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Abstract

Developing and integrating advanced image sensors
with novel algorithms in camera systems are prevalent with
the increasing demand for computational photography and
imaging on mobile platforms. However, the lack of high-
quality data for research and the rare opportunity for an in-
depth exchange of views from industry and academia con-
strain the development of mobile intelligent photography
and imaging (MIPI). With the success of the 1st MIPI Work-
shop@ECCV 2022, we introduce the second MIPI chal-
lenge, including four tracks focusing on novel image sen-
sors and imaging algorithms. This paper summarizes and
reviews the RGBW Joint Remosaic and Denoise track on
MIPI 2023. In total, 81 participants were successfully
registered, and 4 teams submitted results in the final test-
ing phase. The final results are evaluated using objec-
tive metrics, including PSNR, SSIM, LPIPS, and KLD. A
detailed description of the top three models developed in
this challenge is provided in this paper. More details of
this challenge and the link to the dataset can be found at
https://mipi-challenge.org/MIPI2023/.

1. Introduction
RGBW is a new type of CFA (color filter array) pattern

(Fig. 1) designed for image quality enhancement under low

light conditions. Thanks to the higher optical transmittance

of white pixels over conventional red, green, and blue pix-

els, the signal-to-noise ratio (SNR) of images captured by

this type of sensor increases significantly, thus boosting the

image quality, especially under low light conditions. Re-

cently, several phone OEMs [1, 2, 3] have adopted RGBW

Qianhui Sun1 (sunqianhui@sensebrain.site), Qingyu Yang1 (yangqingyu@sensebrain.site), Chongyi Li4 ,

Shangchen Zhou4 , Ruicheng Feng4 , Wenxiu Sun2,3 , Qingpeng Zhu2 , Chen Change Loy4 , Jinwei Gu1,3 are

the MIPI 2023 challenge organizers (1SenseBrain, 2SenseTime Research and Tetras.AI, 3Shanghai AI Laboratory,
4Nanyang Technological University). The other authors participated in the challenge. Please refer to Appendix A for

details.

MIPI 2023 challenge website: https://mipi-challenge.org/MIPI2023/

sensors in their flagship smartphones to improve the camera

image quality.

On the other hand, conventional camera ISPs can only

work with Bayer patterns. Thereby, an interpolation proce-

dure, which converts the CFA of the RGBW sensor into a

Bayer pattern, is highly demanded. The interpolation proce-

dure is usually referred to as remosaic (Fig. 1), and a good

remosaic algorithm should be able (1) to get a Bayer out-

put from RGBW with the least artifacts and (2) to fully take

advantage of the SNR and resolution benefit of white pixels.

The remosaic problem becomes more challenging when

the input RGBW becomes noisy, especially under low-light

conditions. A joint remosaic and denoise task is thus in

demand for real-world applications.

Figure 1. The RGBW remosaic task.

In this challenge, we intend to remosaic the RGBW input

to obtain a Bayer at the same spatial resolution. The solu-

tion is not necessarily learning-based. However, we provide

a high-quality dataset of aligned RGBW and Bayer pairs

to facilitate learning-based methods development, includ-

ing 100 scenes (70 scenes for training, 15 for validation,

and 15 for testing). The dataset is similar to the one pro-

vided in the first MIPI challenge, while we replaced some

similar scenes with new ones. We also provide a simple ISP

for participants to get the RGB image results from Bayer for

quality assessment. Fig. 2 shows the pipeline of the simple

ISP. The participants are also allowed to use other public-

domain datasets. The algorithm performance is evaluated

and ranked using objective metrics: Peak Signal-to-Noise
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Figure 2. An ISP to visualize the output Bayer and to calculate the loss function.

Ratio (PSNR), Structural Similarity Index (SSIM) [11],

Learned Perceptual Image Patch Similarity (LPIPS) [15],

and KL-divergence (KLD).

We hold this challenge in conjunction with the second

MIPI Challenge, which will be held on CVPR 2023. Sim-

ilar to the first MIPI challenges [7, 10, 13, 14, 12], we are

seeking algorithms that fully take advantage of the SNR and

resolution benefit of white pixels to enhance the final Bayer

image. MIPI 2023 consists of four competition tracks:

• RGB+ToF Depth Completion uses sparse and noisy

ToF depth measurements with RGB images to obtain a

complete depth map.

• RGBW Sensor Fusion fuses Bayer data and a

monochrome channel data into Bayer format to in-

crease SNR and spatial resolution.

• RGBW Sensor Remosaic converts RGBW RAW data

into Bayer format so that it can be processed by stan-

dard ISPs.

• Nighttime Flare Removal is to improve nighttime im-

age quality by removing lens flare effects.

2. MIPI 2023 RGBW Sensor Remosaic
To facilitate the development of high-quality RGBW Re-

mosaic solutions, we provide the following resources for

participants:

• A high-quality dataset of aligned RGBW and Bayer.

We enriched the scenes compared to the first MIPI

challenge dataset. As far as we know, this is the only

dataset consisting of aligned RGBW and Bayer pairs;

• A script that reads the provided raw data to help par-

ticipants get familiar with the dataset;

• A simple ISP including basic ISP blocks to visualize

the algorithm outputs and to evaluate image quality on

RGB results;

• A set of objective image quality metrics to measure the

performance of a developed solution.

2.1. Problem Definition

RGBW remosaic aims to interpolate the input RGBW

CFA pattern to obtain a Bayer of the same resolution. The

remosaic task is needed mainly because current camera

ISPs usually cannot process CFAs other than the Bayer pat-

tern. In addition, the remosaic task becomes more challeng-

ing when the noise level gets higher, thus requiring more ad-

vanced algorithms to avoid image quality artifacts. Besides,

RGBW sensors are widely used in smartphones with lim-

ited computational budgets and battery life, thus requiring

the remosaic algorithm to be lightweight at the same time.

While we do not rank solutions based on running time or

memory footprint, the computational cost is one of the most

important criteria in real applications.

2.2. Dataset: Tetras-RGBW-Remosaic

The training data contains 70 scenes of aligned RGBW

(input) and Bayer (ground truth) pairs. For each scene,

noise is synthesized on the 0dB RGBW input to provide

the noisy RGBW input at 24dB and 42dB, respectively.

The synthesized noise consists of read noise and shot noise,

and the noise models are calibrated on an RGBW sensor.

The data generation steps are shown in Fig. 3. The testing

data includes RGBW inputs of 15 scenes at 0dB, 24dB, and

42dB, and the ground-truth Bayer results are hidden from

participants during the testing phase.

2.3. Evaluation

The evaluation consists of (1) the comparison of the re-

mosaic output Bayer and the reference ground truth Bayer,

and (2) the comparison of RGB from the predicted and

ground truth Bayer using a simple ISP (the code of the sim-

ple ISP is provided). We use

1. Peak Signal-to-Noise Ratio (PSNR)

2. Structural Similarity Index Measure (SSIM) [11]

3. Learned Perceptual Image Patch Similarity

(LPIPS) [15]

4. Kullback–Leibler Divergence (KLD)

22879



Figure 3. Data generation of the RGBW remosaic task. The RGBW raw data is captured using a RGBW sensor and cropped into a size

of 2400× 3600. A Bayer (DBinB) and white (DBinC) image are obtained by averaging the same color in the diagonal direction within a

2× 2 block. We demosaic the Bayer (DBinB) to get an RGB using the DemosaicNet [8]. The white (DBinC) is concatenated to the RGB

image to have RGBW for each pixel, which is in turn mosaiced to get the input RGBW and aligned ground truth Bayer.

to evaluate the remosiac performance. The PSNR, SSIM,

and LPIPS will be applied to the RGB from the Bayer using

the provided simple ISP code, while KLD is evaluated on

the predicted Bayer directly.

A metric weighting PSNR, SSIM, KLD, and LPIPS is

used to give the final ranking of each method, and we will

report each metric separately as well. The code to calculate

the metrics is provided. The weighted metric is shown be-

low. The M4 score is between 0 and 100, and the higher

score indicates the better overall image quality.

M4 = PSNR · SSIM · 21−LPIPS−KLD. (1)

For each dataset, we report the average score over all the

processed images belonging to it.

2.4. Challenge Phase

The challenge consisted of the following phases:

1. Development: The registered participants get access

to the data and baseline code, and are able to train the

models and evaluate their running time locally.

2. Validation: The participants can upload their models

to the remote server to check the fidelity scores on the

validation dataset, and to compare their results on the

validation leaderboard.

3. Testing: The participants submit their final results,

code, models, and factsheets.

3. Challenge Results
Table 1 shows the top three teams’ results. In the final

test phase, we verified their submission using their code.

RUSH MI, HSTT, and MegNR are the top three teams

ranked by M4 as presented in Eq. (1), and RUSH MI shows

the best overall performance. The proposed methods are de-

scribed in Section 4, and the team members and affiliations

are listed in Appendix A.

Team name PSNR SSIM LPIPS KLD M4
RUSH MI 38.545 0.976 0.0707 0.0650 68.72

HSTT 38.739 0.974 0.0810 0.0669 68.51

MegNR 38.004 0.965 0.0671 0.0684 67.10

Table 1. MIPI 2023 Joint RGBW Remosaic and Denoise challenge

results and final rankings. PSNR, SSIM, LPIPS, and KLD are

calculated between the submitted results from each team and the

ground truth data. A weighted metric, M4, by Eq. (1) is used to

rank the algorithm performance, and the top three teams with the

highest M4 are included in the table.

To learn more about the algorithm performance, we eval-

uated the qualitative image quality in Fig. 4 and Fig. 5 in

addition to the objective IQ metrics. While all teams in Ta-

ble 1 have achieved high PSNR and SSIM, detail loss can

be found on the texts of the metal box in Fig. 4 and detail

loss or false color can be found on the mesh of the chair in

Fig. 4. When the input has a large amount of noise, over-

smoothing tends to yield higher PSNR at the cost of detail

loss perceptually.

In addition to benchmarking the image quality of remo-

saic algorithms, computational efficiency is evaluated be-

cause of wide adoptions of RGBW sensors on smartphones.

We measured the runnnig time of the remosaic solutions of

the top three teams (based on M4 by Eq. (1)) in Table 2.

While running time is not employed in the challenge to

rank remosaic algorithms, the computational cost is crit-

ical when developing smartphone algorithms. RUSH MI
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Figure 4. Qualitative image quality (IQ) comparison. The results of one of the test scenes (42dB) are shown. While the top three remosaic

methods achieve high objective IQ metrics in Table 1, texts on the metal box are slightly blurred in (b) and are barely interpretable in (c)

and (d). The RGB images are obtained by using the ISP in Fig. 2, and its code is provided to participants.

Figure 5. Qualitative image quality (IQ) comparison. The results of one of the test scenes (42dB) are shown. Detail loss or false color in

the top three methods in Table 1 can be found when compared with the ground truth (a). There is slight detail loss on the mesh of the chair

in (c) and (d) and some false color can be found in (b). The RGB images are obtained by using the ISP in Fig. 2, and its code is provided

to participants.

Team name 1200×1800 (measured) 64M (estimated)

RUSH MI 0.26s 7.7s
HSTT 73.31s 2172s

MegNR 6.02s 178s

Table 2. Running time of the top three solutions ranked by Eq. (1)

in the 2023 Joint RGBW Remosaic and Denoise challenge. The

running time of input of 1200 × 1800 was measured, while the

running time of a 64M input RGBW was based on the estimation.

The measurement was taken on an NVIDIA Tesla V100-SXM2-

32GB GPU.

achieved the shortest running time among the top three solu-

tions on a workstation GPU (NVIDIA Tesla V100-SXM2-

32GB). With sensor resolution of mainstream smartphones

reaching 64M or even higher, power-efficient remosaic al-

gorithms are highly desirable.

4. Challenge Methods
This section describes the solutions submitted by all

teams participating in the final stage of the MIPI 2023

RGBW Joint Remosaic and Denoise Challenge.

4.1. RUSH MI

This team designs a residual-in-residual (RIR) network

for the RGBW Joint Denoising and Remosaicing task.

Fig. 6 shows the proposed network structure. This team no-
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tices that the R/G/B/W channels of RAW data have differ-

ent representations on the spatial space. Directly applying

the convolution to the RAW data will wrongly consider the

spatial relationship among different color channels. To ad-

dress this issue, this work shuffles the RGBW data into 16

channels and uses a RIR network for joint remosaicing and

denoising. After that, the output 16-channel data is unshuf-

fled to the GBRG bayer pattern. The basic component of

this network is the residual block (RBlock) with two con-

volutional layers and one ReLU activation. The residual

group (RGroup) is composed of several RBlocks, two con-

volutional layers and one ReLU activation. The residual

list (RList) is composed of several RGroups, two convolu-

tional layers and one ReLU activation. Finally, the back-

bone of RIR network is composed of several RLists, two

convolutional layers and one ReLU activation. There is

one convoluitonal layer exploring features from the shuf-

fled RAW data. After restoration, the processed features are

restored to RAW data by two convolutional layers and one

ReLU activation. In the training phase, the clean model is

used as a guidance for boosting the noisy restoration per-

formance. The network is updated by Adam optimizer with

initial learning rate as 10−4, which is halved for every 5000

iterations. The loss functions is chosen as L1 loss between

the restored noisy RAW data and the clean label. The input

data is randomly flipped and rotated for augmentation.

Figure 6. The network structure of Team RUSH MI.

4.2. HSTT

This team designs a two-phase framework named

OTST for the RGBW Joint Denoising and Remosaicing

(RGBW-JRD) task. For the denoising stage, we pro-

pose Omni-dimensional Dynamic Convolution based Half-

Shuffle Transformer (ODC-HST) which can fully utilize

image’s long-range dependencies to dynamically remove

the noise. For the remosaicing stage, we propose a Spatial

Compressive Transformer (SCT) to efficiently capture both

local and global dependencies across spatial and channel di-

mensions. The entire framework is shown in the Fig. 7. The

whole two-phase framework can be formulated as:

X = F�

(
Fγ

(
Y +N (

0, Y · σ2
s + σ2

c

) |θγ

)
|θ�

)
. (2)

Where θ�, θγ denote the learnable parameters in F� and

Fγ . Y represents the input and N represents the noise dis-

tribution. X represents the final output image of Bayer.

Specifically, for the denoising phase, This team de-

signs ODC-HST to play the role of denoising, which con-

sists of two sequential modules: an Omni-dimensional Dy-

namic Convolution (ODC) [9] to obtain the noise distri-

bution of the entire raw image, and a Half-Shffle Trans-

former (HST) [4] to eliminates the noise.

For the remosaicing phase, This team designs the Spa-

tial Compressive Transformer (SCT), which aims to effi-

ciently model both local-global spatial self-similarities and

inter-channel correlation. As shown in Fig. 7 (c), to achieve

this, the basic unit of SCT, named Spatial Compressive

Block (SCB), a Local-Global Dual Spatial-wise MSA (DS-

MSA) module to capture both local high-frequency details

and long-range global dependencies at the same time. The

overall processes of G-MSA is shown in Fig. 8 (a). Gen-

erally speaking, G-MSA first splits input features into sev-

eral dilated partitions along spatial dimension. As shown in

Fig. 8 (b), it is worth nothing that pixels in each partition are

not from a local region but subsampled from the whole input

feature with a dilation rate. Then G-MSA computes both

inner-MSA and inter-MSA between each pairs of partitions

to capture global dependencies. Fig. 8 (c) ∼ (d) provide ex-

amples by computing inner-MSA and inter-MSA, respec-

tively. After that, G-MSA concatenates these outputs along

channel dimension. Finally, a upsample×2 module is em-

ployed to scale up the acquired features to match the spatial

dimensionality of the original input.

By aggregating the outputs of the L-MSA and G-MSA

branches, our DS-MSA achieves the ability to efficiently

capture both local and global spatial information simultane-

ously.

MAE loss functions are used in denoise and remosaic:

{ LD = ‖X∗ −X0‖1
LR = ‖X − Igt‖1 + λ‖Xrgb − Irgb‖1 (3)

Where X∗ and X0 denotes the clean output of denose

phase and 0dB RGBW. X and Igt represent the recon-

structed Bayer of remosaic model and ground truth Bayer

respectively. Xrgb and Irgb indicates X and Igt after the

official ISP to obtain RGB images. λ is a hyper-parameter

tuning LR.

The training details are presented as follows: the model

is implemented in Pytorch and performed on 8 Titan XP

graphical processing units (GPUs). The model is optimized

using an Adam optimizer with parameters β1 = 0.9, β2 =
0.99, learning rate = 1e − 4 with a batch size of 5 and a

patch size of 128.

4.3. MegNR

The proposed method for RGBW remosaicking is based

on NAFNet [5] and the SSA module [6], so-called SNN
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Figure 7. (a) Illustration of our proposed two-phase RGBW-JDR framework OTST. The full framework consists of two sequential

phases, i.e., the denoising phase and remosaicing phase. Each phase contains a U-shaped structure Transformer. (b) HSAB consists

of an FFN, an HS-MSA, and two layer normalization. (c) SCB consists of an FFN, two layer normalization, parallel-connected L-MSA

and G-MSA. (d) Components of FFN.
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inter-MSA between x†,1,1 and x†,2,2.

(Subspace Nonlinear Network). As show in Fig.9, the net-

work architecture consists of a U-shaped encoder-decoder

with 4 stages, where the encoder is composed of multiple

NAF blocks [5] while the decoder has multiple global con-

volution blocks as depicted in the NBNet paper [6]. The en-

coder takes the concatenated RGBW image and noise map
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Figure 9. The overall pipeline of our method and the structure of SNN.

as input and extracts features using the NAF blocks. Specif-

ically, the numbers of NAF blocks for each stage in the en-

coder are 2, 2, 4, and 8. The decoder takes the encoded

information and reconstructs the GBRG Bayer image. It

also consists of 4 stages, with 12 NAF blocks between the

encoder and decoder, and 2 global convolution blocks for

each stage.

To improve feature separation and noise removal, the

SSA module is introduced to replace the original upsam-

pling structure. The SSA module utilizes low-level features

from the encoder and high-level features from the corre-

sponding decoder stage to better separate information and

noise. This module helps reduce residual noise and artifacts

in the output.

After obtaining the recovered GBRG Bayer image, the

official simple ISP code is used to convert it to an RGB im-

age. The loss is then computed on both the Bayer and RGB

results. In addition to the traditional MSE loss, a new loss

function that incorporates visual perception metrics such as

PSNR, SSIM, and LIPIPS is proposed. These metrics are

commonly used in image processing tasks and provide a

more meaningful evaluation of image quality compared to

just using the MSE loss.

Overall, the approach focuses on improving feature sepa-

ration and noise reduction in the RGBW remosaicking pro-

cess to achieve better image quality. The use of NAFNet

and the SSA module allows accomplishing this while main-

taining an end-to-end framework. Additionally, the incor-

poration of visual perception metrics in the loss function

enables evaluating the performance of the model in a more

meaningful way.

5. Conclusions

This report reviewed and summarized the methods and

results of RGBW Remosaic challenge in the 2nd Mobile In-

telligent Photography and Imaging workshop (MIPI 2023)

held in conjunction with CVPR 2023. The participants were

provided with a high-quality dataset for RGBW Remosaic

and denoising. The top three submissions leverage learning-

based methods and achieve promising results. We are ex-

cited to see so many submissions within such a short period,

and we look forward to more research in this area.
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