
Towards Characterizing the Semantic Robustness of Face Recognition
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Abstract

Deep Neural Networks (DNNs) lack robustness against

imperceptible perturbations to their input. Face Recogni-

tion Models (FRMs) based on DNNs inherit this vulnera-

bility. We propose a methodology for assessing and char-

acterizing the robustness of FRMs against semantic pertur-

bations to their input. Our methodology causes FRMs to

malfunction by designing adversarial attacks that search

for identity-preserving modifications to faces. In par-

ticular, given a face, our attacks find identity-preserving

variants of the face such that an FRM fails to recog-

nize the images belonging to the same identity. We

model these identity-preserving semantic modifications via

direction- and magnitude-constrained perturbations in the

latent space of StyleGAN. We further propose to character-

ize the semantic robustness of an FRM by statistically de-

scribing the perturbations that induce the FRM to malfunc-

tion. Finally, we combine our methodology with a certifica-

tion technique, thus providing (i) theoretical guarantees on

the performance of an FRM, and (ii) a formal description

of how an FRM may model the notion of face identity.

1. Introduction

Deep Neural Networks (DNNs) have achieved impres-
sive performance across fields such as computer vision [27],
natural language processing [43], and reinforcement learn-
ing [44]. Despite their remarkable success, DNNs are par-
ticularly vulnerable against imperceptible perturbations to
their input, known as adversarial attacks [25, 59]. The un-
expected vulnerability of DNNs against adversarial attacks
highlights our narrow understanding of these models and
their limitations [22, 69].

This vulnerability further poses potentially negative ram-
ifications in the real-world. Specifically, the deployment of
DNNs for security-critical applications may be hampered,
since “why” or “how” these systems fail is largely unknown.
A case of utmost importance in security-critical applica-
tions is that of Face Recognition Models (FRMs). These
systems have been the central subject of large amounts of

research and engineering [36], and their use is widespread
in everyday life, ranging from unlocking phones or per-
sonal computers to entering buildings or passing through
airport security. Thus, understanding FRMs and their fail-
ure modes can constrain how and when to trust FRMs in
the real-world. More importantly, interpreting FRMs can
provide guides towards a more responsible and ethical use.

The pervasive vulnerability of DNNs against adversarial
attacks calls for a unified methodology to study the robust-
ness of FRMs in realistic settings. Specifically, we argue for
studying the semantic robustness of FRMs, concurring with
other works [4, 31], which account for semantic consider-
ations in robustness settings. Towards this objective, some
works studied adversarial perturbations to attack [20,32,65]
and diagnose [26, 50] FRMs.

Other works criticized the physical and/or semantic real-
ism of traditional adversarial perturbations, and developed
sophisticated frameworks to introduce physical [41, 52, 53]
or semantic [32, 48] considerations. Despite such progress
in exploring the vulnerability of FRMs against perturba-
tions, there is still no consensus regarding a methodology
for studying the semantic robustness of FRMs.

In this work, we propose and deploy a methodol-
ogy for systematically assessing and characterizing the
semantic robustness of Face Recognition Models. Our
methodology achieves this objective by modeling identity-
preserving semantic modifications via constrained perturba-
tions in the latent space of Generative Adversarial Networks
(GANs) [24], specifically the popular StyleGAN [34].
Please refer to Figure 1 for a visual guide through our
methodology. Under this model of identity-preserving mod-
ifications, our methodology then connects such modifica-
tions with the domain of adversarial robustness [11, 59] to
study the semantic robustness of FRMs.

Our methodology models identity-preserving modifica-
tions of semantic attributes by introducing constrained per-
turbations in the latent space of StyleGAN [34]. In partic-
ular, we leverage InterFaceGAN [54, 55], a recent method
for interpreting the latent space of StyleGAN for synthetic
face generation. Identity-preserving perturbations are con-
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Figure 1. Searching for identity-preserving modifications via StyleGAN’s latent space. Given Alice’s latent code (w) and a subspace
of semantic attributes, we draw an identity-preserving neighborhood around Alice. We search for Alice?, a variant of Alice’s face, whose
latent code w? = w + ⌘⌘⌘ lies in this neighborhood. We generate the images corresponding to both w and w? via StyleGAN and find that,
despite remarkable similarities between the faces, a Face Recognition Model’s embedding space may suggest to match Alice? with Becky
rather than with Alice. Best viewed in color.

strained both in direction and magnitude: only the subspace
spanned by certain attributes is allowed, and different at-
tributes can be perturbed to different extents. We adapt ad-
versarial attacks to this model of identity-preserving mod-
ifications, and then search for semantic adversarial exam-
ples for FRMs by employing constrained- and minimum-
perturbation adversarial attacks [12,42]. We then character-
ize the semantic robustness of an individual FRM through a
statistical procedure that describes the adversarial examples
that fool the FRM. Finally, we show how our methodology
can leverage an approach for certified robustness. Certify-
ing an FRM provides us with (i) theoretical guarantees on
the FRM’s performance and (ii) insights into how the FRM
may model the notion of face identity, as delivered by a for-
mal description of the extent to which a face’s attributes can
vary while the FRM’s output remains constant.
Contributions. Our contributions are three-fold. (1) We
propose a methodology for studying the robustness of Face
Recognition Models (FRMs) against semantic perturba-
tions. For that purpose, we extend widely-used paradigms
of adversarial attacks to our methodology to search for se-
mantic adversarial examples. (2) We propose a procedure
for characterizing the semantic robustness of FRMs by sta-
tistically describing the semantic adversarial examples we
find. (3) We show how our methodology can be combined
with certification techniques, granting formal guarantees on
the performance of an FRM against semantic perturbations
and insights regarding how the FRM models identity.

2. Related Work

Adversarial attacks. Previous works [25, 59] showed
that adversarial examples, i.e. images modified by small
maliciously-crafted additive perturbations, could deterio-

rate the impressive recognition performance of DNNs. This
observation led to research on designing procedures, or “at-
tacks”, to find adversarial examples for DNNs. Attacks
can be dichotomously categorized into two paradigms [19]
according to how the underlying optimization problem ac-
counts for the perturbation’s magnitude: either as a con-
straint [42], known as constrained-perturbation attacks, or
as the objective itself [45], known as minimum-perturbation

attacks. In this work, we find semantic adversarial exam-
ples for FRMs by adapting adversarial attacks from both
paradigms to our methodology and searching in the latent
space of StyleGAN. For constrained-perturbation attacks,
we adopt Projected Gradient Descent (PGD) attacks [42],
while for minimum-perturbation attacks, we adopt Fast
Adaptive Boundary (FAB) attacks [12]. Moreover, we char-
acterize the semantic robustness of a target FRM by propos-
ing a statistical procedure to describe the adversarial exam-
ples found by each attack in terms of semantic attributes.
Certified robustness. Adversarial attacks can be used to
empirically assess the robustness of DNNs [9,10,13]. How-
ever, an attack’s inability to find adversarial examples for a
DNN does not imply the nonexistence of adversarial exam-
ples for this DNN [2,9]. To address this shortcoming, a line
of works studied “certifiable robustness” [38, 39, 62]. This
field studies models that are provably robust against additive
input perturbations of restricted magnitude, thus guarantee-
ing the nonexistence of adversarial examples at such magni-
tude. Randomized smoothing [11] is one such approach and
one of the main certification frameworks that scales to large
DNNs and datasets. In this work, we extend randomized
smoothing to combine it with our methodology. By certify-
ing FRMs against semantic perturbations, we provide per-
formance guarantees and insights into how FRMs recognize
faces and, thus, model the notion of identity.
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Adversarial examples for Face Recognition Models.

Face Recognition Models (FRMs) are computer vision
models, whose objective is recognizing human faces. Mod-
ern FRMs leverage DNNs to achieve impressive perfor-
mance [16, 17, 51]. The discovery of adversarial exam-
ples led to a stream of works attacking FRMs. Some
works perturbed the FRM’s input in pixel space [20,26,66],
while others proposed sophisticated attacks [14, 15, 58, 65]
that accounted for physical [4, 41, 52, 53] and seman-
tic [31, 32, 48] considerations in attacking FRMs in the
real-world. These works showcased the vulnerability of
FRMs against adversarial examples, both in pixel space
and in more semantically-inclined spaces. Sharing spirit
with our work, Song et al. [58] trained a class-conditional
GAN and conducted attacks in its latent space. Similarly,
Qiu et al. [48] interpolated in the latent space of an image-
conditional GAN to search for semantic adversarial exam-
ples. Joshi et al. [31] optimized over a Fader [37] net-
work’s latent space to fool facial attribute classifiers. Ruiz et

al. [50] searched for adversarial examples in a simulator’s
parametric space to detect weaknesses in FRMs. Most re-
cently, Li et al. [40] fooled deepfake-detection by searching
StyleGAN’s latent space for adversarial examples. While
earlier works address FRMs’ vulnerability against seman-
tic perturbations, a standard assessment of semantic robust-
ness is still missing. Our work fills this gap in the litera-
ture, proposing a methodology to assess and characterize
an FRM’s semantic robustness by searching for identity-
preserving examples that fool the FRM. We search for such
examples by modeling semantic (and interpretable) manip-
ulations of facial attributes via direction- and magnitude-
constrained perturbations in StyleGAN’s latent space.
GANs and interpretation methods. The advent of
GANs [24] propelled works on generating images of re-
markable visual quality [7, 33]. The impressive percep-
tual quality achieved by GANs [34, 35] suggested that the
representations learnt by these models inherently captured
concepts of our visual world. This observation stimu-
lated research on interpreting the internal features learnt
by GANs [3] and the GANs’ latent space [64]. Recent
works showed that this latent space not only encodes se-
mantic concepts, but that such concepts can also be dis-
covered [30, 56, 60, 61] and “controlled” [54, 55]. Our
methodology leverages identity-preserving modifications
by (i) building upon StyleGAN’s capacity for generating
human faces, and (ii) controlling facial attributes in Style-
GAN’s latent space via InterFaceGAN [54, 55].

3. Semantic Adversarial Attacks

Adversarial attacks usually fool a recognition model by
imperceptibly modifying the pixels of an input image with
an additive perturbation. These attacks find such perturba-
tion by searching for incorrectly-classified images within a

set of imperceptible perturbations. This set is often defined
in pixel space as an `p-ball with a small radius ✏, aiming at
preserving the image’s semantics. Thus, these attacks leave
both the image and its semantics mostly unchanged. While
analyzing these perturbations is of interest, here we aim for
a more practical class of perturbations that could fool FRMs
in the real-world. Thus, in this work, we aim to assess the
robustness of FRMs against semantic perturbations.

3.1. Problem Formulation

Let f : I ! P(Y) be an FRM that maps image I 2 I
into the probability simplex over the set of identities Y .
Given an image I of identity y, an attack aims at con-
structing I?, a perturbed version of I , considering two
goals: (i) image similarity, i.e. the distance between the
two images dI (I, I?) is small for some notion of dI , and
(ii) fooling the FRM, i.e. I? is not recognized as y such that
arg maxi f i (I?) 6= y. These two goals may be misaligned,
affecting the attack’s formulation via constrained optimiza-
tion. In particular, formulations differ in whether the goal
of similarity is used as a constraint—and so the fooling
goal is the objective—or vice versa. These two alternatives
give rise to the paradigms of constrained-perturbation and
minimum-perturbation attacks, respectively [19].

In this work, we find identity-preserving modifications
by proposing attacks from both paradigms that model image
similarity via distances in StyleGAN’s latent space.

3.2. Identity-preserving Modifications

A StyleGAN model G : W ! I generates images
by mapping from latent space to image space. We con-
sider a latent code w 2 W ✓ Rd, which produces im-
age I = G(w). We can generate I?, a perturbed vari-
ant of I , by injecting a perturbation ⌘⌘⌘ 2 Rd on w, that is
I? = G(w?) = G(w + ⌘⌘⌘). However, we are not interested
in introducing any perturbation, but rather perturbations that
produce identity-preserving modifications on I .

We remark two observations for these modifications:
(i) InterFaceGAN [55] finds directions along which latent
codes can be modified to inject semantically-viable modi-
fications, e.g. smile or pose directions, and (ii) constrained
modifications along these directions should not modify the
image’s identity. Hence, we model identity-preserving
modifications on I by constraining ⌘⌘⌘’s direction and magni-
tude. We next describe how we model each constraint.
Direction constraints. InterFaceGAN provides a set of N
directions {vi}Ni=1 in StyleGAN’s latent space. Each unit-
norm vector vi 2 Rd specifies a direction along which a
semantic face attribute changes. If these vectors are stacked
into matrix V 2 RN⇥d, then constraining ⌘⌘⌘’s direction
amounts to constraining ⌘⌘⌘ to lie in the subspace spanned
by V ’s rows. We enforce this constraint by substituting
⌘⌘⌘ = V >���. The substitution accomplishes our goal while
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Figure 2. Identity-preserving modifications. The row column is
the original image, and the other rows are random variants within
the respective identity-preserving neighborhood. Notice simulta-
neous changes in pose and smile, while eyeglasses change color or
appear/disappear.

changing the attack’s search space from Rd 3 ⌘⌘⌘ to RN 3 ���.
This change in search space benefits the attack’s efficiency,
since most likely N ⌧ d = 512. In practice, we derive V
by drawing upon the N = 5 interpretable directions pro-
vided by InterFaceGAN. Thus, we build matrix V from
the directions corresponding to attributes: “Pose”, “Age”,
“Gender”, “Smile” and “Eyeglasses”.
Magnitude constraints. Given how we enforce the direc-
tion constraints, we constrain ⌘⌘⌘’s magnitude by constraining
���’s magnitude. While most works in robustness constrain
with an `p norm, we argue this scheme is ill-suited for our
purposes, since the scale in which semantic attributes vary
may be incomparable across attributes. We thus introduce a
symmetric and Positive-Definite (PD) matrix M 2 RN⇥N

to induce “comparability” across attributes. Given this ma-
trix, we model ���’s magnitude as the norm induced by M .
Formally, we constrain

p
���>M ��� = k���kM,2  11 and so,

the ⌘⌘⌘’s magnitude is controlled solely by M . In practice,

we define M by noting each entry of ��� 2 RN is associated
with one direction from {vi}Ni=1, in turn corresponding to
a semantic attribute. Defining M is thus linked with the
maximum allowable perturbation along each individual vi.
Let the scalar ✏i define the maximum perturbation allowed
along vi, then we have the condition |���i|  ✏i. However,
this condition still leaves M ’s definition ill-posed. We re-
solve this ambiguity by requiring M to enclose the mini-
mum volume possible. With this requirement, we find that
M must be the diagonal matrix M = diag(✏�2

1 , . . . , ✏�2
N ).

We leave the details of this derivation to the Appendix.

1This formulation still allows bounding k���kM,2 by any ✏ > 0, as com-
mon in adversarial robustness, by redefining M as M := 1/✏2 M .

Summary: With the direction and magnitude constraints,
we define the set of identity-preserving modifications as
S(V, M) = {V >��� : k���kM,2  1}. We show examples
of these modifications in Figure 2.

3.3. Constrained-perturbation Attacks

Based on our formulation of identity-preserving modifi-
cations, we outline a constrained-perturbation attack under
our framework. In particular, for the composition F (w) =
f(G(w)) : W ! P(Y), an attack constructs an identity-
preserving modification ��� that fools the FRM f by solving:

max
���

L
�
F (w + V >���), y

�
s.t. k���kM,2  1,

where L is a suitable loss function between probability dis-
tributions. This problem can be tackled with Projected Gra-
dient Descent (PGD) [42], whose steps take the form:

���k+1 =
Y

k���kM,21

⇣
���k + ↵ r���L

�
F (w + V >���), y

� ���
���=���k

⌘
,

where ↵ is the step size and
Q

is the projection operator.
While this formulation is similar to the classical PGD, we
highlight a key difference: the set onto which updates are
projected, that is k���kM,2  1, is no longer an isotropic `p-
ball, but rather an ellipsoid. Hence, we derive next an ef-
ficient projection procedure on ellipsoids, which is critical
for the computational tractability of our iterative attacks.

Projecting to an ellipsoid. Formally, projecting a point ���
to the region defined by k���kM,2  1 is defined as solving

arg min
���?

1

2
k��� � ���?k2

2 , s.t. ���?>M ���?  1. (1)

If ��� is inside the ellipsoid, then ���? = ���. Otherwise, we
need to solve a variant of Problem (1), where the inequality
constraint is replaced by an equality, i.e. search for ���? on
the ellipsoid’s surface. Problem (1) is convex in ��� since M
is positive definite, so we find ���? with the Lagrangian:

L(���?, �) =
1

2
k���? � ���k2

2 + �
�
���?>M ���?> � 1

�
.

Deriving the KKT conditions yields:

(III + �? M)���? = ���?, (2)

where III is the identity and �? 2 R is the root of the function

h(�) = ���> (III + � M)�1 M (III + � M)�1 ��� � 1.

Thus, to find ���?, we efficiently find �? via the bisection
method, substitute into Eq. (2), and solve the linear system.

In practice, we define M as a diagonal matrix (Sec-
tion 3.2). This structure implies that h can be evalu-
ated without matrix multiplications nor inversions, and that
Eq. (2) is a diagonal system that can be efficiently solved.
Thus, our projection step is an inexpensive procedure that
makes our attacks computationally tractable.
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3.4. Minimum-perturbation Attacks

Analogous to constrained-perturbation attacks, we also
outline a minimum-perturbation attack under our frame-
work. In this paradigm, the attack aims to find the perturba-
tion with the smallest magnitude that fools the FRM. Thus,
based on our formulation of identity-preserving modifica-
tions, an attack that minimally modifies identity seeks to
solve the following optimization problem:

min
���

k���kM,2 s.t. arg max
i

F i(w + V >���) 6= y. (3)

We adopt the state-of-the-art FAB attack [12] to solve Prob-
lem (3), as detailed in the Appendix.

3.5. Interpreting Adversarial Examples

Once we attack and find adversarial perturbations, we are
interested in interpreting them. Each perturbation ��� 2 RN

has an associated energy k���kM,2, and entry ���i is related to
modifying the ith attribute. Hence, we discover trends in
how an FRM weighs attributes to recognize faces by finding
trends in how ���’s energy is distributed among the attributes.

We thus propose to describe these trends via a ranking of
the energy spent by ��� on modifying each attribute. There-
fore, we first compose a candidate ranking by collecting
“votes” from the ���s that were found, and then validate the
ranking by conducting statistical tests.
Composing a candidate ranking. The quantities be-
ing ranked must consider (i) the likely anisotropy of the
attribute space and (ii) the energy of each perturbation
found. Thus, we consider the normalized entries �̂��i =
���2i/(✏2i k���kM,2). Based on these entries, each ��� casts weighed
votes, which we sort to find a “winner” attribute. Each time
a winner is found, we append the attribute to the ranking,
and so we complete the ranking by iterating (N � 1) times.
We evaluate for significant differences among the remaining
attributes with Friedman’s test before deciding each winner.
Validating the ranking. Once we have a candidate ranking,
we validate it with a statistical test. In particular, we model
a ranking of N attributes as (N � 1) pair-wise comparisons
of adjacent items in the ranking. Thus, for each such pair of
items we run a Wilcoxon signed-rank test. Hence, for each
ranking, we obtain (N � 1) p-values testing for the local
validity of the candidate ranking we propose.

3.6. Certifying Against Semantic Perturbations

We also outline a certified robustness approach under our
framework. We consider composition F from Section 3.3
and adopt a certification formulation based on random-
ized smoothing. In particular, we specialize the definition
of domain-smoothed classifiers [1, 47] to anisotropically-
smooth [21] semantic directions defined by matrix V .

Definition 1. Given a classifier F (w) : W ! P(Y), we

define a semantically-smoothed classifier as:

g(w,p) = E✏✏✏⇠N (0,⌃)

⇥
F
�
w + V T (p + ✏✏✏)

�⇤
.

In a nutshell, g’s prediction for the image generated from
latent code w is the expected value of F ’s predictions for se-
mantic variants of the image, where such variants originate
from perturbing w. Moreover, p represents a canonical se-
mantic perturbation of the original image. The following
proposition shows that our smooth classifier g is certifiably
robust against semantic perturbations along the directions
defined by V . We leave the proof for the Appendix.

Proposition 1. Let g assign class cA for the input pair

(w,p), i.e. arg maxc gc(w,p) = cA with:

pA = gcA(w,p) and pB = max
c 6=cA

gc(w,p)

then arg maxc gc(w,p + ���) = cA 8 ��� such that:

p
���T⌃�1���  1

2

�
��1(pA) � ��1(pB)

�
. (4)

Here, ⌃ is the Gaussian covariance matrix and � is the
Gaussian CDF. Proposition 1 guarantees the smooth classi-
fier’s prediction will be constant for all perturbations within
the ellipsoid defined by Eq. (6). Note our result is not con-
strained to directions in a GAN’s latent space: the smooth
classifier is certifiable w.r.t. directions characterized by any
matrix V . When ⌃ = �III , Eq. (6) reduces to isotropic
certification as introduced in Randomized Smoothing [11];
consequently, other choices of ⌃ yield anisotropic certifica-
tion.

4. Experiments

In this section, we assess and characterize the seman-
tic robustness of off-the-shelf FRMs with our method-
ology. We first study robustness under a constrained-
perturbation attack, i.e. PGD. Then, we study robustness
under a minimum-perturbation attack, i.e. FAB. Finally, we
run isotropic and anisotropic certifications on the FRMs.

4.1. Experimental details

FRMs. We target three renowned off-the-shelf FRMs: (i)

ArcFace [17], (ii) a FaceNet [51] model trained on CASIA-
Webface [67] that we refer to as “FaceNetC”, and (iii) a
FaceNet model trained on VGGFace2 [8] that we refer to
as “FaceNetV ”. All models were retrieved from the public
implementations InsightFace and facenet-pytorch.
Attributes’ budget. Table 1 reports the budgets we as-
sign to each attribute, i.e. the ✏i defining the maximum ex-
tent to which latent codes can be perturbed in the direction
of each attribute without changing the identity. We estab-
lish these values by qualitatively and extensively exploring

319



Table 1. Budget per attribute. We report the budget assigned for
each attribute, i.e. the maximum extent to which a latent code is
allowed to vary in each direction while preserving identity.

✏i for attribute:
Pose Age Gender Smile Eyeglasses
0.5 0.5 0.2 0.8 0.5

StyleGAN’s output. In particular, we set ✏i values that al-
lowed StyleGAN to generate high-quality faces which, ar-
guably, belong to the original identity. Figure 2 shows ex-
amples of faces following these ✏i attribute budgets.

Attacks. Unless stated otherwise, we always experiment
with a StyleGAN-generated dataset of 100k identities (of
comparable size to FFHQ [34]), from which we extract 5k
identities to attack. We consider one image per identity.
PGD. We use PGD with 10 iterations and 10 restarts. FAB.

This attack has un-targeted and targeted versions. FAB’s
un-targeted version is impractical, since its computational
cost scales with the number of identities in the dataset.
Thus, in practice, we use FAB’s targeted version, and refer
to it simply as “FAB”. We use FAB with 10 iterations, 10
restarts, and 10 target classes. We ablate PGD’s and FAB’s
hyper-parameters in the Appendix.

Certification. Randomized Smoothing (RS) uses Monte
Carlo sampling and a statistical test on the predicted class
probability. We use 100 and 10, 000 samples to determine
cA and pa, respectively, and a significance of ↵ = 10�3 for
the statistical test. Due to the computational cost of RS, we
follow common practice [11] and certify 500 identities.

4.2. Attacks with PGD

Attacking each FRM with PGD reveals the model’s se-
mantic robust accuracy, i.e. the accuracy achieved by the
model when under semantic attacks. We find the follow-
ing robust accuracies: 84.9 for ArcFace, 76.9 for FaceNetC ,
and 71.0 for FaceNetV . That is, PGD attacks suggest Arc-
Face is more robust than FaceNetC , which is, in turn, more
robust than FaceNetV . We show some of the adversarial ex-
amples that fooled ArcFace in Figure 3. We note that sub-
tle changes in smiling, pose and, most notably, eyeglasses,
cause the FRM to malfunction. Next, we take a closer look
at the adversarial examples found by PGD by conducting
the statistical procedure described in Section 3.5.

Interpreting adversarial PGD examples. We analyze how
PGD spends its budget when constructing adversarial exam-
ples. Since PGD is a constrained-perturbation attack, we ar-
gue that the relative energy spent on modifying an attribute
is related to “the FRM’s disproportionate sensitivity to mod-

ifications on such attribute”. We characterize each FRM’s
semantic robustness by applying the procedure described in
Section 3.5 on the semantic adversarial examples found by

Table 2. Ranking of PGD’s per-attribute energy spent. The
rankings suggest each FRM’s disproportionate sensitivity against
modifications to an attribute (relative to other attributes). We de-
note statistically-significant comparisons with “>?”, and the rest
with “�” (significance of 0.01).

Method Ranking
1st 2nd 3rd 4th 5th

ArcFace E >? P >? A >? S >? G
FaceNetC E >? A >? P � G � S
FaceNetV E >? A >? P � G � S
Eyeglasses (E), Pose (P), Age (A), Smile (S), Gender (G)

PGD, and report the ranking we obtain2 in Table 2. We
make two main observations about the extrema of the rank-
ings, which hold for all FRMs: (i) the “Eyeglasses” attribute
leads the ranking in 1st position, and (ii) the “Smile” and
“Gender” attributes take the last two positions (4th and 5th).
Next, we discuss these observations.

First, we find of high interest that statistical validation
can suggest how the presence/absence of eyeglasses is a
strong cue on which FRMs rely, somewhat disproportion-
ately, to recognize faces. This finding can be related to pre-
vious works [22, 23] that observe how DNNs learn “short-
cuts” to solve tasks, thus hindering generalization. More-
over, we note that reliance on eyeglasses is not strange to the
human visual system: humans also have difficulty recogniz-
ing people when glasses are added/removed. Additionally,
our methodology’s computation of the position in which
eyeglasses rank may prove useful to improve the robustness
of FRMs against addition and removal of eyeglasses.

Second, we observe that the smile and gender attributes
fall last in the ranking. Thus, compared to other attributes,
neither smile nor gender are attributes to which FRMs are
disproportionately sensitive. That is, under the attack’s con-
strained budget, modifying either smile or gender is largely
ineffective: altering either such that the FRM is fooled
would require an expense that exceeds the budget that was
given to PGD. This observation can be read as a pleasant
finding: we do not find evidence that FRMs can be fooled
by constrained changes in smile nor gender. Lastly, we
leave more detailed discussion with a brute-force approach
for characterizing semantic robustness to the Appendix.
Robustness vs. dataset size. An FRM’s chances of confus-
ing individuals varies as the dataset size changes. We thus
experiment with this factor and vary the number of identi-
ties in the dataset from 5k to 1M and conduct PGD attacks
on the same 5k identities as before. Figure 4a reports the
robust accuracies for each dataset size we considered. As
expected, the robust accuracies of all FRMs drop rapidly
as the number of identities increases. Specifically, perfor-
mances drop from around 85% when there are 5k identities
to around 70% when there are 1M identities. Our experi-

2We leave implementation details to the Appendix.
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Figure 3. PGD attacks on Face Recognition Models (FRMs). Given face A of an identity, we attack an FRM (ArcFace) to find A?, an
identity-preserving modified version, such that the FRM matches A? with B rather than with A.

ments show that an FRM’s semantic robustness largely de-
pends on the number of identities it is required to recognize.
Hence, depending on the deployment setting, semantic ro-
bustness concerns may vary from negligible to problematic.
Attacking more identities. For computational feasibility,
we considered a sample of 5k out of the 100k identities
for our attacks. Here, we test whether this set of identities
is a representative sample of the population. We thus fix
the 100k identities in the dataset and vary the amount of
samples we attack from 1k to 20k and report the results in
Figure 4b. We observe that there is virtually no variation in
the semantic robustness of any FRM. These results suggest
that our design choice of experimenting with 5k samples
provides a reasonable sample of the population for assess-
ing the semantic adversarial robustness of FRMs.
Perturbation budget. In previous experiments, we
searched for adversarial examples within the set of identity-
preserving modifications by constraining k���kM,2  ✏ = 1.
Since our analysis relied on an empirical estimate of the
identity-preserving region (i.e. M ), this region might not
be the tightest. Thus, we test how FRMs behave when this
constraint is relaxed/tightened by varying ✏ from 1/4 to 8.
We report results in Figure 4c. As expected, the robust-
ness of all FRMs drops rapidly when the semantic pertur-
bation budget increases: ArcFace: 98.3 ! 4.1, FaceNetC :
95.4 ! 12.6, and FaceNetV : 93.3 ! 7.3. It is worthwhile
to note that allowing semantic perturbation budgets of ✏ > 1
could lead to changing the generated face’s identity.

4.3. FAB attack

We also assess each FRM’s semantic robustness with
FAB attacks. FAB searches over the subspace of seman-
tic attributes, however, FAB does not guarantee that the
adversarial examples it finds fall in the identity-preserving
neighborhood. That is, while FAB may successfully find
adversarial examples for all the instances it attacks, a hu-
man observer may no longer judge the discovered examples
as belonging to the same identity.

We run FAB on each FRM, and find semantic adversar-
ial examples for all the 5k images we attack. The latent
code w? = w + V >��� of each adversarial example found
has a perturbation budget k���kM,2. FAB finds few adversar-
ial examples with k���kM,2  1, that is, within the identity-
preserving neighborhood; in particular: 3 for ArcFace, 10
for FaceNetC and 13 for FaceNetV . Given the uncertainty
on M ’s tightness (due to its empirical estimation), and fol-
lowing common practice in robustness [19], We plot accu-
racy vs. perturbation budget curves for all FRMs in Fig-
ure 4d. Adversarial robustness is judged by how rapidly
each curve drops as the perturbation budget increases. Thus,
FAB’s assessment suggests ArcFace is more robust than
FaceNetC , which is more robust than FaceNetV , agreeing
with PGD’s ranking. We leave the interpretation of FAB’s
adversarial examples (via the procedure from Section 3.5
and a brute-force approach) to the Appendix.

4.4. FRM Certification

Isotropic certification. Following the methodology intro-
duced in Section 3.6, we certify all FRMs with covariance
⌃ = �2III , and set � 2 {0.1, 0.25, 0.5, 0.75, 1}. In this
setup, the certified region in Proposition 1 is a ball with
radius k���k2  �

2

�
��1(pA) � ��1(pB)

�
:= R, as derived

in [1]. We denote this quantity as the certified radius.
Anisotropic certification. Following our consideration
of anisotropic regions for preserving identity, we explore
anisotropic certification by drawing upon recent work [21]
that extends RS to anisotropic settings. Thus, we require
a sensible candidate for an anisotropic ⌃ in Proposition 1,
encoding a priori knowledge on the subspace of seman-
tic attributes. Hence, we set ⌃ = M�1, where M is the
matrix encoding the magnitude constraints in our approach.
The rationale behind this choice is that the Mahalanobis dis-
tance to the distribution N (0, M�1) draws precisely the el-
lipsoid described by M . For the experiments, we consider
⌃ = �M�1 and set � 2 {0.25, 0.5, 0.75, 1, 2, 2.5}. Since
anisotropic regions lack a notion of radius, we follow [21]

321



104 105 106

# of identities in dataset

65

70

75

80

85

90

R
ob

us
t

ac
cu

ra
cy

PGD and dataset size

ArcFace

FaceNetC

FaceNetV

103 104

# of identities attacked

72

74

76

78

80

82

84

86
PGD and attacked identities

2�2 2�1 20 21 22 23

Perturbation budget

0

20

40

60

80

100

PGD’s perturbation budget

0 1 2 3 4 5 6

Perturbation budget

0.0

0.2

0.4

0.6

0.8

1.0

FAB’s perturbation budget

Avg. pert.= 3.17

Avg. pert.= 2.68

Avg. pert.= 2.44

(a) (b) (c) (d)

Figure 4. Assessing semantic robustness via attacks. We use PGD and FAB to assess the semantic robustness of three Face Recognition
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and FAB (d), we show how robustness changes w.r.t. perturbation budget.
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Figure 5. Certifying Face Recognition Models (FRMs) via

Randomized Smoothing. Envelope curves of all FRMs both for
isotropic (left) and anisotropic (right) certification.

and compute a radius proxy: the radius of a ball whose vol-
ume is equivalent to that of the certified region.

Results. We compute the best certificates for each FRM
across all � values, and report certified accuracy curves in
Figure 5 for isotropic (left) and anisotropic (right) certifica-
tion. Each point (x, y) in a curve implies that percentage
y% of the dataset is both predicted correctly and has a certi-
fied radius of at least x. Moreover, we adopt common prac-
tice [68] and report the Average Certified Radius (ACR) for
each FRM. We draw the following observations: (i) The cer-
tified accuracy within the identity-preserving region is re-
markably low. That is, while all FRMs displayed substantial
robustness against our attacks, certification demonstrates
these models can be fooled by stronger attacks. Hence, we
find FRMs are also extremely vulnerable to simple seman-
tic perturbations. We argue this vulnerability is expected, as
regular DNN training is not designed to resist against adver-
sarial attacks. (ii) The ACRs under the anisotropic setting
are smaller than those under the isotropic one. This can be
a result of a sub-optimal choice of the matrix ⌃.

5. Conclusions

We propose a methodology for assessing and character-
izing the semantic robustness of Face Recognition Models
(FRMs). Our methodology induces malfunction in FRMs
by conducting direction- and magnitude-constrained search
in StyleGAN’s latent space, such that faces are modified
but their identity is preserved. Under this framework, we
attack FRMs, find adversarial examples, and then charac-
terize the semantic robustness of FRMs by statistically de-
scribing the examples that lead them to fail. Finally, we
demonstrate how our methodology can leverage a certifica-
tion technique, allowing us to construct a formal description
of what an FRM may conceive as a face’s identity.

6. Limitations

The main focus of our study is the semantic robustness
of a standalone FRM. However, in practice, we are unable
to directly study the FRM, as we introduce a StyleGAN be-

fore the FRM. We model semantic directions in StyleGAN’s
latent space via InterFaceGAN. Thus, the conclusions we
reach are limited by the weaknesses of StyleGAN and Inter-
FaceGAN. Specifically, we underscore the following weak-
nesses: (i) there are no guarantees for StyleGAN’s output,
while impressive, to be clean of artifacts, (ii) StyleGAN’s
training data is presumably biased, thus affecting the di-
versity of generated faces, and (iii) the semantic directions
found by InterFaceGAN still display some entanglement.

Further limitations relate to the types of attacks consid-
ered and the usage of GANs. In particular, while other types
of attacks exist [5, 28], we focus exclusively on adversarial
attacks, in which a target DNN is fooled via input manip-
ulation. Moreover, while recently diffusion models have
shown remarkable capacity for generating photo-realistic
imagery [18,29,49], our work leveraged GANs exclusively,
mainly due to their well-studied latent space and low com-
putational burden, when compared to diffusion models.
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