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Abstract

Depth completion from RGB images and sparse
Time-of-Flight (ToF) measurements is an important
problem in computer vision and robotics. While tra-
ditional methods for depth completion have relied on
stereo vision or structured light techniques, recent ad-
vances in deep learning have enabled more accurate and
efficient completion of depth maps from RGB images
and sparse ToF measurements. To evaluate the perfor-
mance of different depth completion methods, we or-
ganized an RGB+sparse ToF depth completion compe-
tition. The competition aimed to encourage research
in this area by providing a standardized dataset and
evaluation metrics to compare the accuracy of differ-
ent approaches. In this report, we present the results
of the competition and analyze the strengths and weak-
nesses of the top-performing methods. We also discuss
the implications of our findings for future research in
RGB+sparse ToF depth completion. We hope that this
competition and report will help to advance the state-
of-the-art in this important area of research. More de-
tails of this challenge and the link to the dataset can be
found at https://mipi-challenge.org/MIPI2023/.

1. Introduction

RGB+sparse ToF depth completion is a novel ap-
proach to depth estimation in computer vision that
combines RGB images with sparse depth measure-
ments obtained from time-of-flight (ToF) sensors.
Depth estimation is a fundamental problem in com-
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puter vision with numerous applications, such as
robotics, autonomous driving, and augmented reality.
However, estimating depth from a single modality can
be challenging due to noise, occlusions, and other fac-
tors. RGB+sparse ToF depth completion has the po-
tential to improve the accuracy and robustness of depth
estimation in various real-world scenarios.

The task involves predicting a dense depth map
from a single RGB image and a sparse set of depth
measurements. By combining RGB images and sparse
depth measurements, RGB+sparse ToF depth comple-
tion aims to leverage the complementary information
provided by both modalities to produce accurate and
detailed depth maps. RGB images capture color infor-
mation, while the sparse depth measurements provide
direct distance information about the scene. This al-
lows for more robust and accurate depth estimation,
particularly in challenging scenarios such as low-light
conditions, texture-less regions, and scenes with reflec-
tive surfaces.

This challenge is a part of the Mobile Intelligent
Photography and Imaging (MIPI) 2023 workshop and
challenges that emphasize the integration of novel im-
age sensors and imaging algorithms, which is held in
conjunction with CVPR 2023. It consists of four com-
petition tracks:

• Nighttime Flare Removal is to improve night-
time image quality by removing lens flare effects.

• RGB+ToF Depth Completion uses sparse,
noisy ToF depth measurements with RGB images
to obtain a complete depth map.

• RGBW Sensor Re-mosaic converts RGBW
RAW data into Bayer format so that it can be
processed with standard ISPs.

• RGBW Sensor Fusion fuses Bayer data and
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monochrome channel data into Bayer format to
increase SNR and spatial resolution.

2. Challenge

2.1. Problem Definition

Depth completion [15, 9, 11, 13, 5, 14, 18, 3, 19, 20,
6, 12, 4, 2] aims to recover dense depth from sparse
depth measurements. Earlier methods concentrate on
retrieving dense depth maps only from the sparse ones.
However, these approaches are limited and not able to
recover depth details and semantic information with-
out the availability of multi-modal data. In this chal-
lenge, we focus on the RGB+ToF sensor fusion, where
a pre-aligned RGB image is also available as guidance
for depth completion. In our evaluation, the depth
resolution and RGB resolution are fixed at 256 × 192,
and the input depth map sparsity ranges from 1.0%
to 1.8%. The target of this challenge is to predict a
dense depth map given the sparsity depth map and a
pre-aligned RGB image at the allowed running time
constraint (please refer to Section 2.5 for details).

2.2. Dataset: TetrasRGBD [22]

The training data contains 7 image sequences of
aligned RGB and ground-truth dense depth from 7 in-
door scenes (20,000 pairs of RGB and depth in total).
For each scene, the RGB and the ground-truth depth
are rendered along a smooth trajectory in our created
3D virtual environment. RGB and dense depth images
in the training set have a resolution of 640×480 pixels.
We also provide a function to simulate the sparse depth
maps that are close to the real sensor measurements1.
A visualization of an example frame of RGB, ground-
truth depth, and simulated sparse depth is shown in
Fig. 1.

The testing data contains, a) Synthetic: a synthetic
image sequence (500 pairs of RGB and depth in to-
tal) rendered from an indoor virtual environment that
differs from the training data; b) iPhone dynamic: 24
image sequences of dynamic scenes collected from an
iPhone 12Pro (600 pairs of RGB and depth in total);
c) iPhone static: 24 image sequences of static scenes
collected from an iPhone 12Pro (600 pairs of RGB
and depth in total); d) Modified phone static: 24 im-
age sequences of static scenes (600 pairs of RGB and
depth in total) collected from a modified phone. Please
note that depth noises, missing depth values in low re-
flectance regions, and mismatch of the field of views be-
tween RGB and ToF cameras could be observed from
this real data. RGB and dense depth images in the

1https://github.com/zhuqingpeng/MIPI2022-RGB-ToF-
depth-completion

entire testing set have a resolution of 256×192 pixels.
RGB and spot depth data from the testing set are pro-
vided and the GT depth is not available to participants.
The depth data in both training and testing sets are in
meters.

2.3. Challenge Phases

The challenge consisted of the following phases:

1. Development: The registered participants get ac-
cess to the data and baseline code, and are able to
train the models and evaluate their running time
locally.

2. Validation: The participants can upload their
models to the remote server to check the fidelity
scores on the validation dataset, and to compare
their results on the validation leaderboard.

3. Testing: The participants submit their final re-
sults, code, models, and factsheets.

2.4. Performance Evaluation

2.4.1 Objective Evaluation

We define the following metrics to evaluate the perfor-
mance of depth completion algorithms.

• Relative Mean Absolute Error (RMAE), which
measures the relative depth error between the
completed depth and the ground truth, i.e.

RMAE =
1

M ·N

M∑
m=1

N∑
n=1

∣∣∣∣∣ D̂(m,n) −D(m,n)

D(m,n)

∣∣∣∣∣ , (1)

where M and N denote the height and width
of depth, respectively. D and D̂ represent the
ground-truth depth and the predicted depth, re-
spectively.

• Edge Weighted Mean Absolute Error (EWMAE),
which is a weighted average of absolute error. Re-
gions with larger depth discontinuity are assigned
higher weights. Similar to the idea of Gradient
Conduction Mean Square Error (GCMSE) [17],
EWMAE applies a weighting coefficient G(m,n)
to the absolute error between pixel (m,n) in
ground-truth depth D and predicted depth D̂, i.e.

EWMAE =

1
M ·N

∣∣∣∣∣∣
M∑

m=1

N∑
n=1

G(m,n)·[D̂(m,n)−D(m,n)]

M∑
m=1

N∑
n=1

G(m,n)

∣∣∣∣∣∣ , (2)

where the weight coefficient G is computed in the
same way as in [17].
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Figure 1. Visualization of an example training data. Left, middle, and right images correspond to RGB, ground-truth depth,
and simulated spot depth data, respectively.

RMAE and EWMAE will be measured on the test-
ing data with GT depth. We will rank the proposed
algorithms according to the score calculated by the fol-
lowing formula, where the coefficients are designed to
balance the values of different metrics,

Objective score = 1− 1.8× RMAE− 0.6× EWMAE.
(3)

For each dataset, we report the average results over all
the processed images belonging to it.

2.4.2 Subjective Evaluation

For subjective evaluation, we adapt the commonly used
Mean Opinion Score (MOS) with blind evaluation. The
score is on a scale of 1 (bad) to 5 (excellent). We
invited 13 expert observers to watch videos and give
their subjective scores independently. The scores of all
subjects are averaged as the final MOS.

2.5. Running Time Evaluation

The proposed algorithms are required to be able to
process the RGB and sparse depth sequence in real
time. Participants are required to include the average
run time of one pair of RGB and depth data using
their algorithms and the information in the device in
the submitted readme file. Due to the difference of
devices for evaluation, we set different requirements of
running time for different types of devices according to
the AI benchmark data from the website2.

3. Challenge Results

Among 77 registered participants, 4 teams success-
fully submitted their results, code, and factsheets in
the final test phase. Table 1 summarizes the final test
results and rankings of the teams. Team MGTV shows
the best overall performance, followed by Team MiM-
cAlgo and Team DIntel. The proposed solutions are
described in Section 4 and the team members and af-
filiations are listed in Appendix A.

2https://ai-benchmark.com/ranking deeplearning detailed.html

4. Challenge Methods

4.1. MGTV

Model.This team has proposed a model architec-
ture, as illustrated in Figure 2, that incorporates
ResNet34 [7] for the Encoder module, while the De-
coder module is composed of a sequence of 5 upsample
blocks, each of which integrates a convolutional layer, a
pixel shuffle layer, and a channel attention branch [10].
The Local Network is a concatenation of three con-
secutive convolutional layers, while the Refined Net-
work capitalizes on the FCSPNet [8] for optimal per-
formance.

Figure 2. Framework of the MGTV team

Loss.This team employed three loss functions jointly
for training, namely L1 loss, RMAE loss, and Gradi-
ent loss proposed by [8]. In the early stage, in order
to ensure the stability of model training, the L1 losses
were calculated for global depth, local depth, and re-
fined depth simultaneously. After the model training
became stable, only the L1 loss for refined depth was
calculated to obtain optimal results.

Data augmentation.This team observed that the
sparse depth inputs in the testing data were not all
sampled on a regular grid. During training, This team
randomly applied local and circular removal operations
to the sparse depth inputs with a certain probability,
to simulate the input distribution of sparse depth data
in the testing phase. This approach not only enhanced
the generalization capability of the model but also im-
proved its performance on such testing data.

Outlier handling. This team observed that the
sparse depth inputs in the testing data have some out-
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Table 1. MIPI 2023 RGB+ToF Depth Completion challenge results and final rankings.
Rank Team name RMAE EWMAE Objective score Subjective score Final score

1 MGTV 0.02164 0.13257 0.88151 3.60577 0.80133

2 MiMcAlgo 0.01921 0.13462 0.88465 3.38846 0.78117

3 Dintel 0.02702 0.13569 0.86995 3.06731 0.74171

4 Chameleon 0.02232 0.13305 0.87999 2.90385 0.73038

liers which will introduce bias in the predictions around
them. So this team removed the outliers beyond 3 stan-
dard deviations from the mean during the inference
phase.

4.2. MiMcAlgo
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Figure 3. Overview of EMNLP-TN.

Method. The team has developed an effective and ef-
ficient method for depth completion called Enhancing
Multi-Scale Non-Local Propagation with Transformer
Network (EMNLP-TN), illustrated in Figure 3.
Coarse-to-fine prediction: The proposed method,
EMNLP-TN, employs a two-stage approach for depth
completion, which shares similarities with the method
outlined in penet [11]. However, EMNLP-TN utilizes
a coarse-to-fine framework that addresses the complex-
ity of depth completion in two sub-problems: structure
prediction and detail refinement. In both stages, the
same encoder and decoder network are utilized. Specif-
ically, the second stage takes the coarse depth predic-
tion from the first stage as input and applies several
non-local spatial propagation networks [19] to enhance
the prediction.
Artifacts-free up-sample: From the perspective of
super-resolution, completion can also be seen as the
process of interpolating missing depth information us-
ing RGB image guidance. This makes depth comple-
tion an equivalent process to depth super-resolution.
To achieve this, the team used the pixel-shuffle[1] oper-
ation from super-resolution to bridge the gap between
downscaled and full-sized depth data.
Self-attention: Depth completion is distinct from stereo
depth because it does not rely on depth cues from the
input. Instead, it leverages sparse depth information to

(a) RGB image (b) Tof sparse depth (c) Prediction image

Figure 4. Bad point result.

label segments or pixels and learns semantic and seg-
mentation information from RGB images. As demon-
strated by the example illustrated in Figure 4, the flat
input image can yield widely varying depths in differ-
ent segments due to shortcomings in the sparse depth
map. The results confirm that the network learns more
segmentation information rather than depth. This in-
dicates that the network is learning more about seg-
mentation than depth. To address this issue, the team
employed a transformer[23] to extract global features
for better segmentation. The self-attention module of
light LoFTR[21] is introduced to aggregate more sparse
depth points.
Training loss. Each branch is trained with

Loss = α ∗RMAE + β ∗ EWMAE. (4)

Specifically, the loss shares the same formulation as
RMAE and EWMAE metrics.
The total loss of EMNLP-TN can be described as follow

Losstotal = Losscorase + Lossfine. (5)

4.3. DIntel

Figure 5. Overview of DIntel architecture

Model. This team uses a cascaded residual refine-
ment approach for the depth completion task. In this
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cascaded style network architecture, the authors have
used two network modules: Base Network and Resid-
ual Refinement Network (RRN), as shown in Figure 5.
Inspired from [8], the base network’s architecture gives
local and global depth predictions, which are then fused
and passed through a few more layers to get the affin-
ity matrix for funnel convolutional spatial propagation
network (FCSPN) module, which in turn gives the ini-
tial refined depth map prediction. The output of the
base network, along with RGB image and spot depth,
is then fed as input to the RRN (a ResNet-34 [7] based
architecture), whose objective is to rectify the incorrect
depth predictions from the base network.

Training. The base network was trained similarly to
[8]. After training the base network, the weights of
the base network were frozen, and only the RRN was
trained. RRN was trained for 42 epochs with a batch
size of 16. The initial learning rate was 0.001 with a
decay factor of {1.0, 0.2, 0.04} at epochs {10, 15, 20}.
To tackle the missing sparse depth challenge in the test
dataset, the authors trained the model by removing the
spot depth from random areas of the image.

Loss. In the base network and RRN, the authors have
used a combination of L1, L2 and Corrected Gradient
Loss (CGDL) [8] with adaptive weights of 1, 1 and
0.7, respectively. While L1 and L2 losses helped get
accurate depths, the main objective of CGDL loss was
to keep the depth prediction output smooth and edges
sharp.

4.4. Chameleon

Model. This team propose an effective and ef-
ficient depth completion method for depth comple-
tion called Bilateraly-Aware Depth Completion via
Cascaded Dynamic Grapth Convolutional Network
(CDGNN-BA), illustrated in Figure 6. The proposed
method, CDGNN-BA, outputs dense depth and follows
the Convolutional Spatial Propagation Network, orig-
inally introduced in [4]. In particular, this team start
out with Dynamic Grapth Convolutional Network de-
sign as in GraphCSPN [16] and propose modifications
for further improvement as below.
Bilateraly-Aware: GraphCSPN utilizes an encoder-
decoder to jointly learn the initial depth map and
affinity matrix, which is sampled and reshaped into
sequences of patches and concatenated with 3D posi-
tion embeddings. Then the model estimates the neigh-
bors of different patches on the basis of geometric
constraints, and performs spatial propagation lever-
aging dynamic graph convolution networks with self-
attention mechanism. After the graph is generated,
the Top k patches are judged, and the weighted sum is
obtained to predict the final depth. However, the way

Figure 6. Pipeline of CDGNN-BA.

of calculating the similarity only considers the physical
distance between patches while the heterochromia from
various objects is ignored. In our method, the RGB in-
formation is considered based on the fact that patches
from the same object have a higher correlation; Addi-
tionally, the naive 3D reconstruction requires camera
internal parameters which are hard to obtain in several
scenarios. Instead of using these parameters, the au-
thors utilized the distances between pixels and depth
distance from the depth map. In particular, the above
distance weights are calculated using bilateral weight:

d = e
(−

(drgb−urgb)
2

2σ2
rgb

−
(dpixel−upixel)

2

2σ2
pixel

−
(ddepth−udepth)2

2σ2
depth

)
.
(6)

Cascaded refinement: GraphCSPN re-samples the
affinity matrix by 3-time losses the information of
original features. For compensating this deficiency,
the cascade structure is proposed. First, 4-time
down-sampling is performed. After graph propaga-
tion, coarse depth is obtained, and then 2-time down-
sampling is applied to obtain refined depth.
Loss. This team uses the same loss function as Equa-
tion 4
Training Setup. For training, this team randomly
cropped and resized 192 × 256 patches from the train-
ing images as inputs. The mini-batch size is set to 4
and the whole network is trained for 200 epochs. The
learning rate is initialized as 1× 10−3, decayed with a
LinearLR schedule.

5. Conclusions

In this report, we review and summarize the meth-
ods and results of MIPI 2023 challenge on RGB+ToF
Depth Completion. The participants were pro-
vided with a high-quality training/testing dataset,
TetrasRGBD, which is now available for researchers to
download for future research. We are excited to see the
new progress contributed by the submitted solutions in
such a short time, which are all described in this paper.
The challenge results are reported and analyzed. De-
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tailed descriptions of the submitted solutions are also
provided in this report. For future works, there is still
plenty of room for improvements including dealing with
depth outliers/noises, precise depth boundaries, high
depth resolution, and high temporal stability, etc.
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