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Abstract

The mono-color dual-lens system widely exists in the
smartphone that captures asymmetric stereo image pairs,
including high-resolution (HR) monochrome images and
low-resolution (LR) color images. Asymmetric color trans-
fer aims to reconstruct an HR color image by transfer-
ring the color information of the LR color image to the
HR monochrome image. However, the inconsistency of
spectral resolution and spatial resolution between stereo
image pairs poses a challenge for establishing reliable
stereo correspondence for precise color transfer. Previ-
ous works have not adequately addressed this issue. In
this paper, we propose a dual-modality consistency learn-
ing framework to assist the establishment of reliable stereo
correspondence. According to the complementarity of
color and frequency information between stereo images,
a dual-branch Stereo Information Complementary Mod-
ule (SICM) is devised to perform the consistent modality
learning in feature domain. Specifically, we meticulously
design the stereo frequency and color modulation mech-
anism equipped in the SICM for capturing the informa-
tion complementarity between dual-modal features. Fur-
thermore, a parallax attention distillation is proposed to
drive consistent modality learning for better stereo match-
ing. Extensive experiments demonstrate that our model
outperforms the state-of-the-art methods in the Flickr1024
dataset and has superior generalization ability over the
KITTI dataset and real-world scenarios. The code is avail-
able at https://github.com/keviner1/SICNet.

1. Introduction
To balance the hardware cost and imaging quality, multi-

sensor joint imaging has become the mainstream config-
uration of smart phones. Mono-color dual-lens system
is a classic joint imaging system, which is used in many
smart phones, e.g., HONOR Magic3 and HUAWEI P50.
It consists of two kinds of sensors: the color one and the
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Figure 1. The flowchart of asymmetric color transfer in the mono-
color system. It aims to employ one view’s low-resolution color
image as the reference to guide another view’s high-resolution
monochrome image for coloring. The big challenge in this task
is to establish a reliable correspondence between stereo images
with asymmetric spectral and spatial resolutions accompanied by
various parallaxes.

monochrome one. Specifically, the former with a Bayer ar-
ray color filter in front of the image sensor is responsible
for separating the incident light into one of three primary
colors to capture the color information. However, the Bayer
array leads to the blocked incident lights and amplified im-
age noise. Unlike color cameras, the latter directly receives
all the incident lights at each pixel without the process of fil-
tering and demosaicing. Though it lacks color properties, it
has better light efficiency and provides clearer images than
Bayer-filtered color cameras.

Then there are two schemes that can combine the ben-
efits of the mono-color image pairs: stereo image super-
resolution and stereo image color transfer. Compared with
the super-resolution method, color transfer can make full
use of high-quality mono images to ensure visual effect.
In the case of different parallax scenarios, transferring the
high-frequency information faces more challenges and is
prone to copy artifacts, which is more unacceptable than
color bias. Therefore, many researchers have focused on the
stereo color transfer (the workflow is illustrated in Fig. 1).
With regards to the model design, the common pipeline
has three steps: first, extracting the feature pairs of stereo
images; second, establishing the correspondence between
stereo feature pairs; finally, warping the color information
of the color image for monochrome image colorization by
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Figure 2. An experimental example for explaining that the higher the modal consistency, the more accurate the stereo matching. We
present the Upbound models to exploit the benefit of improved modal consistency in stereo matching. The shared network architecture of
the Upbound models is illustrated in Fig. 7. For better visualization, the color image (b) is given in the upsampled format.

the established stereo correspondence. Obviously, estab-
lishing an accurate stereo correspondence is vitally essen-
tial for elevating the coloring effect. However, the stereo
images with asymmetric spectral and spatial resolution re-
sult in the high inconsistency of stereo images in modality,
which increases the difficulty of accurate stereo matching.

Previous color transfer works [5, 6] under spatial-
symmetric attempts to address the asymmetric spectral res-
olution by extracting the gray map of color images to per-
form stereo matching with monochrome image. Although
these methods achieve consistency in spectral resolution,
they ignore that color image-based matching outperforms
gray image-based matching [1]. Different from the above,
the asymmetric color transfer task suffers from higher in-
consistency in both spectral and spatial resolutions, ham-
pering accurate correspondence establishment. However,
the SOTA method [14] does not fully consider this issue
and treats dual-modal images equally during processing.

The necessity of modal consistency in establishing reli-
able stereo correspondence is illustrated in Fig. 2. In ex-
periments, we directly warp the right-view image (d) to
the left-view one using the stereo transform matrix estab-
lished by various models. As demonstrated by the results (g,
h) of constructed Upbound1 and Upbound2 model, stereo
matching becomes more accurate as the image pair’s modal
consistency grows. In addition, benefiting from consistent
modality learning, our warping result (f) is superior to the
result (e) generated by the previous SOTA model [14].

In this paper, we propose a novel framework to per-
form consistent modality learning that assists the estab-
lishment of reliable stereo correspondence for better color
transfer. Specifically, we fully consider the complementar-
ity of color and frequency information between stereo im-
ages with asymmetric spectral and spatial resolutions. Thus,
we design a dual-branch Stereo Information Complemen-

tary Module (SICM) to carry out consistent modality learn-
ing, as depicted in Fig. 3. It contains a meticulously de-
signed Stereo Color Modulation (SCM) block and a Stereo
Frequency Modulation (SFM) block for information com-
plementing between dual-modal image feature pairs. In
addition, to further increase the accuracy of color transfer
by directly guiding the established stereo correspondence,
we employ the Upbound2 model learned in the consistent
modality scenario for parallax attention distillation. Exten-
sive experiments are conducted on the Flickr1024 dataset
and demonstrate the superior performance of our model.

The main contributions of this work are summarized as:

• We propose a consistency learning framework for
asymmetric color transfer. Compared with the previ-
ous methods, the proposed method achieves the best
quantitative and qualitative results, and extensive ex-
periments have proved its excellent generalization per-
formance.

• We design a dual-branch Stereo Information Comple-
mentary Module (SICM) to conduct consistent modal-
ity learning by information complementation. Inside
SICM, the stereo modulation blocks are devised to
modulate the color and frequency information to com-
plement the information between the dual branches.

• We introduce a parallax attention distillation strategy
to further boost our model to establish more reliable
stereo correspondence for elevating the coloring effect.

2. RELATED WORK
The mono-color dual-lens colorization can be regarded

as special reference-based colorization under the camera
system, but the requirements for accuracy are more strin-
gent. Jeon et al. [8] studied the stereo matching under low
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Figure 3. An overview of our proposed framework. Following the complementarity of color and frequency information presented between
the input image pair ( LM , RC ), we design a Stereo Information Complementary Module (SICM) to achieve consistent modality learning.
Specifically, the SFM block and SCM block are developed to realize the information complementation under the guidance of the Pre-
reconstruction Constraint. In the Colorization Module, we present a PCT block to establish reliable stereo correspondence under the
supervision of parallax attention distillation for accurate color transfer.

light conditions and realized the symmetric color transfer
based on the estimated disparity map. Trinidad et al. [11]
designed PixelFusionNet to solve the problem of multi-
view image fusion, including color transfer. The two-stage
CNN proposed by Dong et al. [5] focuses on more valu-
able pixels through the attention mechanism and introduces
the 3D-Regulation operation to consider more context in-
formation. Based on this network, Dong et al. [6] intro-
duced the Cycle-CNN structure with well-designed cycle
consistency loss and structure similarity loss to realize the
self-supervised colorization. Besides, Dong et al. [4] also
designed a coloring model based on the pyramid CNN ar-
chitecture, which introduces Markov random field (MRF)
to update warp information. Recently, Wang et al. [14]
raised a more challenging asymmetric color transfer prob-
lem and achieved excellent results. However, they do not
consider the high modal inconsistency of input stereo im-
ages, which hinders reliable correspondence establishment
and limits the model’s performance.

3. METHOD

In asymmetric color transfer, the input image pair
composed of high-resolution left-view monochrome image
LM ∈ RH×W×1 and low-resolution right-view color im-
age RC ∈ R(H/s)×(W/s)×3, where H, W, and s denote
the image height, image width, and scaling factor, respec-
tively. The asymmetric spectral and spatial resolution be-
tween LM and RC leads to high modality inconsistency,
which increases the difficulty of stereo matching. However,

introducing pre-trained restoration networks to solve such
problem will bring more computational consumption.

Therefore, we propose a framework that achieves con-
sistent modality learning in the feature extraction stage.
Specifically, the framework includes a Stereo Information
Complementary Module (SICM) and a colorization mod-
ule. The SICM is cooperation with the pre-reconstruction
constraint for consistent modality learning. The coloriza-
tion module is introduced to utilize the features learned by
SICM for accurate color transfer. Firstly, we perform bicu-
bic interpolation on image RC to achieve the same size as
LM . Then fed into a convolution layer to obtain original
features Lfin ∈ RH×W×C and Rfin ∈ RH×W×C , where
C is the number of channels. Depending on the comple-
mentary characteristics between the clear monochrome im-
age and blurred color image, the SICM is presented to per-
form information complementary between dual branches. It
employs two modulation blocks: a Stereo Frequency Mod-
ulation (SFM) Block for color branch enhancing frequency
information and a Stereo Color Modulation (SCM) Block
for monochrome branch supplementing color information.
To guide the modal consistency learning in SICM, we pre-
reconstruct the modulated features into stereo image pair
(Lp

C , Rp
C) and supervise them with ground truth stereo im-

age pair (Lgt, Rgt).
In the colorization module, we develop a Parallax Color

Transfer (PCT) block to implement color transfer in fea-
ture domain. The PCT utilizes multi-level features pro-
vided by SICM to establish accurate stereo correspondence.
Moreover, we design an Upbound model for parallax at-
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tention distillation, which establishes precise stereo corre-
spondences by inputting image pairs with entirely consis-
tent modalities. Finally, to further improve the quality of
colorization, residual blocks are employed to refine the fea-
tures for the final result LC with the guidance of LM .

3.1. Stereo Information Complementary Module

As shown in Fig. 3, The SICM is an encoder-decoder ar-
chitecture consisting of monochrome and color branches.
Given the original feature pair (Lfin , Rfin ) as input,
the module extracts the encoder feature pair (Lfen ∈
RH×W×C , Rfen ∈ RH×W×C) with a larger receptive
field and the decoder feature pair (Lfde ∈ RH×W×C ,
Rfde ∈ RH×W×C) with pre-aligned modal information. In
the end, concatenating them to obtain discriminative feature
pair(Lfout ∈ RH×W×2C , Rfout ∈ RH×W×2C) as output.

Since the rich contextual information is beneficial for
establishing accurate stereo correspondence [2], we obtain
the encoder’s feature pair (Lfen , Rfen ) by stacking Res-
Blocks and dilated convolutions (with dilation rates of 2,
4, 8) to enlarge the receptive field in a dense sampling
way. In decoder, we perform modal consistency learn-
ing based on the information complementarity between two
branch features. Specifically, the SFM block is developed
to modulate frequency information of the color branch with
the monochrome branch as the reference. And the SCM
block takes the color branch as the reference to supple-
ment the color information for the monochrome branch. To
this end, the information of decoder’s output feature pair
(Lfde , Rfde ) has better modal consistency. Notably, we
apply skip connections in the corresponding layer between
encoder and decoder in order to minimize the information
loss.

Figure 4. The architecture of SFM Block. It performs alignment-
free modulation, i.e., AdaIN, between dual-branch features in the
Fourier domain for modal complementary learning.

Stereo Frequency Modulation (SFM) Block. Inspired
by previous work [17] on fusing multi-frequency features
via normalization methods, the SFM block performs stereo
modulation in the frequency domain by means of Adap-
tive Instance normalization [7]. As shown in Fig. 4, we
first transform the current layer input feature pairs (Lf ∈
RH×W×C , Rf ∈ RH×W×C) into the frequency domain
through Fast Fourier Transform (FFT), and then modulate

the amplitude and phase spectrum through learning-based
AdaIN, respectively. After modulation, the amplitude spec-
trum and phase spectrum are transformed back to the spa-
tial domain through Inverse Fast Fourier Transform (IFFT).
Finally, the transformed features are concatenated with the
original feature and then fused through a 3×3 convolution
layer to obtain the output R′

f ∈ RH×W×C .
When performing the normalization operation to modu-

late frequency information, we aggregate the global infor-
mation of the monochrome branch features through 1×1
convolution and Global Average Pooling. Similar to previ-
ous learning-based normalization [9, 13], the affine param-
eters γ and β are learned by 1×1 convolution to scale and
shift the normalized color branch features. Our learning-
based AdaIN, when modulates x with y as the reference,
can be formulated as follows:

AdaIN(x, y) = γyIN(x) + βy

= γy(
x − µ (x)

σ (x)
) + βy

(1)

where µ (x) and σ (x) are the channel-wise mean and vari-
ance of x, γy and βy are the affine maps learning from y.

Figure 5. The architecture of SCM Block. To balance perfor-
mance and complexity, the alignment operation is performed in
downsampled resolution.

Stereo Color Modulation (SCM) Block. Given the
current layer dual branch feature pair (Lf ∈ RH×W×C ,
Rf ∈ RH×W×C) as input, the SCM block conducts coarse
colorization for feature Lf with feature Rf as the refer-
ence. Since the color information is globally continuous,
the degradation of the downsampling operation has less ef-
fect on the color information. Therefore, we downsam-
ple the feature pair (Lf , Rf ) to (Lfd ∈ R(H/2)×(W/2)×C ,
Rfd ∈ R(H/2)×(W/2)×C) for balancing the coloring effect
with computing efficiency. After then, the parallax atten-
tion mechanism [12] is employed to establish stereo corre-
spondence between the feature pair (Lfd, Rfd) and warp
the right-view feature Rfd into the left-view feature Rl

fd.
Finally, we upsample the warped feature Rl

fd into Rl
f and

fuse it with Lf to achieve color information supplementa-
tion. The architecture of the SCM block is shown in Fig. 5.
It should be emphasized that the dual-branch feature here is
not pre-aligned but only color information modulated.

Pre-reconstruction Constraint. To better drive stereo
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modulation blocks for accurate information complemen-
tary, we reconstruct the feature pair (Lfde , Rfde ) into image
pair (Lp

C , Rp
C), as shown in Fig. 3. Consequently, under the

supervision of the ground truth image pair (Lgt, Rgt), con-
sistent modality learning is more targeted to narrow the gap
of modal information between stereo images.

Figure 6. The architecture of PCT Block. It combines multi-level
features extracted from SICM for better color transfer.

3.2. Parallax Color Transfer (PCT) Block

In the colorization module, we implement a Parallax
Color Transfer (PCT) block to take advantage of multi-level
features for accurate stereo matching and color transfer, as
shown in Fig. 6. Based on the prior that the stereo image
only has the disparity in the horizontal direction, the PCT
block adopts the parallax attention mechanism [12] for es-
tablishing the stereo correspondence.

For the monochrome branch, feature pair (Lfout , Rfout )
for stereo matching integrates (Lfen , Rfen ) with rich con-
text information and (Lfde , Rfde ) with the modulated
modal information. To prevent mutual interference between
the features used for reconstruction and the features used for
binocular matching, we introduced the original reconstruc-
tion features. To prevent the mutual interference between
reconstruction and stereo matching during model optimiza-
tion, we added the original features Lfin for reconstruction.
For the color branch, due to the consistent modality learning
in SICM, the feature Rfde has much better quality and less
noise than the original feature Rfin . Therefore, we fuse the
Rfde and Rfin before warping the color information.

The complete coloring process of PCT block is as fol-
lows: Firstly, the feature pairs (Lfout , Rfout ) are fed into
a shared-weight residual block and a convolution layer to
obtain (L̂fout , R̂fout ) for stereo matching. After matrix
multiplication between L̂fout ∈ RH×W×2C and transposed
R̂T

fout ∈ RH×2C×W , the parallax attention map MR→L ∈
RH×W×W is calculated after the softmax function:

MR→L = softmax(L̂fout ⊗ R̂T
fout) (2)

Secondly, we fuse the feature Rfin and Rfde by a resid-
ual block to obtain Rinfo ∈ RH×W×C . And the feature
Lfin after convolution is recorded as Linfo ∈ RH×W×C .
Thirdly, warping Rinfo to the left-view Rl

info by multi-
plying the matrix of MR→L and Rinfo. Finally, residual

block is adopted to fuse concatenated Linfo and Rl
info to

get colorization result Lfcolor ∈ RH×W×C :

Lfcolor = f
([
Linfo,R

l
info

])
= f ([Linfo,Rinfo ⊗ MR→L])

(3)

where f (·) stands for the ResBlock, [·] means concatena-
tion operation.

Figure 7. The architecture of Upbound2. The Upbound2 model
takes a high-quality image pair as input and establishes accurate
stereo correspondence for knowledge distillation.

3.3. Parallax Attention Distillation

As illustrated in Fig. 2, since the modalities of the in-
put image pair (c, d) are completely consistent, the stereo
correspondence established by the Upbound2 model is the
most precise, which is reflected in the fact that the result
(h) has the clearest details and colors. To this end, we em-
ploy the Upbound2 model to further drive our model for
establishing more reliable stereo correspondence through a
proposed parallax attention distillation strategy. As shown
in Fig. 7, the Upbound2 network also adopts the parallax
attention mechanism as same as the PCT block to establish
stereo correspondence M′

R→L. Therefore, we can guide the
established stereo correspondence MR→L of the PCT block
by means of knowledge distillation loss:

Lkd = ∥MR→L −M′
R→L∥1, (4)

3.4. Loss Function

Our loss function consists of two parts: the output loss
Lout for more accurate coloring and the modal consistency
loss Lmc for narrowing the modal information gap of stereo
images:

L = Lout + λ1Lmc, (5)

where λ is a weighting factor.
The output loss Lout is obtained by calculating the mean

absolute error between the left-view ground truth image Lgt

and final reconstructed left-view color image LC :

Lout = ∥LC − Lgt∥1 (6)

In order to restrict the consistent modality learning in
SICM and make it oriented to accurate stereo matching, we
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Table 1. Quantitative comparison results on Flickr1024 testset. As can be seen, our methods attained the best performance over all noise
setups while requiring fewer parameters than previous state-of-the-art techniques. We also present the optimal generalization ability in the
KITTI dataset; see details in Supplementary Material.

Model Setup1 Setup2 Setup3
#Param (M)PSNR SSIM PSNR SSIM PSNR SSIM

Welsh (2002) [16] 24.53 0.806 23.88 0.758 23.86 0.751 -
Zhang (2016) [18] 22.26 0.885 21.99 0.852 21.99 0.852 32.60

Jeon (2016) [8] 28.47 0.922 28.09 0.901 27.32 0.887 -
Dong (2019) [5] 29.48 0.925 28.71 0.893 28.59 0.890 2.30
Dong (2020) [6] 19.86 0.805 17.85 0.723 17.72 0.722 0.12
Su (2020) [10] 20.25 0.725 20.13 0.713 20.13 0.713 34.18

Chen (2021) [3] 27.58 0.919 27.17 0.899 27.11 0.894 2.99
Wang (2021) [14] 30.50 0.941 29.94 0.927 29.72 0.925 1.35

Ours 31.10 0.948 30.40 0.932 30.31 0.932 1.09

elaborately design the pre-reconstruction loss and knowl-
edge distillation loss. The modal consistency loss can be
formulated as:

Lmc = Llp + Lrp + λ2Lkd

= ∥Lp
C − Lgt∥1 + ∥Rp

C −Rgt∥1 + λ2Lkd,
(7)

where Llp and Lrp correspond to the constraints of color
modulation for left-view pre-reconstructed image Lp

C and
frequency modulation for right-view pre-reconstructed im-
age Rp

C , respectively. Lgt and Rgt are the ground truth
stereo images without decolor and degradation.

4. EXPERIMENTS
4.1. Pre-reconstruction Results

In this section, we visualize the pre-reconstructed images
within the pre-reconstruction constraint. As depicted in
Fig. 8, compared with the input image pair (a, b), the recon-
structed image pair (c, d) possess higher modal consistency,
which is conducive to the establishment of more accurate
stereo correspondence. It illustrates the effectiveness of the
consistent modality learning performed by SICM through
the stereo information modulation.

Figure 8. An example of modal consistency enhancing. The pre-
reconstructed (c, d) exhibits better modal consistency.

4.2. Datasets

We use the stereo image dataset Flikr1024 [15] for train-
ing and testing. The dataset contains 1024 pairs of high-

quality color images with different parallax. In order to sim-
ulate the real mono-color system, we regard the decolored
left-view image as collected by the monochrome sensor and
the right-view image scaled by 1/4 factor as collected by the
color sensor. On this basis, we add signal-dependent Gaus-
sian noises with different given standard deviations (STDs)
to simulate the light-efficiency difference between the color
and mono sensors, as shown in Table 2.

Table 2. Noise setups (k denotes noise-free signal intensity).

Noise STD. Color Image Mono. Image
Setup1 0 0
Setup2 0.03

√
k 0.01

√
k

Setup3 0.07
√
k 0.01

√
k

4.3. Implementation Details

We divided the Flickr1024 dataset into a training set con-
taining 912 image pairs and a test set containing 112 image
pairs. For both the training set and test set, we crop the im-
age pair and resize the color image with a scaling factor of
4; then, we will obtain 160 × 480 left-view monochrome
images and 40 × 120 right-view color image pairs. Finally,
we have 5662 training image pairs and 636 test image pairs
in the experiment. The proposed network is implemented
with the PyTorch framework. We trained the model on an
NVIDIA GTX 2080ti GPU. In training, we set the batch
size to 1, the number of channels to 48, and the initial learn-
ing rate to 1.0×10−3. We use AdamW as the optimizer and
dynamically update the learning rate with the stepped strat-
egy, which is set to decay at the rate of 0.5 every 15 epochs.
The initial weighting factors λ1 and λ2 of loss function are
set into 0.2 and 0.1. The λ1 with a stepped decay of 0.1 for
every 25 epochs. In testing, we choose peak signal-to-noise
ratio and structural similarity as the evaluation indexes.
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Figure 9. Visualization results on the Flickr1024 dataset. As can be seen, our method has better coloring ability and shows excellent
nonlocal color transfer in the occluded area. More visualization results are presented in the Supplementary Material.

Figure 10. Visualization results on the real-world scenes. The stereo image pairs are collected by the smartphone HUAWEI P9 equipped
with the mono-color dual-lens system. More visualization results are presented in the Supplementary Material.

4.4. Quantitative and Qualitative Results

Baseline Methods. For performance comparison, we
not only compare with the color transfer works [5, 6, 8, 14]
based on the mono-color dual-lens system but also com-
pare the exemplar-based colorization method [16] and the
automatic colorization method [10, 18]. In addition, we in-
troduce the representative stereo super-resolution method
CPASSR [3] and make it suitable for the asymmetric color
transfer.

Flickr1024. We compare all these methods on the
Flickr1024 testset with three noise settings, as shown in Ta-

ble 1. It can be seen that our model outperforms the baseline
methods on all noise setups with less parameters. Benefiting
from the enhancement of modal information consistency,
our model exhibited excellent robustness on noise-added se-
tups. The visualization results exhibited in Fig. 9 indicate
that our method achieves the best colorization effects and
excellent nonlocal modeling ability in occlusion areas.

Real-world Scenarios. To evaluate each model’s gen-
eralization performance, we collect real-world image pairs
with the HUAWEI P9 smartphone, which has a mono-color
dual-lens configuration. The model used for generaliza-
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Table 3. Ablation study on the consistent modality learning and the modulation position inside SICM.

SCM Llp SFM Lrp Lkd PSNR (dB) SSIM
✓ 30.57 0.943

✓ ✓ ✓ 30.78 0.946
✓ ✓ ✓ 30.84 0.947

✓ ✓ ✓ ✓ 30.96 0.947
✓ ✓ ✓ ✓ ✓ 31.10 0.948

(a) SICM-1 (b) SICM-2

(c) SICM-3 (d) SICM-4

Figure 11. Four different modulation architectures of SICM.

tion is trained based on the noise-free data (Setup1) of the
Flickr1024 dataset. The comparison of the coloring results
of the real scene is shown in Fig. 10. Our method gives the
best real-world asymmetric color transfer results.

4.5. Ablation Studies

In this section, we conduct several ablation experiments
to prove the effectiveness of all the proposed consistent
modality learning-oriented techniques. First, we ablate the
stereo modulation blocks (i.e., SFM and SCM block) with
corresponding loss functions Llp, Lrp, as shown in Table 3.
The results indicate that both color modulation and fre-
quency modulation are beneficial to the network. In ad-
dition, the effectiveness of the parallax attention distillation
strategy is also proved by the ablation results.

Table 4. Ablation experiments on different SICM architectures.

Architecture PSNR (dB) SSIM
SICM-1 31.10 0.948
SICM-2 28.16 0.920
SICM-3 27.42 0.913
SICM-4 31.03 0.947

Furthermore, we also explored several variants of SICM
to find the best modulation position. Specifically, we set up
four different architectures for comparative experiments, as
shown in Fig. 11. First, the SICM-1 performs frequency
and color modulation in the decoder. Second, we design the
SICM-2 to modulate the frequency in the encoder and the
color in the decoder. Third, the modulation blocks of SICM-
3 both in the encoder. Finally, to explore whether multiple
modulations can further improve the performance, we de-
signed SICM-4 equipped with four modulation blocks. As
shown in Table 4, compared with SICM-2 and SICM-3 that
modulate information in the encoder, SICM-1 and SICM-
4 modulate information in the decoder show better results.
Besides, the additional modulation blocks inside the SICM-
4 do not improve the performance further.

5. CONCLUSION

In this paper, we develop a novel asymmetric color trans-
fer framework, which performs consistent modality learn-
ing for establishing reliable stereo correspondence. Specif-
ically, we present a Stereo Information Complementary
Module (SICM) with stereo information modulation blocks
(i.e., SFM and SCM block) to achieve consistent modality
learning by information complementation. The visualiza-
tion results exemplify that our SICM successfully narrow
the gap between stereo modal information. In addition, we
introduce a PCT block and the parallax attention distilla-
tion strategy to assist the establishment of reliable stereo
correspondence for more precise color transfer. Extensive
experiments prove that the consistent modality learning in
our method is beneficial for establishing accurate stereo cor-
respondence to promote the color transfer effect. Com-
pared with other state-of-the-arts, we achieve superior per-
formance and generalization capability. Furthermore, our
model gives the best visualization results when applied to
real-world scenarios.
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