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Abstract

Multi exposure image fusion (MEF) aims to produce im-
ages with a high dynamic range of visual perception by inte-
grating complementary information from different exposure
levels, bypassing common sensors’ physical limits. Despite
the marvelous progress made by deep learning-based meth-
ods, few considerations have been given to the innovation
of fusion paradigms, leading to insufficient model capacity
utilization. This paper proposes a novel filter prediction-
dominated fusion paradigm toward a simple yet effective
MEF. Precisely, we predict a series of spatial-adaptive fil-
ters conditioned on the hierarchically represented features
to perform an image-level dynamic fusion. The proposed
paradigm has the following merits over the previous: 1)
it circumvents the risk of information loss arising from the
implicit encoding and decoding processes within the neu-
ral network, and 2) it better integrates local information
to obtain better continuous spatial representations than the
weight map-based paradigm. Furthermore, we propose a
Gradient-driven Image Fidelity (GIF) loss for unsupervised
MEF. Empowered by the exploitation of informative prop-
erty in the gradient domain, GIF is able to implement a sta-
ble distortion-free optimization process. Experimental re-
sults demonstrate that our method achieves the best visual
performance compared to the state-of-the-art while achiev-
ing an almost 30% improvement in inference time. The code
is available at https://github.com/keviner1/FFMEF.

1. Introduction
Due to the physical limitations of common imaging sen-

sors, the dynamic range captured by them is much lower
than that of natural scenarios. The low dynamic range
(LDR) imaging results frequently produce a poor visual
effect. However, a sequence of LDR images with multi-
exposure levels generally contains complementary informa-
tion, especially in pairs of images with extreme overexpo-
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Figure 1. The comparison between the two existing mainstream
paradigms and the proposed filter prediction-dominated fusion
paradigm. Aiming for a more efficient MEF, we stand on the
shoulders of previous paradigms for reaping the benefits of com-
bined deep neural networks and image-level fusion schema.

sure and underexposure property. For this phenomenon, ex-
tensive research and application of multi-exposure fusion
(MEF) algorithms were initiated in academia decades ago.

The long history of the MEF witnesses various sophis-
ticated methods, which can be grouped into traditional al-
gorithms [11, 15, 23, 27, 31] and deep learning-based mod-
els [26, 34, 35, 41, 42]. In recent years, there has been a
growing emphasis on deep learning-based research, which
can be further divided into the weight map-based fusion
paradigm (e.g. MEFNet [26]) and the deep represented fu-
sion paradigm (e.g. DeepFuse [35]), as shown in Fig. 1. The
former employs the neural network to generate the weight
map for pixel-wise fusion. The latter performs fusion oper-
ations in the neural network-encoded domain.

However, both of the aforementioned paradigms have
considerable potential for further improvement. First,
the deep-represented fusion paradigm confronts a trade-off
problem between deeper network design and a higher risk
of information distortion and loss. Second, the weight map-
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based fusion paradigm does not account for the exploita-
tion of local information, and the pixel-wise solution lacks
spatial continuity. As illustrated by the survey [48], it is
challenging for existing algorithms to possess high-quality
visual effects and efficient execution times simultaneously.
Under-expected technical designs commonly cause insuffi-
cient model capacity utilization, hindering efficient image
fusion, and resulting in unacceptable artifacts.

Therefore, in this work, we propose a novel filter
prediction-dominated fusion paradigm for efficient multi-
exposure image fusion. It is designed to absorb the previous
paradigm’s nutrients and filter out impurities. Specifically,
our paradigm benefits from the powerful representational
capabilities of deep neural networks while preventing the
risk of information loss in the encoding space. The metic-
ulously designed filter sequence-dominated fusion schema
with local information aggregation leads to more efficient
image-level fusion. More concretely, our elaborately de-
signed paradigm consists of three phases: Initially, a fea-
ture extraction module is employed to obtain the hierar-
chical representations of each source image. Next, we de-
velop a spatial-adaptive filter predictor that generates a se-
quence of filters corresponding to the multi-level represen-
tation obtained. Lastly, image-level signal processing is
performed on the source image through the predicted fil-
ters, which adaptively aggregate local information within
images and fuse information between images. For opti-
mization terms, a Gradient-driven Image Fidelity (GIF) loss
is devised for unsupervised learning. Based on the infor-
mative property of the gradient domain, GIF disentangles
the reliance between the fused image and the source im-
age, driving effective complementary learning and artifact
removal. Compared with the commonly used loss function
MEF-SSIM [29] and PMGI [47], GIF emphasizes informa-
tion fidelity-oriented design, leading to a more stable model
convergence. Extension experiments on widely recognized
benchmarks [48–50] demonstrate the applicability of our
efficient-oriented paradigm and image fidelity-focused GIF
to various image fusion challenges.

The main contributions of this work are summarized as:

• We suggest a simple yet effective paradigm, termed
the filter prediction-based fusion paradigm, that targets
more efficient and high-quality multi-exposure im-
age fusion. Besides, extension experiments involving
multi-focus fusion and infrared-visible fusion demon-
strate its superiority and application potential.

• We design an image fidelity loss GIF based on in-depth
utilization of gradient information to ensure the effi-
cacy of unsupervised complementary learning while
reducing distortion artifacts.

• The proposed method presents superior visual per-
formance and delivers a nearly 30% improvement in

running time over the previous state-of-the-art on the
widely recognized benchmark MEFB.

2. Related Work

2.1. Traditional MEF Methods

Traditional approaches include both spatial domain-
based and transform domain-based algorithms. The former
algorithms first analyze the information importance of the
source images and then utilize the estimated weight maps
for spatial-wise fusion. This methodology can be further
divided into two types based on the distinct basic units in
information evaluation: pixel-based methods [15, 19, 23]
and patch-based methods [11,27,28]. In terms of transform
domain-based approaches [3,5,31,37,38,43], they generally
conduct information fusion over decomposed coefficients of
images to exploit the beneficial signals in various domains.
Although these traditional methods have achieved impres-
sive results, their manually designed feature extraction and
fusion strategies limit the performance.

2.2. Deep Learning-based MEF Methods

Recently, the deep learning-based MEF schemes have re-
ceived extensive attention and shown promising effects [10,
13, 48, 51]. Based on the convolutional neural network
(CNN), Deepfuse [35] first proposes to merge the lu-
minance components in the deep-represented feature do-
main and fuse the chrominance parts via a traditional
weighted average method. In addition to CNN-based de-
signs, both Generative Adversarial Network-based [42, 45]
and Transformer-based techniques [24, 34] considerably
increase MEF performance in studies. However, these
paradigms necessitate more model capacity to prevent the
loss of source information during encoding and decoding.
Another deep learning-based scheme is to replace the man-
ually constructed information measurement algorithm with
neural networks. For example, the MEF-Net [26] utilized
CNN and guided filtering to generate pixel-wise weighted
maps for image-level fusion. Unfortunately, the fusion re-
sults of MEFNet usually suffer from unacceptable artifacts.

In the absence of ground truth images, unsupervised
learning-based algorithms [33, 40, 41, 45, 47] have been
widely studied and highly concerned, which model the re-
lationship between fused images and source images for
driving model optimization. However, the widely adopted
loss functions MEF-SSIM and PMGI perform poorly in
terms of information fidelity, as previous studies have
shown [13, 48]. Besides, Qu et al. [34] introduces a self-
supervised multi-task learning mechanism for training an
encoder-decoder network TransMEF in large natural im-
ages dataset MS-COCO [22].
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Figure 2. The overall framework of our proposed filter prediction-based fusion paradigm. It is made up of three steps: Hierarchical
Representations Extraction, Spatial-adaptive Filter Prediction, and Filters-dominated Fusion. These steps perfectly combine the powerful
representation capabilities of deep neural networks with the high efficiency of image-level fusion operations. It should be noted that our
method fuses the luminance channel of the image and displays it in RGB form for better visual effects.

3. Method

3.1. Motivation and Overview

Motivation: Most MEF application scenarios involve
mobile devices with stringent computational costs and vi-
sual effect requirements. However, existing approaches are
constrained by suboptimal fusion paradigms, making it hard
to balance complexity and performance. In addition, the
lack of ground truth images inhibits the acquisition of high-
quality images, and previous research [13, 48] has shown
that the widely used loss function MEF-SSIM is insufficient
in terms of image fidelity. Therefore, this paper offers a
more reasonable MEF paradigm to enhance model capac-
ity utilization, thereby reducing overall complexity. In ad-
dition, a novel information fidelity-oriented loss function,
GIF, is proposed for efficient unsupervised MEF learning,
and its outstanding accelerated model convergence effect is
demonstrated experimentally.

Problem formulation: Given a pair of source images
with different exposure levels, we first convert them to the
Y CbCr color space. Then the Y channels (I0, I1) of source
images are fused through the proposed model to obtain a
high-quality luminance channel If . The color channels Cb
and Cr are fused by the traditional weighted average oper-
ation as follows:

Cf =
C0|C0 − 128|+ C1|C1 − 128|

|C0 − 128|+ |C1 − 128|
, (1)

where (C0, C1) and Cf represent the Cb or Cr channel of
input image pair and the fused image, respectively.

Framework overview: As shown in Fig. 2, our pro-
posed paradigm consists of three well-designed core com-
ponents. Specifically, a Hierarchical Representation Extrac-
tor (HRE) is first introduced to employ the powerful nonlin-
ear mapping capability of neural networks to obtain multi-
level critical information representations of the source im-
age. This deep-represented information is beneficial for an-
alyzing and evaluating source images to guide the spatial-
adaptive fusion procedure. Inspired by Kernel Prediction
Network [30], we adopt a Spatial-adaptive Filter Predictor
(SFP) series to predict filter sequences composed of differ-
ent kernel sizes. Based on the fact that deeper features have
larger receptive fields, the multi-level SFPs correspond to
hierarchical representations. Finally, the predicted filter se-
quence dominates the developed F-Fusion module’s flexible
and efficient image-level multi-exposure fusion. The de-
tails of SFP and F-Fusion will be described in Sec. 3.2 and
Sec. 3.3. HRE is a Unet-like module composed of residual
blocks (see Supplementary Materials for the details).

3.2. Spatial-adaptive Filter Predictor (SFP)

The highlights of the proposed novel paradigm are well
articulated in SFP, which leverages represented features to
predict filters for image-level fusion. Since multi-exposure
fusion is a complementary learning process, cross-image in-
teraction is required to assist information analysis. Inside
SFP, a spatial attention mechanism is first devised to obtain
the attention maps (A0, A1) corresponding to the input fea-
ture pair (R0, R1) as:

A0, A1 = SpatialAttention([R0, R1]), (2)
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Figure 3. Visual display of gradient maps, where g0, g1 are the
raw gradient maps of images I0, I1. After processing, m0, m1,
msth and gmax are obtained to complete GIF loss (See Fig. 4).

where [·] means concatenation operation. Following infor-
mation scaling by the attention maps, we offer a convo-
lutional neural network-based prediction head to produce
image-private filters (f0, f1) as:

f0 = PredictionHead(R0 ×A0),

f1 = PredictionHead(R1 ×A1).
(3)

Then the filters f0 and f1 are concatenated to get the
current-level final filter f ∈ R2×H×W×k2

. It denotes that
SFP predicts a k× k-sized filter for every position, thus en-
abling spatial-adaptive processing over source images.

3.3. Filters-dominated Fusion (F-Fusion)

We implement our F-Fusion as a special fusion rule that
embraces learnable parameters and local information aggre-
gation, thus leading to more powerful image fusion. In con-
crete terms, inside F-Fusion, the predicted spatial-adaptive
filters {fi}3i=1 are employed to dominate the image-level
fusion as follows:

If =

3∑
i=1

αi(fi ∗ [I0, I1]), (4)

where ∗ represents the convolution operation and the learn-
able factors {αi}3i=1 are introduced for achieve flexible
information fusion. Commonly used static fusion oper-
ations (e.g., element-wise addition, averaging, and stan-
dard convolution) actually deviate from the dynamic prop-
erties required for MEF tasks, which are well addressed in
our approach. In contrast to the weight map-based fusion
paradigm, F-Fusion employs a multi-level schema with lo-
cal information aggregation.

3.4. Gradient-driven Image Fidelity (GIF) loss

In the absence of ground truth images, ensuring that
the fused information-rich image suffers less distortion of

Figure 4. The workflow of three core components of the devised
unsupervised loss function GIF.

source information is a critical problem. A simple and
straightforward design that facilitates information fidelity
is to establish the relationships {wi}1i=0 between the fused
image If and the source images {Ii}1i=0, constructing the
optimization function as follows:

argmin

1∑
i=0

wi ∥Φ(If )− Φ(Ii)∥1 , (5)

Where ∥ · ∥1 represents the L1 distance used as an example,
and the function Φ(·) usually stands for identity transfor-
mation, and VGG16 (or ResNet101) encoding in previous
work [40, 41, 47, 51]. Some works [47, 51] that assign con-
stant values to {wi}1i=0 depart from the spatially dynamic
complementary properties of MEF, while others [40, 41]
pre-train an Image Quality Assessment (IQA) model for es-
timating {wi}1i=0 and achieve a more reasonable fashion.

Without the introduction of pre-trained models, we pro-
pose a simple yet effective loss function, GIF (See Fig. 4),
based on gradient information analysis. Although the raw
gradient map can successfully depict the richness of infor-
mation (See Fig. 3), there are several drawbacks to directly
employing it as the {wi}1i=0: 1) Sparse representations that
lack local continuity are not conducive to constraining high-
quality fusion. 2) The constraint for gradient-smooth re-
gions needs separate consideration. 3) Different regions
are constrained by distinct optimization targets, thus suf-
fering the stitching artifacts. To address these issues, the
Lsteep, Lsmooth and Lglobal components are elaborately
constructed in GIF as:

LGIF = λ1Lsteep + Lsmooth + λ2Lglobal, (6)

where λ1 and λ2 are weighting factors set to 1.25 and 2.
In particular, we first design Lsteep to drive the informa-

tion fidelity of gradient-steep regions of the source image.
To deal with the sparse representation of gradient maps, we
dilate them using 3x3 max-pooling. Next, employ the bi-
narization operation with a threshold of 0.5 to generate the
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0-1 masks {mi}1i=0 as follows:

{mi}1i=0 = Binarization(Dilation({▽Ii}1i=0)), (7)

where ▽ stands the scharr gradient operator.With the se-
lected masks, Lsteep is calculated as:

Lsteep = m0 ∥If − I0∥1 +m1 ∥If − I1∥1 . (8)

Since it is hard to measure the value of gradient-smooth
regions in the luminance channel, we further introduce the
color information from the Cb and Cr channels. Higher
weights are assigned to pixels with better color saturation,
and the weight maps {Si}1i=0 for each source image are
constructed as follows:

si =
exp(|Cbi − 128|+ |Cri − 128|)∑1

j=0 exp(|Cbj − 128|+ |Crj − 128|)
,

Si =
exp(si)∑1
j=0 exp(sj)

.

(9)

The mask msth denoting the gradient-smooth area is jointly
calculated from m0 and m1. Then, the loss function
Lsmooth is defined as:

Lsmooth = msth ∥If − Iw∥1 ,
= (1−m0 | m1) ∥If − (S0I0 + S1I1)∥1 .

(10)

Although Lsteep and Lsmooth constrain the fidelity of
image information in various areas, the stitching artifacts
between the regions are unavoidable. A significant phe-
nomenon attracts our attention: extremely discontinuous
values near the edges of the stitching artifacts will create
anomalous gradient responses. Consequently, we develop a
globally constrained loss function Lglobal based on the se-
lection of maximal gradient information as:

Lglobal = ∥▽If −max(▽I0,▽I1)∥1 , (11)

where max(·) means the element-wise maximum opera-
tion. To sum up, the three terms that makeup GIF is com-
plementary to each other and achieve efficient unsupervised
learning through in-depth analysis of gradient information.

4. Experiments
4.1. Datasets and Implementation Details

Since the recently proposed benchmark MEFB [48] col-
lects a test set of 100 multi-exposure image pairs from mul-
tiple sources, the fusion results are able to comprehensively
measure the performance of the algorithms, especially the
generalization capability. For a fair comparison, our un-
supervised training is performed on the external dataset
SICE [6], which contains 482 well-aligned training sam-
ples (list will be available). Specifically, the training images

Figure 5. Average running time comparison over MEFB, a dataset
containing 100 image pairs of average size 551 × 707.

are resized to the size of 128 × 128 with data augmentation
performed (random flipping). The proposed network is im-
plemented with the PyTorch framework. We conduct all
our experiments on an NVIDIA 2080Ti GPU. During train-
ing for a total of 30 epochs, we set the batch size to 2 and
the AdamW optimizer with a learning rate of 0.1 × 10−2.
Beneficial from the high model capacity utilization of the
suggested new paradigm, the number of channels is set at 4.

4.2. Comparison with Previous Methods

To evaluate the proposed MEFNET, we compare
it with several state-of-the-art algorithms: 1) tradi-
tional methods, including DSIFT EF [23], FMMEF [20],
MEFOpt [25], PWA [28], MGFF [3], and SPD MEF [27];
2) deep learning-based methods, including DeepFuse [35],
MEFNet [26], IFCNN [51], MEF-GAN [42], Fu-
sionDN [41], PMGI [47], U2Fusion [40], TransMEF [34],
and DPE-MEF [13]. The qualitative and quantitative exper-
iments are detailed as follows.

Quantitative evaluation. Following previous
works [13, 34, 48], we chose several widely acknowledged
Image Quality Assessment (IQA) metrics for quantitative
measurement. Specifically, structural similarity-based met-
rics (QW [32], MEF-SSIM [29]), information theory-based
metrics (EN [36], FMI [12], NMI [16], CE [4], PSNR [17],
QNCIE [39]), image feature-based metrics (AG [9],
QAB/F [44], QP [52]), and human perception-inspired
metrics (QCB [8], QCV [7], VIF [14]) are selected for
a comprehensive comparison. Details about the metrics
are presented in the Supplementary Material. The average
evaluation results of all metrics are presented in Tab. 1,
where ↑ indicates that the larger the value, the better the
performance, and ↓ indicates that the smaller the value, the
better the performance.

As can be seen, each method achieves superior perfor-
mance under different evaluation metrics, but no one can
succeed on all the metrics. Therefore, it is reasonable
to conduct a comprehensive analysis based on the perfor-
mance of all evaluation indicators. Traditional methods
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Figure 6. Qualitative comparison with the selected representative methods on the MEFB dataset [48]. As can be observed, although
the conventional techniques provide high detail accuracy, the fused images lack global exposure consistency. Together with the recently
proposed DPE-MEF and TransMEF, our method achieves the most advanced visual effects. More rigorous, our approach is better at
balancing high and low exposure regions, as shown in outdoor sky vistas and indoor-exhibited cars. Please zoom in for the details.

Table 1. Average evaluation metric values of all methods on the MEFB dataset. The top three values are denoted in red, blue and green.

Method EN↑ FMI↑ NMI↑ PSNR↑ QNCIE↑ AG↑ QAB/F ↑ CE↓ QP ↑ QW ↑ MEF-SSIM↑ QCB↑ QCV ↓ VIF↑
DSIFT EF 7.3495 0.8947 0.5399 56.6056 0.8141 5.1000 0.6792 2.7297 0.6456 0.8619 0.9470 0.4663 825.4635 0.7265
FMMEF 7.3719 0.8970 0.4736 56.8570 0.8119 5.6441 0.7058 2.9333 0.6593 0.9072 0.9737 0.4525 650.8868 0.8876
MEFOpt 7.1864 0.8943 0.5855 56.7196 0.8157 5.7658 0.6884 3.2660 0.6098 0.8860 0.9355 0.4674 708.9612 0.7089
MGFF 7.1203 0.8897 0.6069 57.1132 0.8139 6.5461 0.6406 2.9861 0.6379 0.8463 0.9549 0.4678 308.4949 1.0184
PWA 7.0595 0.8971 0.7521 57.1722 0.8198 5.5585 0.6963 2.9955 0.6425 0.8949 0.9654 0.4460 288.0862 0.7249
SPD MEF 7.1238 0.8871 0.6948 57.1051 0.8178 5.9832 0.6327 3.2146 0.6177 0.8039 0.9377 0.4551 353.4474 0.7772
DeepFuse 6.8504 0.8727 0.7408 57.1035 0.8177 3.4920 0.3884 3.0852 0.3517 0.5478 0.8968 0.3892 362.9800 0.5114
MEFNet 7.3899 0.8896 0.5967 56.5941 0.8166 6.0104 0.6746 3.0300 0.5954 0.8655 0.9139 0.4816 593.4327 0.8470
IFCNN 7.0347 0.8824 0.7708 57.1951 0.8186 6.0123 0.5960 3.4098 0.5616 0.8336 0.9432 0.4112 247.7693 0.7016
FusionDN 7.3293 0.8770 0.7251 56.9770 0.8178 6.7934 0.5363 2.9357 0.5044 0.7761 0.9240 0.4386 325.1348 0.9363
MEF-GAN 6.9547 0.8456 0.5727 56.9474 0.8132 4.6702 0.2836 2.8222 0.1239 0.3002 0.7722 0.3844 618.6932 0.5810
PMGI 7.0846 0.8854 0.7909 57.1165 0.8192 5.4189 0.5684 3.0084 0.5254 0.8035 0.9360 0.4208 293.9210 0.8077
U2Fusion 6.7392 0.8821 0.7675 57.0550 0.8179 5.5829 0.5356 2.9761 0.5046 0.7874 0.9304 0.4174 253.7540 0.8358
DPE MEF 7.2383 0.8788 0.6120 57.1051 0.8141 6.6607 0.5995 4.1311 0.5612 0.8304 0.9452 0.3942 257.3125 0.7885
TransMEF 6.8603 0.8910 0.9229 57.1319 0.8237 4.5949 0.6035 2.8038 0.5649 0.8059 0.9499 0.4001 253.3766 0.7658
Ours 6.9942 0.8880 0.8311 57.1918 0.8206 5.0976 0.6584 2.7933 0.6073 0.8357 0.9621 0.4102 248.0949 0.7119

generally perform well in quantitative evaluation due to the
excellent information preservation brought by their lossless
image-level processing. Among them, FMMEF ranked in
the top three in seven indicators, four of which won the first
prize, giving the most dazzling answer. Our deep learning-
based solution also performs admirably on six assessment
measures, including five terms second places, thanks to the
proposed effective paradigm and GIF loss.

Qualitative evaluation. As an ill-posed problem with-
out ground truth images, evaluating the algorithm’s visual
performance is essential. It can be observed from Fig. 6,
traditional methods that work well in quantitative compar-
ison present results with an uneven exposure level, result-
ing in unrealistic perceptions. From the zoomed-in area
in the red box, the results of DeepFuse, MEF-GAN, Fu-
sionDN, and U2Fusion all suffer from different degrees of
degradation. The MEF-Net, designed based on the weight-
map fusion paradigm, achieves good information fidelity
but exhibits poor exposure consistency. DPE-MEF, Trans-

MEF, and our method all exhibit excellent performance in
terms of information fidelity and overall exposure consis-
tency. A closer look reveals that DPE-MEF achieves higher
brightness while sacrificing fidelity in high-exposure areas
(the outdoor sky), and TransMEF lacks brightness in low-
exposure areas (chassis of the indoor cars). Our method
attains a relatively balanced effect, and the presented visual
perception is closer to the real scenarios.

Running time comparison. The complexity of the
model is an important criterion to measure its potential ap-
plication in practical situations with constrained computing
resources. In Fig. 5, we report the average inference time
of the algorithms over the MEFB test set. As can be seen,
we improved inference time by 30% and 77%, respectively,
compared to previous state-of-the-art methods, DPE-MEF
and TransMEF. A comprehensive evaluation combining re-
sults in quantitative and qualitative experiments demon-
strates that our proposed method achieves the optimal bal-
ance between model efficiency and performance.

2810



Figure 7. Visualization of the ablation results over the core components within the GIF. Three groups of control experiments are carried
out: 1) w/ Lraw: utilize the unprocessed raw gradient map as {wi}1i=0; 2) w/o SW: substitute the saturation-based weighting (SW) in
Lsmooth with a simple weighted average operation; and 3) w/o Lglobal: without the devised artifacts removal-oriented global constraint.

Table 2. Results of ablation experiments for various filter combinations. The best values are highlighted in bold.
Filter Combinations

EN↑ FMI↑ NMI↑ PSNR↑ QNCIE↑ AG↑ QAB/F ↑ CE↓ QP ↑ QW ↑ MEF-SSIM↑ QCB↑ QCV ↓ VIF↑
1× 1 3× 3 5× 5 7× 7
✓ 6.2271 0.8911 0.9362 57.0160 0.8232 4.7126 0.6023 1.7070 0.5769 0.7201 0.9051 0.3530 272.6144 0.7661
✓ ✓ 6.8272 0.8928 0.8846 57.1869 0.8229 4.6485 0.6368 2.5867 0.5848 0.7840 0.9368 0.3710 239.0854 0.6870

✓ ✓ 6.1858 0.8912 0.9119 57.0075 0.8222 4.9193 0.6030 1.7781 0.5827 0.7231 0.9042 0.3523 271.0377 0.7978
✓ ✓ ✓ ✓ 6.7303 0.8943 0.9207 57.1467 0.8243 4.9066 0.6354 2.0139 0.5857 0.7717 0.9314 0.3641 251.8706 0.7359
✓ ✓ ✓ 6.9942 0.8880 0.8311 57.1918 0.8206 5.0976 0.6584 2.7933 0.6073 0.8357 0.9621 0.4102 248.0949 0.7119

Figure 8. Visually compare the optimization process of the pro-
posed GIF loss with the PMGI and MEF-SSIM loss functions.

4.3. Ablation Studies

In this section, we conduct a series of ablation studies
about the proposed filter-dominated fusion paradigm and
unsupervised loss function GIF.

Effects of various filter combinations. We conduct a
series of ablation experiments to investigate whether filters
with local information aggregation outperform pixel-level
fusion. From Tab. 2, it can be observed that the combi-
nations composed of a single 1 × 1 size filter or without
1× 1 size filter are indeed inferior to the others in structural
similarity-based indexes (MEF-SSIM, QW ). And high mu-
tual information metrics (FMI, NMI) indicate that their fu-
sion results are biased toward one of the source images. In
addition, there is no substantial performance benefit when
the size of the fusion filter reaches 7× 7. The final adopted
scheme combines filters with sizes of 1×1, 3×3, and 5×5
to give the optimal performance.

Influence of three components within the GIF. In
Fig. 7, we investigate the significance of the information
fidelity-oriented designs Within GIF. In particular, we first
replace Lsteep and Lsmooth based on gradient map prepro-
cessing with a Lraw that builds the correlation {wi}1i=0

from the raw gradient maps. It is visible that the lack of
pre-processing in the gradient domain decreases the detail
quality of the fused image. To illustrate the benefit of incor-
porating color saturation information, the saturation-based
weighting (SW) operation used to generate smooth region
optimization targets is replaced by weighted averaging. Un-
der such conditions, the overall contrast of the produced
fusion result is inferior to that of GIF. Besides, the fusion
results exhibit severe stitching artifacts due to the removal
of Lglobal. In conclusion, the ablation studies indicate the
efficacy of GIF’s fundamental components and their com-
plimentary functions during optimization.

Comparison with the MEF-SSIM and PMGI. To
demonstrate the superiority of the proposed GIF loss in un-
supervised multi-exposure fusion optimization, we compare
it with the MEF-SSIM [29] loss function and the PMGI [47]
loss function. MEF-SSIM is inspired by structural similar-
ity (SSIM) and decomposes images into structural, inten-
sity, and strength terms at the patch level for the calcula-
tions. As shown in Fig. 8, it is challenging for MEF-SSIM
to handle the extremely overexposed or underexposed lo-
cations. The design of PMGI is consistent with Equ. (5),
where the function Φ(·) adopts the gradient operator and
the identity transformation, and {wi}1i=0 is assigned a con-
stant value. Since no independent correspondence between
the fused image and the source image is established, PMGI
lacks spatial adaptability in its constraints, limiting its per-
formance. Our proposed GIF achieves the best information
fidelity, and the optimization process is more stable than the
commonly used MEF-SSIM.
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Figure 9. Visually demonstrate the effectiveness of the proposed efficient-oriented fusion paradigm on a broad range of image fusion tasks,
using MFF and VIF as examples. As can be observed, our method achieves comparable visual performance with representative methods.

Table 3. Quantitative results on the multi-focus image fusion
benchmark [49]. The best values are highlighted in bold.

Method EN↑ FMI↑ QNCIE↑ AG↑ QAB/F ↑ QW ↑ QCV ↓ VIF↑
ECNN 7.1437 0.8778 0.8168 7.7970 0.5800 0.8682 111.3797 0.7964
MADCNN 7.1553 0.8817 0.8212 7.7907 0.6634 0.8898 121.12008 0.8281
PMGI 7.0272 0.8663 0.8154 5.8564 0.4553 0.6826 304.6180 0.8773
MFF-GAN 7.1101 0.8703 0.8158 8.3671 0.5357 0.8284 161.1865 0.8583
Ours 7.3846 0.8707 0.8221 7.1355 0.6265 0.8470 77.5857 0.9156

Table 4. Quantitative results on the visible-infrared image fusion
benchmark [50]. The best values are highlighted in bold.

Method AG↑ EI↑ EN↑ PSNR↑ QCV ↓ RMSE↓ SF↑ SSIM↑
MGFF 5.839 60.607 7.114 58.212 676.9 0.1092 17.916 1.406
Hybrid MSD 6.126 63.491 7.304 58.173 510.9 0.1102 19.659 1.405
LatLRR 8.962 92.813 6.909 56.180 697.3 0.1686 29.537 1.184
NSCT SR 6.492 67.956 7.396 57.435 1447 0.1314 19.389 1.277
Ours 5.1668 53.0491 6.8486 58.3247 837.89 0.1068 14.9646 1.4202

4.4. Extension Experiments

To investigate the feasibility of the proposed fusion
paradigm in a spacious range of image fusion problems,
we conduct extension experiments over Multi-Focus image
Fusion (MFF) and Visible-Infrared image Fusion (VIF). It
should be noted that other experimental settings are kept
consistent except for dataset changes. Specifically, on the
MFF benchmark [49], we report our performance compare
to representative algorithms PMGI [47], MFF-GAN [46],
MADCNN [18], and ECNN [1]. Experiments on the VIF
task are compared with Hybrid-MSD [53], LatLRR [21],
NSCT SR [2] and MGFF [3] on benchmark [50]. Fig. 9
and Tab. 3,4 depict the results of qualitative and quantita-
tive experiments. As can be observed in the top column of
Fig. 9, our method combines the near-focus and far-focus
images to generate the resulting image with global sharp-
ening properties. The color channels are derived from the
visible image in the visible and infrared image fusion pro-
cedure. The comparison results in VIF illustrated that our
method achieves better information fidelity, merging the

valuable information of the source image without introduc-
ing artifacts. In conclusion, the comparable performance to
previous state-of-the-art methods highlights the applicabil-
ity of our efficient-focused fusion paradigm and information
fidelity-targeted unsupervised loss function GIF to a vast ar-
ray of image fusion problems.

5. Conclusion
In this work, we provide a new solution for unsuper-

vised multi-exposure image fusion (MEF) by redesigning
the fusion paradigm and loss function. The hierarchi-
cal representation-aware fusion rule and local information
aggregation-based image-level fusion empower the most ef-
ficient fusion paradigms, i.e., the filters-prediction domi-
nated fusion. Inspired by the informative properties of the
source images in the gradient domain, a gradient-driven im-
age fidelity loss GIF is meticulously designed for unsuper-
vised learning. Consequently, we attain the best visual per-
formance with a 30% reduction in inference time compared
to previous state-of-the-art MEF approaches. Furthermore,
the superiority of our approach for a wide variety of image
fusion problems is demonstrated in extension experiments
involving multi-focus image fusion and visible-infrared im-
age fusion. In future work, we will make further improve-
ments to achieve a unified framework for multi-modal im-
age fusion. Code will be available.
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