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1. Discussion
Why Color Transfer instead of Super-resolution?

Given a mono-color image pair, there are two methods that
can be adopted to obtain high-quality images: stereo color
transfer and stereo super-resolution (SR). As for why most
studies based on mono-color system prefer color transfer,
we have conducted comparative experiments to investigate
and explain. In the experiment, we designed a reference-
based stereo SR method based on the representative stereo
SR method iPASSR [9] to transfer the detail information of
mono image to color image. The visual comparison results
are shown in Fig. 1. It can be seen that the image restored
by the SR-based method is unstable, resulting in unaccept-
able visual effects. Especially in the occluded areas caused
by stereo disparity, the SR-based method is difficult to infer
the non-existent texture of the reference image, while color
transfer-based methods can make reasonable inference for
the occluded areas.

2. Generalization Experiments
In this section, we supplement more generalization ex-

periments to prove the progressiveness of our method.
KITTI dataset. We combine the KITTI 2012 [4]

and KITTI 2015 [6] testsets to construct a KITTI testset
for comparing the generalization capability of all models
trained on the Flickr1024 dataset. Specifically, we con-
structed the KITTI testset containing 160 pairs of stereo im-
ages for asymmetric color transfer using the same process
as the Flickr1024 dataset. The Quantitative results shown in
Table 3 indicates that our model provides the best general-
ization performance. In addition, we also supplemented the
qualitative experimental results in Fig. 2.

Large-size generalization. Since the image size of the
training set (160 × 480) is small, we further conducted a
generalization experiment on the large-size (1024 × 640)
testset. Compared with the previous SOTA method [8], we
achieved better generalization effect, as shown in Table 2.
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Table 1. Comparing the complexity of the model with previous
SOTA [8], the experimental environment is the NVIDIA RTX3090
GPU, and the input image size is 160 × 480.

Method Flops (G) Runtime (ms)
Wang (2021) 103.7524 50

Ours 143.8076 90

3. Low-light Condition Application
Under low-light conditions, the color sensor will in-

evitably cause noise for better photosensitive effect. Con-
sequently, multi-sensor system joint imaging is an essen-
tial technique to enhance the imaging quality of low-light
scenes. To prove the efficiency and superiority of our
method, we simulated the low-light dataset with noise-
added to the Flickr1024 dataset. Fig. 3 shows the visual-
ization results of color transfer under low-light conditions.
In the quantitative experiment, the average PSNR / SSIM
of our method is 29.39dB / 0.924, which is better than the
28.49dB / 0.913 of the previous SOTA method [8].

4. Model Complexity
Although the dual-branch information complementary

learning mechanism allows the model to establish more
accurate binocular correspondence, the modulation opera-
tion also increases the model complexity. As shown in Ta-
ble 1, our method has higher flops than the previous SOTA
method proposed by Wang et al. [8], which is a drawback
of our method.

5. More Qualitative Comparisons
As show in Fig. 4, we present more qualitative compara-

tive results over the Flickr1024 dataset.
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Figure 1. Comparison results between stereo color transfer and stereo super-resolution. It can be seen that the super-resolution results are
unstable, showing many blurred areas, while the result of color transfer presents a better visual effect.

Figure 2. Visualization results on the KITTI dataset. As can be seen, our model gives the best generalization results.

Table 2. Generalization experiment over large size images.
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Table 3. Quantitative generalization comparison results on KITTI testset.

Model Setup1 Setup2 Setup3
#Param (M)PSNR SSIM PSNR SSIM PSNR SSIM

Welsh (2002) [10] 25.76 0.831 25.41 0.789 25.31 0.777 -
Jeon (2016) [5] 28.06 0.901 27.81 0.865 27.62 0.862 -

Zhang (2016) [11] 25.76 0.896 25.42 0.861 25.42 0.861 32.60
Dong (2019) [2] 28.93 0.903 28.16 0.867 28.23 0.868 2.30

Su (2020) [7] 24.16 0.823 23.99 0.816 23.99 0.816 34.18
Dong (2020) [3] 18.58 0.780 18.82 0.761 18.61 0.758 0.12
Chen (2021) [1] 27.95 0.903 27.73 0.883 27.59 0.879 2.99
Wang (2021) [8] 29.11 0.909 28.77 0.892 28.69 0.890 1.35

Ours 29.21 0.910 28.92 0.895 28.90 0.894 1.09

Figure 3. Colorization over noise-added low-light scene. It can be seen that our method achieves accurate color transfer under extreme
conditions, which is better than the previous state-of-the-art method [8].
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Figure 4. Visualization results on the Flickr1024 testset.
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