-
performs state-of-the-art methods on both datasets.

1. Introduction
Video summarization defines as reducing a (potentially

long) video into a shorter form that includes the key scenes
and thus enables the viewer to comprehend the video’s con-

tent. A video summary should not only include the high-
lights from the video but also meet additional requirements
like diversity, representativeness, and visual and semantic
coherence [2]. Video summarization can be formulated
as highlight detection, i.e. a subset selection problem on
the basis of a learned model predicting the relevance of
each frame or segment. It can be also be seen as a rank-
ing problem ordering the importance of two or many seg-
ments/frames [2].

Current video summarization techniques are mainly
based on deep neural networks. Usually the task is for-
mulated as frame or segment-level importance score pre-
diction. Several approaches have been proposed to model
variable-range dependencies between frames using recur-
rent neural networks (RNN) [33, 35, 36]. However, RNNs
suffer from vanishing gradient when treating long se-
quences as well as the lack of parallelization resulting in
slow training. Other methods proposed attention mecha-
nisms to address this, without taking into consideration the
frame ordering [7, 8, 16, 17].

The annotation process for video summarization is a
challenging problem due to the subjectivity inherent to the
task. Obtaining reliable ground truth labels is then in-
feasible. A popular approach is to ask multiple human
annotators to assess the importance of every part of the
video [9, 27]. The performance of any video summariza-
tion system is computed in relation to all of the human an-
notators, transforming the problem into a multi-annotation
learning problem. State-of-the-art methods aggregate mul-
tiple annotations into a single ground-truth annotation to
train on. Encouraged by many works that train directly on
multiple annotations [24–26, 31], this work follows this di-
rection.

Motivated by limitations of the existing methods dis-
cussed above, this paper introduces a new supervised

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3143



method for video summarization. First, we introduce the
Averaged Annotation Attention Model (AAAM) that in-
corporates multi-head attention module enhanced with po-
sitional encoding and frames windowing. We then ex-
tend it by proposing a new end-to-end probabilistic frame-
work called Multi-Annotation Attention Model (MAAM)
optimized using the Expectation-Maximization algorithm
where the true label is treated as a latent variable. In sum-
mary, our contributions are the following:

• A new end-to-end probabilistic framework called
Multi-Annotation Attention Model (MAAM) designed
to exploit labels produced by multiple annotators in the
context of video summarization.

• Many issues found in the current evaluation protocols
are presented and a more robust evaluation protocol is
proposed

• Evaluation of the proposed methods on two public
datasets (TVSum and SumMe). MAAM substantially
outperforms state-of-the-art methods, showing gen-
uine benefits of our contributions.

2. Related Work
2.1. Supervised Video Summarization

Video summarization techniques can be categorized into
supervised and unsupervised methods. We focus on su-
pervised video summarization techniques that train a deep
learning model through human annotation. Readers are re-
ferred to [2] for a more comprehensive review of the litera-
ture.

Early works use RNN to model the temporal dependen-
cies [33, 35, 36] within a video. For instance, bidirectional
LSTM (Long-Short Term Memory) models are used to pre-
dict the frame level scores [33]. The use of Determinan-
tal Point Process (DPP) was also proposed to enhance the
summary diversity by to modeling pairwise frame-level re-
pulsiveness [33]. Other methods have been proposed using
convolutional LSTM for simultaneously modeling spatial
and temporal structure of video for summarization [13, 32].
Another line of research introduced an attention mechanism
by combining of RNN architectures [5, 10].

Recent methods are based on full attention models [3,
7, 8, 16, 17]. The VASNet model (Video Attention Sum-
marization) proposed in [7] combines a dot-product atten-
tion layer and a regression network. Differently, the MSVA
(Multi-Source Visual Attention) model [8] combines three
types of features: image features, motion RGB features
and motion flow features with a dot-product attention layer
to build a summarization system. In order to model the
video temporality at various levels of granularity, the PGL-
SUM (Positional Global Local Summarization) [3] com-
bines global and local multi-head attention mechanisms.

More recent works incorporate video-text joint modeling to
predict frame-level scores [15, 18].

2.2. Multi-Annotation Learning

It is very difficult if not impossible to obtain a single ob-
jective and reliable label for each sample in a video summa-
rization dataset. To improve data quality, practitioners often
need to ask several domain experts or possibly a large num-
ber of non-experts to contribute to the labeling effort [29].
As a result, a single sample is associated with multiple la-
bels, which may be conflicting in some instances.

A common approach (called two-stage approaches [14])
rely on aggregating the annotations before the training, us-
ing a majority vote for a classification problem or averaging
for a regression problem. However, this process may yield
noisy ground truth labels and hinder the performance of su-
pervised machine learning models.

On the other hand, one-stage approaches train the the
aggregation algorithm along with the model. Several
works proposed probabilistic models [24–26, 31] to repre-
sent the aggregated label, that could be learned using the
Expectation-Maximization algorithm [24]. Among these
methods, Rayker et al. [25] model the true labels as hidden
variables and evaluate the expertise of different annotators.

3. Proposed Method
Section 3.1 describes the problem and set the notation.

Next, section 3.2 presents the Averaged Annotation Atten-
tion Model (AAAM), the proposed framework is trained
using the averaged annotations. Section 3.3 describes the
Multi-Annotation Attention Model (MAAM), our multi-
annotation framework.

3.1. Problem Statement

Given a dataset with N human-annotated videos D =
{(Vi, Yi)}i=N

i=1 , where Vi is the video and Yi is the annota-
tion. Videos can be of different lengths {Ti}i=N

i=1 , where Ti

is the length in terms of the number of frames for video
Vi. The extracted RGB frames from video Vi are Vi =
{Ft}t=Ti

t=1 .
Each video is annotated by M human annotators, where

the annotations for the video Vi can be written as Yi =
{Y j

i }
j=M
j=1 . As a video is a sequence of frames, then Y j

i is
a sequence of annotations along the time dimension Y j

i =

{yji,t}
t=Ti
t=1 . Therefore, yji,t ∈ R is a real value assigned to

the tth frame by the jth annotator for th ith video in the
dataset, indicating the importance of the frame in the se-
quence.

The presented setting is a multi-annotation problem as
each sample of the dataset has multiple ground-truth anno-
tations. To mitigate that, we can reduce the annotators di-
mension by averaging across it. Then, for each video we get
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Figure 1. Illustration of the proposed Averaged Annotation Attention Model (AAAM). The input to the framework is a window of L frames
from a given video. Figure (a) depicts the proposed architecture and the interconnection between the three networks (Ef , Ec and Es).
Figure (b) shows the details of the multi-head attention module.

the average annotation as Yi = {yi,t}t=Ti
t=1 , where:

yi,t =
1

M

j=M∑
j=1

yji,t (1)

This aggregation method gives the same level of con-
fidence for each annotator despite the fact that annotators
might have biases in their labeling process.

The goal of a video summarization module is to learn
the parameters θ of a mapping function fθ(.) that produces
the highlight scores from the sequence of frames for a given
video:

Ỹi = {ỹi}t=Ti
t=1 = fθ(Vi) = fθ( {F}t=Ti

t=1 ) (2)

3.2. Averaged Annotation Attention Model

Our AAAM framework is based on a multi-head atten-
tion module that captures the frames’ dependencies and pro-
duces contextualized representations of the input sequence.
The output of this attention module is fed to a score pre-
diction module that outputs the importance of each frame
in the sequence. The predicted scores are then compared to
the ground-truth scores (average annotations) and thus the
model is trained in a supervised setting.

Based on the notation of the previous section, each video
Vi of Ti frames is split into one or more windows of L
frames, where L is the sequence length of the model. This
procedure is accomplished for two reasons. First, videos
have different lengths and so they have to be padded to

the longest length or truncated to the smallest length dur-
ing training in order to stack them into batches (tensors) .
Second, the model might find difficult to predict highlight
score of the frames when the video is too long.

Considering the size of the available videos annotated
by humans, it is difficult to train from scratch both a vi-
sual extractor for RGB frames and the highlight prediction
model. We, therefore, investigate using pretrained vision
models that can be used to encode separate frames. Then,
each frame in the window is encoded using the RGB en-
coder Enf (Frame Encoder) to get a set of deep feature
representations X = {Xt}t=L

t=1 , where Xt ∈ Rd, and d is
the dimension of the feature space.

Attention modules [30] are permutation-invariant by
construction and thus do not consider the ordering of the
input frames of the sequence. However, the temporal co-
herence in a video is essential, specially in the context of
video summarization. To alleviate this issue, we augment
the frames’ features with position encoding components.
Due to the fact that fixed encoding adds no new parame-
ters to learn, it is preferable to use it over a learned one in
our problem. In this work, we use sine and cosine functions
of different frequencies as used in [30].

As a result, the positional encoding and the visual fea-
tures have the same dimension d, allowing the two to be
added. The result of this step are the embeddings that are
fed to the multi-head attention module:

E = {Et}t=L
t=1 = X + PE (3)

The goal of the Contextualized Network Enc (multi-head
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module) is to discover diverse representations of the inter-
dependence between the frames of the sequence using dif-
ferent heads. The architecture is the same as proposed in
the original paper [30] as presented in Figure 1 (b). Queries,
keys and values are all formed using the input embeddings
E, and projected using h heads of simple attention lay-
ers. The concatenated attention values from all the attention
heads are then fed to a linear layer to produce the contextu-
alized vectors Z = {Zt}t=L

t=1 . The resulting representations
are given to the Scoring Network Ens that estimates the
frames’ importance in the sequence Ỹ . Figure 1 (a) depicts
the interconnection between the three networks. The map-
ping function fθ(.) is a composition of the three networks
and can be written as follows:

fθ(.) = Ens ◦ Enc ◦ Enf (4)

At training time, the described framework is optimized
using backpropagation and gradient descent. We use the
mean square error between the predicted scores and the av-
eraged ground-truth annotations. The loss function for a
batch B of sequences can be written as follows:

L =
1

B × L

i=B∑
i=1

t=L∑
t=1

( ˜yi,t − yi,t )
2 (5)

In the inference phase, the list of frames of a given video is
divided into multiple non-overlapping windows of size L,
then the resulting windows are stacked into a single batch.
The batch that results is fed to the model fθ(.) to get a batch
of highlight scores, which are then fattened into a single
sequence. With this method, we can obtain the prediction
for a given video in a single forward step, which cuts down
on the inference time.

3.3. Multi-Annotation Attention Model

We propose to use the Expectation-Maximization (EM)
algorithm to solve this problem: both estimating the gold
ground-truth for training videos with multiple annotations
(ie, optimize the model using all the annotations) and train-
ing the model to predict the highlight scores for unseen
videos.

Following the same notation in the section 3.1, let yji,t
the highlight score assigned to the tth frame in the ith video
by the jth annotator. In our modeling, the annotator gives a
noisy version of the true value yi,t. The true label is consid-
ered as a latent variable. To facilitate the calculation, we as-
sume a Gaussian noise with mean yi,t and inverse-variance
τ j ,

yji,t ∼ N ( yi,t, 1/τ
j) . (6)

where the Gaussian distribution for a random variable z
with a mean µ and a standard deviation σ is defined as fol-

lows:

Nz(µ, σ
2) =

1√
2πσ2

exp(− ( z − µ) 2

2σ2
) (7)

For simplicity, we assume that the unknown precision τ j

does not depend on the frame (t, i) and only depends on
the annotator. This is a practical assumption, but it is not
totally accurate as the annotators might behave differently
according to the instance they are labeling.

On the other hand, the true annotation yi,t is assumed
to be the output of our mapping function fθ (which is sup-
posed to be deterministic) with additive Gaussian noise, and
can be written as follows:

yi,t = fθ(Fi) [ t] + ϵ (8)

The notation [ t] means that we take the tth index in the
output sequence of highlight scores to get the prediction
for the tth frame, and Fi is the list of frame for the video
Vi: Fi = {Fi,t}t=L

t=1 . The noise ϵ is a zero-mean Gaussian
variable with inverse-variance γ, then yi,t can be written as
follows:

yi,t ∼ N ( fθ(Fi), 1/γ) (9)

When the two equations of both the annotator (equation 6)
and the model (equation 9) are combined, the following
equation is obtained:

yji,t ∼ N ( fθ(Fi), 1/λ
j) (10)

We also define λj as the grouping of the two precision terms
(γ and τ ) that indicates the precision of each annotator:

1

λj
=

1

γ
+

1

τ j
(11)

At this point, the learning problem consists of estimating
the latent variables λ = [λ1, ..., λM ] as well as the param-
eters θ of the neural network fθ(.). This type of problems
can be solved using the well-known algorithm Expectation-
Maximization [24].

The likelihood of the parameters ω = {θ, λ} given the
dataset D = {(Vi, Yi)}i=N

i=1 can be written as follows if the
instances of D are independent:

P (D|{θ, λ}) =

i=N∏
i=1

P (Yi|Fi, ω) (12)

As human-labelers annotate data independently, we will as-
sume annotations {Y j

i }
j=M
j=1 are independent conditional on

the video Vi. So, equation 12 can be written as:

P (D|{θ, λ}) =

i=N∏
i=1

j=M∏
j=1

P (Y j
i |Fi, ω) (13)
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In order to simplify the computation, we will make a rough
assumption that the scores of different timestamps are in-
dependent. This allows the likelihood to be factored as a
product of Gaussian distributions, and thus to be derived
easily later. The likelihood is then written as:

P (D|ω) =

i=N∏
i=1

j=M∏
j=1

t=L∏
t=1

P ( yji,t|Fi, ω) (14)

Although the last assumption is approximate, the trained
model shows an improved performance. Also, note that we
still model the dependencies between the frames as the pro-
posed model is sensitive to the temporal order.

Given our model, we estimate the set of all parame-
ters ω = {θ, λ} using the Maximum Likelihood Estimator
(MLE) by maximizing the log-likelihood function. Equiva-
lently:

ω̂ = {θ̂, λ̂} = argmax
ω

P (D|ω) (15)

Since we have missing variables λ, the optimization
problem can be simplified when utilizing the Expectation-
Maximization (EM) algorithm [24]. In the context of miss-
ing or latent data, the EM algorithm is an effective iterative
algorithm for computing the maximum-likelihood solution.
The Expectation (E) and Maximization (M) steps make up
each iteration of the EM algorithm. The M-step involves
maximizing a lower bound on the log-likelihood that is im-
proved by the E-step with each iteration.

• E-step: The gradient of the log-likelihood is equated
to zero to obtain the equations to update the parameters
{λ}:

1

λ̂j
=

1

N × L

i=N∑
i=1

t=L∑
t=1

[ yji,t − fθ(Fi) [ t] ]
2 (16)

Given the samples of the dataset D and the current
value of the model parameters θ, we update the preci-
sion parameters {λ} using equation 16. For a smoother
updating, the exponential moving average is also pro-
posed to be used instead:

λ̂j
it = α× λ̂j

new + (1− α)× λ̂j
it−1 (17)

where it is the iteration counter of the EM algorithm,
and λ̂j

new is computed using equation 16.

• M-step: Since, there is no closed-form solution for
maximizing the log-likelihood with respect to the pa-
rameters θ of the neural network fθ(.), gradient de-
scent with backpropagation is used to minimize the
negative log-likelihood.

Based on current value of the parameters {λ} and
given the dataset D, the parameters θ are updated as

follows:

∇θ ∝ ∂

∂θ

∑
i

∑
j

∑
t

λj( yji,t − fθ(Fi) [ t] ] )
2 (18)

The two steps (E-step and M-step) are repeated with alter-
ation until convergence as described in Algorithm 1.

Algorithm 1 Multi-Annotation Highlight Algorithm

Require: the dataset D = {(Vi, Yi)}i=N
i=1

Require: the updating parameter α
Require: max iteration
Ensure: the final estimation of the model parameters {θ}

Initialize: the annotators’ precision {λ}
Initialize: the model parameters {θ}
while not convergence do

E-step: estimate {λ} using equations 16 and 17.
M-step: Loop over the dataset for one epoch using

the gradient of equation 18.
end while

4. Experiments & Results
4.1. Datasets

TvSum TvSum dataset [27] contains 50 videos from
Youtube that belong to 10 categories of the TRECVid MED
task (5 videos per category). Each video is annotated by
20 human labelers. Annotations are in the form of frame-
level importance ranging from 1 (not important) to 5 (very
important).

SumMe This dataset [9] consists of 25 raw or minimally
edited user videos covering holidays, events and sports.
Their length ranges from about 1 to 6 minutes. Each video
is annotated by 15 to 18 different people, where a total of
41 subjects have participated. The annotation is binary and
indicates if a frame should be part of the summary or not.

4.2. Data preprocessing

RGB frames are extracted from videos at the rate of 2
FPS compared to the raw rate which varies between 25 to
30 FPS. Images are then resized to 224 × 224. For fea-
ture extraction, we chose to use the ViT-B/32 model [6] as
our frame encoder. The model was trained using the CLIP
(Contrastive Language-Image Pre-Training) [23] method
which contrasts the representations of images with that of
natural language sequences. It produces 512 dimensional
features vector that describes the semantic content of the
input image. The feature extraction is performed for all the
frames of the videos of the dataset before the training as the
frame encoder is frozen during the training.

In section 3.2, the sequence length of the model L was
described as the number of frames in a single window. As
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a result, we divide the training videos into consecutive win-
dows with or without overlapping to create windows of
length L. The overlapping ratio is controlled by the hop
size hyperparameter. This allows us to train the model us-
ing bigger batches.

On the other hand, the ground truth importance scores
(the target) are standardized to have a zero mean and unit
variance. Note that the statistics (mean and variance) are
computed on the training part of each split and not globally
to avoid any data leakage.

4.3. Issues in Current Evaluation Protocols

In this section, we aim to highlight several issues related
to existing evaluation approaches for video summarization
using TvSum and SumMe datasets as no standard bench-
mark is given. Examining the current evaluation of the pro-
posed approaches revealed many problems that we explain
in the following before outlining solutions. The next sec-
tion 4.4 describes our proposed evaluation protocol.
4.3.1 Data Splits

The first issue is related to how to generate training and test-
ing sets as no standard benchmark is given with both TV-
Sum and SumeMe datasets. Different data splitting schemes
were found in the literature ranging from 1 random split
(80% for train, 20% for test), five random (5 Rand) splits
(80% for train, 20% for test) and 5-fold cross-validation (5
FCV). This makes the benchmarking challenging as some
videos will be never part of the test set depending on the
splitting strategy. The list of videos to test on could be crit-
ical as videos are not equally difficult. Particularly, 5-fold
cross validation provides five non-overlapping splits where
videos are equally divided across splits without any repeti-
tion or exclusion.
4.3.2 Validation Set

Most existing approaches report using (80% − 20%) pro-
portions for training and testing sets respectively. However,
we failed to find any information to the validation set. This
raises the question of how they did hyperparameter tuning,
stopping the training and choosing the best model. In [11],
authors plotted the performance on the test splits during
the training epochs and used the resulting plot to validate
the model selection criterion. In this circumstance, the test
splits are playing the role of both validation and test data,
which results in an unfair evaluation.
4.3.3 Experiment Repeats

Neural networks are trained using stochastic gradient de-
scent where the convergence is non-deterministic process
that depends on the initial weights. Moreover, the size of
the public dataset is small (50 videos for TVSum and 25
videos for SumMe). This causes the final performance to be
quite sensitive to the random initialization. This phenomena

is particularly observed with SumMe dataset. It is uncertain
if researchers report their best run or a random one. Then,
it would be preferable to perform multiple runs of the same
experiment and report the average performance.
4.3.4 Model Size

Most developed approaches in the literature used pre-
trained models to extract one or many features: visual, mo-
tion, optical flow, audio and text. Additionally, Some re-
cent methods used a text generator to produce a sentence
description of the frames [18]. Those modules are gener-
ally not trained and thus the number of learnable parame-
ters includes only that of the frame scoring system as done
in [4]. However, the comparison of different summarization
techniques in terms of the model size should also includes
the scale of non-learnable parameters. The reason is that
for a new unseen video, all the modules (both trainable and
non-trainable) are used to perform the inference.
4.3.5 Metric Evaluation

Two main evaluation families have been proposed and used
to assess the performance of video summarization systems:
F1-score and rank-based metrics. As videos have multi-
ple ground truth annotations, the proposed metrics are com-
puted against each reference annotator, and then aggregated
(mean for TVSum and max for SumMe) to get the perfor-
mance on a single video. The overall performance is ob-
tained by averaging over all the test videos.

F1-score To determine how well a summarization system
based on the F1-score performs, both a pre-processing step
and a post-processing step are required. The pre-processing
step consists in temporal segmentation, where a video is di-
vided into consecutive fragments, then fragment-level high-
light score is calculated by averaging the predicted scores
of the frames within each fragment. The machine sum-
mary is produced during the post-processing stage based
on a shot selection algorithm (such as the Knapsack algo-
rithm [1]), with a restriction that it should not exceed 15%
of the video’s duration. The similarity between the machine
generated summary SM and the user summary SU is com-
puted based on their temporal overlap (∩) to obtain the F1-
score. The precision (P), the recall (R) and the F1-score
are computed as follows, where ∥∥ is the temporal duration:

P =
SM ∩ SU

∥ SM ∥
, R =

SM ∩ SU

∥ SU ∥
, F1 = 2× P ×R

P +R
(19)

However, many concerns could be raised regarding the use
of this metric to benchmark the proposed systems. First,
the performance of any proposed video summarization sys-
tem is highly dependent of not only the efficiency of the
trained model, but also on both the temporal segmentation
algorithm and the shot selection algorithm. As described
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in [19], changing only the type of the segmentation algo-
rithm changes drastically this metric. Actually, the Ker-
nel Temporal Segmentation (KTS) algorithm [22] utilizes
the representations of the frames to estimate the fragments’
boundaries based on the correlation matrix. Then, it is
enough to use a different feature extractor to have different
boundaries, and thus change the machine summary which
alters the performance measure.

Second, the computation described in equation 19 is suit-
able for the videos of SumMe dataset, as the provided an-
notations are in the form of key-fragments. However, for
TVSum dataset, a processing step is required before apply-
ing them, in which ground truth frame-level annotations are
converted to key-fragments as described in [27, 33]. Sur-
prisingly, this processing step involves the utilization of a
temporal segmentation algorithm and thus a set of temporal
boundaries as well as a shot selection technique. Conse-
quently, it is quite likely that the ground truth user sum-
maries will vary depending on the method.

Third, Otani et al. [19] explained that randomly produced
summaries were able to get comparable or even higher per-
formance scores than the most advanced techniques. The
authors showed that the obtained F1-score was primarily
determined by the video segmentation algorithm (KTS),
specifically the distribution of segment lengths. This was
mostly caused by the frequently employed shot selection
method (Knapsack algorithm). The metric computation
typically gave almost no consideration to the importance
scores’ contribution.

Rank-based Metrics Motivated by the facts above, rank-
based metrics [19] have been used to assess the performance
the proposed methods. The advantage of this evaluation
method is that it eliminates the use the pre-processing and
post-processing steps explained earlier. It is no longer im-
pacted by the utilized video segmentation and shot selection
algorithms. Kendall’s (τ ) [12] and Spearman’s (ρ) [37] rank
correlation coefficients are used to measure the similarities
directly between the human importance scores and the pre-
dicted scores by the trained model at the frame level.

4.4. Proposed Evaluation Protocol and Implemen-
tation Details

In order to ensure the robustness and the generaliza-
tion of the proposed models, we evaluate the model on all
the videos not only some them as discussed earlier in sec-
tion 4.3.1. We use 5-fold cross-validation technique as the
evaluation method for all our proposed models. At each
cross-validation split, 80% of the available data is involved
in the training process, while the remaining 20% is used
for testing. Following the discussion in section 4.3.2, 90%
of the data associated to the training data in assigned to
the training set, while 10% is assigned to the validation
set. We use the validation set to monitor the evaluation

metrics as the criteria for early stopping, where after each
training epoch, those metrics are calculated with respects to
the validation data to check if the network starts to over-
fit the training set. Model checkpointing is also used to
save the best model during training. Each experiment is
repeated 10 times and the average performance is reported
(section 4.3.3).

The Contextualized Network (Ec) is formed by a multi-
head attention module whose the number of heads is 16, and
the latent dimension is 1024. The Scoring Network (Es)
is composed of a dropout layer followed by a linear layer
that maps the sequence of representations into a sequence
of importance scores. The number of trainable parameters
is 2.1M , while the number of non-trainable parameters is
86M .

Models are trained for 50 epochs using the Adam opti-
mizer using an initial learning rate of 6×10−5 and a weight
decay of 5×10−5. Experiments were performed on a single
NVIDIA V100 (32GB) GPU using a batch size of 128.

4.5. Performance Comparisons

Method Kendall (τ ) Spearman (ρ) Data Splits

Random 0.000 0.000 -
Human 0.177 0.204 -

vsLSTM [33] 0.042 0.055 5 Rand
GLRPE [11] 0.070 0.091 5 Rand
RSGN [34] 0.083 0.090 5 Rand
SumGraph [21] 0.094 0.138 5 Rand
PGL-SUM [3] 0.157 0.206 5 Rand
Clip-it [18] 0.108 0.147 5 Rand
SSPVS [15] 0.177 0.233 -
SSPVS + Text [15] 0.181 0.238 -
MSVA [8] 0.190 0.210 5 FCV
MFST [20] 0.222 0.224 5 Rand

AAAM 0.193 0.254 5 FCV
MAAM 0.207 0.271 5 FCV

Table 1. Experimental results (Spearman’s (ρ) and Kendall’s (τ )
coefficients) on TVSum. Results are computed using 5-fold cross-
validation (5 FCV) and averaged over 10 runs.

4.5.1 Results on TVSum

We train the two proposed frameworks AAAM and MAAM
as described in section 4.4. We compare them to the state
of the art supervised methods using the correlation coeffi-
cients namely: Spearman’s (ρ) and Kendall’s (τ ). Results
are presented in Table 1. The first row indicates the per-
formance for a random summary. The second row shows
the performance for human annotations. These numbers are
computed following the method described in [19].

We find that both proposed methods (AAAM and
MAAM) outperform by far the existing methods in terms
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of the Spearman’s coefficient. For the Kendall’s metric, our
MAAM framework is the second-best performing method
among numerous supervised summarization methods. The
best performing one [20] combines visual, text and au-
dio modalities with a pretrained model for each modality.
The MFST model [20] has many more parameters than our
model that relies only on visual features with a little drop in
the performance. Also, according to [20], this method has
been evaluated using 5 random splits whereas our method is
evaluated using 5-fold cross-validation. Moreover, a signif-
icant performance improvement is provided by the MAAM
compared to the AAAM model.

4.5.2 Results on SumMe

Experiments are done likewise for SumMe dataset. Results
are presented in Table 2. The same tendency has been ob-
served for this dataset.

Method Kendall (τ ) Spearman (ρ) Data Splits

Random 0.000 0.000 -
Human 0.205 0.213 -

RSGN [34] 0.083 0.085 5 Rand
SSPVS [15] 0.178 0.240 -
SSPVS+Text [15] 0.192 0.257 -
MSVA [8] 0.200 0.230 5 FCV
MFST [20] 0.229 0.229 5 Rand

AAAM 0.223 0.273 5 FCV
MAAM 0.227 0.278 5 FCV

Table 2. Experimental results (Spearman’s (ρ) and Kendall’s (τ )
coefficients) on SumMe. Results are computed using 5-fold cross-
validation and averaged over 10 runs.

4.6. Ablation Study

4.6.1 Impact of the sequence length

This study investigates the impact of the sequence length L
on the performance of the trained model. As described in
section 4.2, training videos are divided into multiple win-
dows of size L. The study includes experimenting with the
following values for L = {32, 64, 128}, as well as train-
ing with full length videos (ie, without any windowing and
a batch size equal to 1). The study is performed using the
MAAM framework. Evaluation protocol is the same de-
scribed in section 4.4 and results are presented in Table 3.
We find that increasing the sequence length tends to de-
crease the performance even so the performance for 32 and
64 are comparable to each other. A significant drop in per-
formance is observed when training the model with full-
length sequences. The model is then required to adjust its
parameters to different temporal dynamics.

Sequence length Kendall (τ ) Spearman (ρ)

32 0.204 0.267
64 0.202 0.265
128 0.188 0.247
full length 0.163 0.215

Table 3. Ablation study on sequence length using MAAM frame-
work applied to TVSum dataset. Spearman’s (ρ) and Kendall’s
(τ ) coefficients are computed using 5-fold cross validation and av-
eraged over 10 runs. The full length setting indicates using full-
length video sequences (ie, batch size equal to 1 video)

4.6.2 Impact of the visual features

The proposed models utilize visual features extracted us-
ing the ViT model as explained in section 4.2. The ques-
tion of whether the obtained performance is only due to
the quality of the features may be raised. For instance, we
trained both AAAM and MAAM frameworks with visual
features obtained by taking the output of the pool5 layer of
GoogleNet [28] as used by many previous works [3,33,34].
The proposed methods outperform the best performing
method [3] that uses the same features among the existing
approaches.

Model Kendall (τ ) Spearman (ρ)

vsLSTM [33] 0.042 0.055
GLRPE [11] 0.070 0.091
RSGN [34] 0.083 0.090
SumGraph [21] 0.094 0.138
PGL-SUM [3] 0.157 0.206

AAAM 0.169 0.223
MAAM 0.179 0.236

Table 4. Evaluation performance of AAAM and MAAM frame-
works on TVSum using GoogleNet features. Spearman’s (ρ) and
Kendall’s (τ ) coefficients are computed using 5-fold cross valida-
tion and averaged over 10 runs

5. Conclusion

This paper introduces a high-performing supervised
learning approach for video summarization based on an
end-to-end probabilistic framework and attention mecha-
nism. The developed AAAM framework integrate a number
of multi-head attention augmented with the temporal encod-
ing of the position of the frames in the video. We have
also demonstrated that merging the annotations aggregation
step with the model training provides better performance.
Reliable evaluation protocol on both datasets TVSum and
SumMe showed that our methods are the best performing
compared to state of the art methods. For future work, we
plan to apply self-supervised learning methods to pretrain
the contextualized network.
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