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Abstract

When light passes through a camera lens, it creates a
residue called “flare” due to the interaction between for-
eign substances on the lens surface and internal glasses. At
night, images can be distorted by flare due to multiple light
sources, and research has been conducted using neural net-
works to remove the flare and solve this problem. However,
to our knowledge, research on this approach has only re-
cently begun, and the results are still limited, with only a
few models available for use. Further research is needed
to determine if the existing models provide optimal results.
As part of the mentioned research, we propose a cascaded
neural network structure as a means of fine-tuning earlier
models to improve their performance. We optimize the per-
formance of the proposed model by constructing triplets us-
ing the outputs of two identical neural networks and ap-
plying contrastive learning. To demonstrate the superiority
of the proposed method, we quantitatively evaluated it by
measuring PSNR and SSIM. We also visually compared the
differences in image details after removing the flare. Ex-
perimental results confirmed that the images reconstructed
by the proposed model were superior in terms of PSNR and
SSIM in streak regions, compared to the results generated
by the reference model.

1. Introduction

Flare is a type of distortion that can occur in images cap-
tured by a camera when a bright light source is present in or
around the image frame. Flare is a visual distortion that can
appear in images captured by a camera, caused by light scat-
tering or reflection due to optical interference among glass
clusters inside the lens or damage on the surface of the lens,
as reported in previous studies [17], [23]. Flare can manifest
in various patterns, such as stripes, lines, spots, color satu-
ration, ghosts, blurring, blotches, or haze [3], [28]. These
patterns can reduce the details around the flare and even ob-

scure important content in the image. The impact of flare
becomes more severe, especially in low-light conditions at
night, due to the influence of multiple artificial lights [12].

The conventional method for removing flare is to com-
pensate for the optical components physically. Indeed,
when using a hood or filter on the lens or a lens with a spe-
cial coating material, it is possible to obtain a photo with-
out flare by adjusting the shooting conditions appropriately
[15]. However, when taking photos, there are limitations
in the composition, and additional costs may be required
for using auxiliary equipment. Furthermore, these methods
have a critical disadvantage that they almost do not work,
especially at night when there are multiple artificial light
sources [3]. Post-processing methods for distortion com-
pensation have been devised because it is physically impos-
sible to completely overcome the phenomenon of lens flare.
The post-processing methods can be divided into computa-
tional and learning-based approaches. Computational meth-
ods use mathematical models of the physical characteris-
tics of flare to compensate for the distortion in the image
caused by flare. The flare can be removed by using linear
transformations, filtering, or thresholding methods, as re-
ported in previous studies [4], [27], [32]. Computational
methods work well for given specific problems, but since
flares can occur due to various factors, they do not gener-
alize well to various real-world images [23]. A learning-
based approach is a method of removing flares from images
using a trained neural network. Most learning-based meth-
ods train neural networks for flare removal using the super-
vised learning approach. The dataset for training flare re-
moval neural networks consists of flare images and images
without flares. Flare removal neural networks mainly use
autoencoder structures such as U-Net. The learning-based
method is known to be more successful in removing flares
compared to conventional methods. However, creating a
dataset composed of image pairs is a very difficult task, and
obtaining ground truth from completely identical perspec-
tives is difficult. In addition, obtaining a sufficient number
of training samples to demonstrate good performance for
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flare removal requires a significant amount of human labor.
Recently, datasets have been developed using flare patterns
as the base data to synthesize real images, due to the dif-
ficulty of obtaining a sufficient number of training samples
for flare removal using real-world images [3].

Recent studies have proposed the use of advanced au-
toencoder structures such as Uformer, in addition to U-Net,
for flare removal. In an autoencoder, the encoder takes
an input image and encodes its main features into a la-
tent space, which is then decoded by the decoder to recon-
struct the desired output. Autoencoders are known to be
optimized through Mean-Squared Error (MSE) loss if it is
assumed that the latent variables follow a Gaussian distri-
bution [7]. However, in a reconstruction task, using MSE
loss can result in excessive regularization, which can lead to
poor representation of image details [30], [8]. In the field of
dehazing, contrastive learning has been applied to alleviate
the problem of loss of details in image reconstruction [26].
This method sets the autoencoder output as the anchor, the
target image as positive, and the source image as negative.
The method trains the distance between the anchor and pos-
itive images in the embedding space to be close, while the
distance between the anchor and negative images is trained
to be far. To achieve this goal, a large number of negative
samples with high similarity to the anchor are needed [18].
As the number of hard negative training samples increases,
the neural network can distinguish features more precisely,
leading to better performance [29].

This paper proposes a cascaded fine-tuning network to
enhance flare removal performance in images captured at
night. The proposed method can obtain triplet samples
through a cascaded fine-tuning network and then optimize
the network using contrastive learning. The cascaded fine-
tuning network consists of two identical flare removal net-
works connected in series. The first network acts as a nega-
tive sampler. For the first network, pre-trained weights from
a previously trained flare removal network will be applied,
and the gradients will be fixed to ensure that coherent nega-
tive samples are produced. The second network acts as the
anchor sampler. Each sample from the sampling networks
will be a part of a triplet sample to train the proposed cas-
caded fine-tuning network. The proposed network makes
it easy to obtain hard-negative samples, which can lead to
successful contrastive learning. This structure is trained so
that its output is far from the output of the first network, and
close to the target. The proposed network will reconstruct
output images close to the target images. Therefore, it can
improve the performance of flare removal.

The contribution of this paper can be summarized as fol-
lows:

• We introduced a cascaded network structure for gen-
erating triplet samples, which makes it easy to obtain
hard-negative samples to train on contrastive learning.

This network improves the performance of flare re-
moval.

• We demonstrated the effectiveness of the proposed net-
work by providing quantitive experiment results on the
flare removal dataset. Additionally, we provided to
compare reconstructed details by visualization.

2. Related Works
2.1. Artifact Removal

The topic of directly researching artifact removal from
images based on the characteristics of flares has only re-
cently been discussed. However, topics dealing with artifact
removal in images, such as deblurring [33], dehazing [2],
denoising [1] [14], dust spot removal [9], image compres-
sion [21], [11], and super-resolution [24], have been re-
searched in various directions even before the recent discus-
sion on directly studying artifact removal based on the char-
acteristics of flares. Zhou et al. [33] proposed STFAN pro-
poses a new Filter Adaptive Convolutional (FAC) layer to
address spatially variant blur for alignment and deblurring
in a unified framework. Evaluation of benchmark datasets
and real-world videos shows that STFAN performs favor-
ably against state-of-the-art methods in terms of accuracy,
speed, and model size. Chen et al. [2] proposed an end-to-
end gated context aggregation network that directly restores
haze-free images without traditional low-level or hand-
crafted image priors. Chang et al. [1] proposed a spatial-
adaptive denoising network (SADNet) for efficient single-
image blind noise removal. This method introduced a resid-
ual spatial-adaptive block, deformable convolution, and an
encoder-decoder structure with a context block to capture
multiscale information. Prakash et al. [14] proposed an
architecture called Hierarchical DivNoising (HDN) based
on a hierarchical variational Autoencoder. HDN learns an
interpretable multi-scale representation of artifacts and re-
moves image artifacts commonly occurring in microscopy
data. Li et al. [9] proposed to detect attention maps to iden-
tify regions that need to be restored and use a flow com-
pletion module to hallucinate the flow of the background
scene. Svoboda et al. [21] proposed to train large and deep
convolutional neural networks (CNN) for JPEG compres-
sion artifacts reduction using residual learning, skip archi-
tecture, and symmetric weight initialization, networks with
8-layers can be trained in a single step with relatively short
time. Most learning-based studies for removing image ar-
tifacts use autoencoders, and some use generative adver-
sarial networks (GANs). In terms of image reconstruction,
GANs have the disadvantage of being difficult to train due
to the mode collapse problem and requiring long training
times [20]. Autoencoders can be trained more stably com-
pared to GANs because they converge well [22]. On the
other hand, the reconstructed images from autoencoders are
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Figure 1. The geometric relationship of the triplet samples in an
embedding space: anchor, positive, and negatives (hard and easy
cases)

often blurry compared to GANs. However, several stud-
ies have been proposed to improve the image details using
techniques such as perceptual loss, which were adopted in
GANs, to enhance the image details [13]. This paper also
uses neural networks with an autoencoder for artifact re-
moval caused by lens flare.

2.2. Contrastive Learning

Contrastive learning is a neural network training tech-
nique that induces similar images to cluster together and
dissimilar images to increase distance farther apart in the
latent space of image embeddings. In contrastive learning,
various types of loss functions are defined depending on the
number of data composing one sample. First, a contrastive
loss is used when a single sample is composed of two data
points [5]. The two data are defined as positive if their sim-
ilarity is high, and negative if their similarity is low. Next,
a triplet loss is defined for a sample that consists of a pos-
itive, a negative, and an anchor [18]. The anchor is a data
point that is similar to the positive data but dissimilar to the
negative data in the triplet loss. The triplet loss is defined
by the following equation:
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where, xa
i , xp

i , and xn
i are i-th anchor, positive, and negative

samples, respectively. f(·) is embedding representation, α
is margin, and ∥ · ∥22 is L2-distance calculated by MSE.

During optimization for the model, triplet selection is
known to affect the convergence speed and training perfor-
mance. Especially, hard-negative mining is crucial since it
affects those purposes. The hard-negative mining refers to

the rule of selecting negative data that is as similar as possi-
ble to the anchor data, and training models according to this
rule can improve the ability to distinguish features of the
data [16]. When training a model using the data samples
obtained by hard-negative mining as shown in Figure 1, it
encourages the model to learn to be close to similar sam-
ples but be far apart from dissimilar samples in the latent
space [34]. In this paper, the proposed cascaded fine-tuning
network will be optimized using triplet loss. The proposed
network conducts hard-negative mining using the interme-
diate outputs of the model as negative samples.

2.3. Dataset: Flare7K

Flare7K is a state-of-the-art nighttime flare dataset cre-
ated by observing and statistically analyzing the lens flare
phenomenon that occurs in nighttime environments [3].
This dataset consists of 5000 scattered flare images and
2000 reflected flare images. With the flare patterns in this
dataset and the synthesis of flare-free images, virtual flare
images can be produced. This approach makes nighttime
flare images possible to automate the dataset creation pro-
cess and obtain perfect ground truth. In this paper, flare
removal is performed based on the Flare7K dataset. The
subset provided in [32] is used as the 23,949 flare-free back-
ground images in the Nighttime Flare Removal competition.

3. Cascaded Fine-Tuning Network
3.1. Network Structure

This paper proposes a network structure for flare removal
and a training method using triplet samples. The proposed
method in this paper for triplet mining involves applying
a cascaded model structure, as shown in Figure 2. This
proposed network is designed to concatenate two identical
neural network models in series. The first model is the neg-
ative sampling network, which is used to get hard-negative
samples. The output of the first model should be similar
to the positive or anchor image. As mentioned, contrastive
learning groups negative samples similar to anchor samples
when constructing triplets. This policy leads the model can
learn to separate the distance between clusters in the la-
tent space. We will use a pre-trained legacy flare removal
model to obtain hard-negative samples. Since the legacy
flare removal model is optimized to output images similar
to the target image, the proposed network can be considered
as providing sufficiently difficult negative samples that are
challenging to distinguish from positive samples. The neg-
ative sampling network should be able to make high-quality
negative samples consistently. To this end, in the proposed
method, the gradients are fixed so that the parameters of the
negative sampling network do not change. The second net-
work is the anchor sampling network, which is used to get
anchor samples. The anchor sampling network is trained to
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Figure 2. Structure of the proposed cascaded fine-tuning network for flare removal: The proposed design allows to makes easier hard-
negative samples for contrastive learning.

output images that are similar to the positive image while
being distinguishable from the negative image.

Three loss functions are used to train the proposed cas-
caded fine-tuning network. The first one is the regulariza-
tion loss, denoted as LREG. The pixel-wise error between
the positive sample xp

i and the anchor sample xa
i of the i-th

triplet is computed as follows:

LREG(x
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k
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where k is either 0 or 1, and if k = 1, it represents the L1
norm, whereas if k = 2, it represents the L2 norm.

The second one is the perceptual loss LPL. Training
neural networks with both MSE loss and perceptual loss has
been found to have advantages in preserving image details
in super-resolution tasks, as shown in [6], [8] and [31]. Per-
ceptual loss utilizes the feature maps of the activation layer
just before the output layer in a pre-trained neural network.
Perceptual loss can be calculated using the Euclidean dis-
tance between the feature map f (xp

i ) of a positive sample
and the feature map f (xa

i ) of an anchor sample.
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2
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The third one is the triplet loss Ltriplet defined in equa-
tion (1). Ltriplet calculates the embedding similarity of
triplet samples. The embeddings of triplet samples can be
obtained through the perceptual encoder. The similarity
between images is evaluated by calculating the Euclidean
distance in the latent space of the perceptual encoder. We
trained the proposed network, which takes into account the
weights of the three loss functions mentioned above. We
will apply 0.001 for δ, as set in [8], and determine the value
of λ experimentally in the later section.
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3.2. Perceptual Encoding

Perceptual encoding is used to extract feature maps from
images, and perceptual encoders use these extracted fea-
tures to represent them in embedding space. In [8], a pre-
trained VGG neural network was used as the perceptual en-
coder, but it is possible to use non-VGG neural networks as
well [10]. It has been studied that using a neural network
as the backbone of the perceptual encoder, which has supe-
rior classification or detection performance, results in good
perceptual similarity judgment ability [31]. Many publicly
available image classification neural networks are trained
on the ImageNet dataset, and recent models have exceeded
88 % top-1 accuracy. In this paper, the ViT-Large model
fine-tuned using large-scale weakly supervised learning was
set as the backbone of the perceptual encoder [19].

4. Experiment
4.1. Evaluation Setup

We evaluate the performance of the proposed network
in flare removal using PSNR (Peak Signal-to-Noise Ra-
tio) and SSIM (Structural Similarity Index) [25]. The
PSNR quantitatively evaluates the difference between im-
ages by measuring the pixel-wise MSE between the tar-
get image and the flare-removed image. Another met-
ric, SSIM, quantitatively evaluates the difference between
two images by measuring luminance, contrast, and struc-
ture, similar to human visual perception. We calculated the
PSNR and SSIM of the entire image area, streak area, and
glare area [3] using the peak_signal_noise_ratio
and structural_similarity modules implemented
in the scikit-image package.

We describe the software and hardware setup for con-
ducting experiments on the proposed network. All software
packages used for the experiments are based on Python
3.8.10. We developed the training functionality of the
proposed cascaded fine-tuning network using neural net-
work modules implemented in PyTorch 1.14 and Torchvi-
sion 0.15. We applied pre-trained models provided in [3]
as the initial weights for the negative and anchor sampling
networks in the proposed cascaded fine-tuning network.
Here, the negative sampling network was specified with the
requires_grad attribute of its neural network param-
eters set to False to prevent training. Therefore, only the
anchor sampling network undergoes the training process.
The pre-trained model to be used in the experiment is im-
plemented using the Uformer architecture.

For training, the background images were augmented us-
ing random crop, vertical flip, horizontal flip, and random
erasing techniques. The resolution of the image was ad-
justed to be 128 × 128 or 512 × 512 by applying random
crop or resize. For quantitative evaluation, images of size
128×128 were used, whereas images of size 512×512 were

Method PSNR (dB) SSIM

Uformer [3] 23.74 / 30.28 / 27.79 0.8692 / 0.9646 / 0.9269

Ours

k = 1, λ = 1.0 23.75 / 30.42 / 27.80 0.8698 / 0.9651 / 0.9274
k = 1, 0.8 23.76 / 30.39 / 27.80 0.8693 / 0.9649 / 0.9270
k = 1, 0.6 23.69 / 30.46 / 27.73 0.8699 / 0.9653 / 0.9273
k = 1, 0.4 23.62 / 30.50 / 27.68 0.8706 / 0.9656 / 0.9277
k = 1, 0.2 23.72 / 30.44 / 27.78 0.8695 / 0.9651 / 0.9271
k = 1, 0.0 23.71 / 30.37 / 27.75 0.8679 / 0.9648 / 0.9263

k = 2, 1.0 23.42 / 30.58 / 27.50 0.8710 / 0.9661 / 0.9282
k = 2, 0.8 23.09 / 30.60 / 27.20 0.8702 / 0.9665 / 0.9284
k = 2, 0.6 23.18 / 30.60 / 27.29 0.8706 / 0.9664 / 0.9285
k = 2, 0.4 23.71 / 30.44 / 27.76 0.8692 / 0.9651 / 0.9269
k = 2, 0.2 23.71 / 30.38 / 27.76 0.8680 / 0.9648 / 0.9264
k = 2, 0.0 23.71 / 30.37 / 27.75 0.8679 / 0.9648 / 0.9263

Table 1. Quantitative evaluation results of the reference and the
proposed networks in terms of PSNR and SSIM for the entire im-
age, streak, and glare regions

used for visual evaluation. The proposed model was trained
using the SGD optimizer with a learning rate of 0.001. The
software used for the experiment was executed on an envi-
ronment with an AMD Threadripper 3975X CPU, 256 GB
RAM, and NVIDIA Quadro RTX A6000 GPUs. To con-
duct training using multi GPUs, we used the horovod 0.26.1
package.

4.2. Results

To confirm the performance benefits of the proposed
model, we compared the PSNR and SSIM metrics of the en-
tire image, streak, and glare areas using a reference model
[3]. The flare removal images in [3] were obtained from
the output images of a negative sampling network with a
pre-trained model applied, and the performance was eval-
uated using a validation set of real flare-corrupted images
that provided both ground truth and flare mask. To compare
the performance of the proposed model with the reference
model, we used 100 validation images and calculated the
average PSNR and SSIM values for the entire image area
and the flare-corrupted area. The results are presented in
Table 1.

In the quantitative evaluation results of Table 1, it can be
observed that the proposed method demonstrates good per-
formance in most test cases. The PSNR of the streak region
of the proposed model is generally better than that of the ref-
erence model under most conditions, with a maximum per-
formance gain of 0.32 dB. However, the PSNR of the glare
region shows poor performance compared to the reference
model. Meanwhile, the proposed method shows a maxi-
mum performance gain of 0.0019 and 0.0016 in the streak
and glare regions, respectively, according to SSIM. Based
on these results, it can be anticipated that the proposed
method will have an advantage in streak region PSNR per-
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Figure 3. Comparing the two output samples from negative(reference) and anchor(proposed) networks: quantitative results of the negative
and the anchor samples in terms of PSNR and SSIM (negative/anchor) for synthetic flare dataset: (a) 29.40 / 30.12, 0.9895 / 0.9883 (b)
33.88 / 34.37, 0.9598 / 0.9689 (c) 17.44 / 16.66, 0.9058 / 0.9000 (d) 22.37 / 21.94, 0.9731 / 0.9751

formance. Therefore, we trained our flare removal model
using the condition of k = 2 and λ = 0.6, which we expect
to exhibit better performance than the others in that region.

Since quantitative evaluations cannot perfectly assess
image quality, it is necessary to visually confirm the results.
We visualized flare-removed images obtained from the pro-
posed and the reference networks to confirm whether the
proposed network has a superior ability to remove flare in
practice. We used two types of datasets provided by [3] for
visualization purposes. The first type is synthetic data that
combines actual images with patterns from the flare dataset,
while the other type is real data where actual flares occurred.
First, we compared the flare removal results of the existing
model and our proposed model on synthetic data in Figure
3. We have marked the areas where Flare has been removed
with a red box, and the positions that appear abnormal in the
Anchor sample with a green box. Figure 3 (a) shows an im-
age where the light source, streak, and glare regions coexist,

and both the negative and anchor samples appear to have
flare removed well. While the anchor sample showed supe-
rior results in terms of PSNR, the negative sample showed
superior results in terms of SSIM. Figure 3 (b) is an image
where streaks and glare are present, with relatively strong
streaks appearing in the image. When examining the streak
area of the image, it appears that flare has been well re-
moved in the anchor sample, and both PSNR and SSIM
results are measured to be superior. Figure 3 (c) shows a
strong light source, streak, and glare. It is a condition simi-
lar to Figure 3 (b), but both PSNR and SSIM are measured
to be superior in the negative sample. This is considered
to be due to the proposed model excessively correcting for
flare. Figure 3 (d) also shows a similar phenomenon to Fig-
ure 3 (c). While the restoration of the streak area showed
good results, the problem of excessively attempting to re-
move flare was identified. In Figure 3, since the flare mask
for synthetic data was not provided, PSNR and SSIM were
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Figure 4. Comparing the two output samples from negative(reference) and anchor(proposed) networks: quantitative results of the negative
and the anchor samples for real flare dataset (streak PSNR, glare PSNR, streak SSIM, and glare SSIM): (a) 29.34 / 29.96, 28.87 / 28.10,
0.9670 / 0.9774, 0.9508/0.9556 (b) 30.94 / 32.47, 29.73 / 30.04, 0.9661 / 0.9745, 0.9438 / 0.9484 (c) 19.54 / 24.54, 17.72 / 19.18, 0.8900 /
0.9145, 0.7514 / 0.7848 (d) 31.45 / 30.62, 28.84 / 26.92, 0.9783 / 0.9773, 0.9553 / 0.9520 (e) 38.94 / 34.18, -/-, 0.9984 / 0.9973, -/-

calculated for the entire area of the image. When testing the
flare removal performance on synthetic data, the average
PSNR of the reference model and the proposed model was
measured to be 27.63dB and 26.59dB, respectively, with the
reference model being higher. However, the average SSIM
was measured to be 0.9615 and 0.9633, respectively, with
the proposed model being higher.

Next, Figure 4 shows the visualization results for the real
data, which included a flare mask that allowed for quanti-
tative evaluation of flare removal performance in the flare
regions. In Figures 4 (a) and (b), the anchor samples ex-

hibit natural-looking results in areas where flare has been
removed. Figure 4 (c) confirms that flare has been effec-
tively removed in the streak area of the anchor sample,
even in situations where multiple light sources are present.
The anchor samples in Figures 4 (a), (b), and (c) all dis-
played excellent PSNR and SSIM performance. However,
in Figure 4 (d), while the anchor sample removed strong
light source flares effectively, it left residual flare compared
to the negative sample in areas with weaker light sources.
The negative sample showed better performance in quan-
titative results. Additionally, in Figure 4 (e), the anchor
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(a) Flare caused by a strong single light source (b) Flare caused by both a strong and a weak light source

(c) Flare caused by multiple light sources (d) Widely spread light source and excessive correction

Figure 5. Checking the results of two networks (the reference and the proposed network) using a set of provided test images in the
Nighttime Flare Removal competition

sample excessively removed reflection regions, resulting in
an unnatural-looking image and inferior PSNR and SSIM
measurements. When testing the flare removal performance
on real data in terms of the average streak PSNR, glare
PSNR, streak SSIM, and glare SSIM, the reference model
was measured as 34.10dB, 28.93dB, 0.9843, and 0.9450,
respectively. On the other hand, the proposed model was
measured as 34.30dB, 28.41dB, 0.9863, and 0.9482, respec-
tively. Based on these measurements, it was confirmed that
the proposed model has superior performance in removing
flare in streak regions.

Lastly, we visually inspected the test images of the chal-
lenge through the network we learned. In Figure 5a, 5b, and
5c, we can visually confirm that the network we proposed
improves flare removal performance compared to the refer-
ence. The subfigures in Figure 5 are arranged in the order of
the test image, negative sample image, and anchor sample
image provided in the Nighttime Flare Removal competi-
tion. In Figure 5a, the image contains flare caused by a
strong single light source, and we can see that the proposed
model removes the flare almost completely while still look-
ing natural. In Figure 5b, the image contains flare caused by
both a strong and a weak light source, and we can observe
that the proposed model removes the flare caused by the
strong light source well, but has weaknesses in removing
the flare caused by the weak light source. In Figure 5c, the
image contains flare caused by multiple light sources, and
we can see that the proposed model does not perform well in
removing flare in images where multiple flares overlap. In
Figure 5d, we can see that the proposed model recognizes a
widely spread light source as flare and excessively corrects
the image.

5. Conclusion

In this paper, we proposed a method to improve image
reconstruction performance by fine-tuning a network for ar-
tifact removal caused by nighttime lens flare. The proposed
fine-tuning network has a cascaded structure that concate-
nates the existing flare removal models, and the actual train-
ing is performed in the second neural network. We con-
structed triplet samples using the intermediate and final out-
puts of the connected networks and trained the proposed
network using contrastive learning to make it closer to the
features of the target image. When compared to the refer-
ence network, we confirmed that the images reconstructed
with the proposed network generally had higher PSNR and
SSIM values. These results were also confirmed by visual
analysis. However, it was also observed that the proposed
network tends to excessively correct the image, leading to a
decrease in the quality of the output results. We confirmed
that these characteristics are maintained even in environ-
ments where the actual nighttime flare is mixed. While it
is true that the proposed network performs better than the
reference network, there is still a limitation in that various
comparative experiments have not been conducted. These
limitations will be addressed through further research.
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