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Abstract

Driver Monitoring Systems (DMSs) are crucial for safe
hand-over actions in Level-2+ self-driving vehicles. State-
of-the-art DMSs leverage multiple sensors mounted at dif-
ferent locations to monitor the driver and the vehicle’s in-
terior scene and employ decision-level fusion to integrate
these heterogenous data. However, this fusion method
may not fully utilize the complementarity of different data
sources and may overlook their relative importance. To ad-
dress these limitations, we propose a novel multiview mul-
timodal driver monitoring system based on feature-level fu-
sion through multi-head self-attention (MHSA). We demon-
strate its effectiveness by comparing it against four alter-
native fusion strategies (Sum, Conv, SE, and AFF). We also
present a novel GPU-friendly supervised contrastive learn-
ing framework SuMoCo to learn better representations.
Furthermore, We fine-grained the test split of the DAD
dataset to enable the multi-class recognition of drivers’ ac-
tivities. Experiments on this enhanced database demon-
strate that 1) the proposed MHSA-based fusion method
(AUC-ROC: 97.0%) outperforms all baselines and previous
approaches, and 2) training MHSA with patch masking can
improve its robustness against modality/view collapses. The
code and annotations are publicly available 1.

1. Introduction
Modern driver monitoring systems (DMSs) in Level-2+

self-driving-enabled cars aim to enhance safety by estimat-
ing drivers’ readiness levels for driving and enabling safe
control handovers when necessary. These systems usually

1https://github.com/Yiming-M/MHSA

Figure 1. An overview of our proposed DMS: R3D-18 [24]
backbones are utilized to extract spatial-temporal features from
the multiview multimodal inputs. These feature maps are sub-
sequently fused via multi-head self-attention ( illustrated in Fig-
ure 2). A 2-layer perceptron is leveraged to project the fused fea-
tures into the contrastive embedding sapce, while another 2-layer
perceptron generates the score for each class. The orange blocks
constitute the query encoder of our proposed contrastive learning
framework, SuMoCo. They are supervised using the infoNCE
loss [20], and the classifier is trained separately using the focal
loss [16].

rely on various visual sensors installed at different locations
within the car to monitor drivers’ states comprehensively.
For instance, cameras installed above the driver can col-
lect data related to hand-involved activities (e.g., messag-
ing). Those in front can monitor the driver’s upper body
movements, enabling the detection of actions like drinking.
While the RGB modality provides sufficient optical details
for object detection, near infrared (NIR) can enhance ro-
bustness under adverse environmental conditions such as
poor lighting. Given these multiview multimodal data, ef-
fectively integrating them is thus crucial for DMSs to be-
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Figure 2. The structure of our proposed multi-head self-attention feature fusion module MHSA. We first split the extracted feature maps
into fixed-size patches and add the source embedding and the positional embedding to them. Next, we randomly mask some patches
and feed the remaining into the transformer encoder block [8, 25] to learn interactions among them and capture the global context. This
masking operation simulates view/modality collpase, leading to improved robustness. Finally, the attended patches are summed to generate
the output.

come applicable in the real world.
The study of DMSs encompasses various domains, and

this paper focuses specifically on driver action recogni-
tion. This task involves classifying a driver’s actions into
“normal driving” and several non-driving-related activities
(NDRAs) such as talking and drinking. Existing approaches
[15, 21] typically employ a naive fusion method that com-
bines the multiview multimodal data at the decision level.
However, this approach fails to exploit the complementar-
ity of the semantic features from different views and modal-
ities and does not consider their relative importance, leading
to underperformance. Hence, we propose DMSs based on
feature-level fusion with self-attention, as depicted in Fig. 1,
to address these limitations. Following the prior work [15],
we also train our models with supervised contrastive learn-
ing (CL). To this end, we introduce SuMoCo, a novel GPU-
friendly framework based on its unsupervised counterpart,
MoCo [10].

Given that drivers can perform indefinite non-driving-
related activities, we evaluate our proposed methods on
the Driver Anomaly Detection Dataset (DAD) [15], which
is designed explicitly for open-set NDRA detection. The
dataset consists of only two categories, namely “normal”
and “anomalous” (the class for all NDRAs). However, iden-
tifying the specific type of NDRA is critical in practice as
they pose varying degrees of risk from inattention. There-
fore, we manually annotate DAD with fine-grained labels,
such as “drinking”, “talking” and ”texting”, to enable the
multi-classification of NDRAs.

Our contributions in this paper are three-fold as follows:
1. We present a novel multiview multimodal driver mon-

itoring system (DMS) that leverages feature-level fu-
sion through multi-head self-attention (MHSA). To
demonstrate the effectiveness of our proposed fusion
method, we introduce four alternative fusion strate-

gies: Sum, Conv, Squeeze-and-Excitation (SE), and
Attentional Feature Fusion (AFF). We propose a new
supervised contrastive learning framework, SuMoCo,
to efficiently train these models.

2. We manually annotated the DAD dataset with the spe-
cific labels of non-driving-related activities (NDRAs)
to enable their recognition. Consequently, in the test
set, the “anomalous” class is replaced by nine fine-
grained classes. These newly introduced labels of-
fer greater granularity and thus have the potential
to enhance the identification of the most distracting
NDRAs. These additional annotations have been made
publicly available.

3. We conduct extensive experiments on the DAD dataset
to compare different fusion strategies, assess the sig-
nificance of individual views/modalities, and evaluate
the efficacy of patch masking in enhancing MHSA’s
robustness against view/modality collapses. Results
show that our MHSA-based DMS achieves state-
of-the-art performance with an AUC-ROC score of
97.0%.

2. Related Work

2.1. Multimodal Driver Monitoring Systems

Datasets: StateFarm [19] and AUC-DD [2] were among
the earliest datasets for driver action recognition. They
were collected using an RGB camera from a single side
view and thus have some limitations. For instance, certain
hand-related activities (e.g., texting) may be occluded, and
the RGB camera cannot provide sufficient optical details in
poor illumination conditions. Thus, methods [2, 3, 9] devel-
oped on these datasets may not be robust enough for practi-
cal use.
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Later databases [12, 15, 18, 21] have incorporated addi-
tional views and modalities to address these issues. For ex-
ample, top and front views have also been introduced to cap-
ture the driver’s hand and head movements amongst other
movements. Regarding modalities, IR and depth have also
become popular, as they can provide thermally based fea-
tures and geometry information, which are complementary
to the optical details from RGB. Among these datasets, we
benchmark our models on DAD [15], the only one designed
for SAE L2+ with open-set recognition: its test set contains
extra classes of NDRAs in addition to those in the train-
ing split. This characteristic makes it representative of the
real-world driving scenario, where there can be unbound-
edly many types of NDRAs.
Multimodal DMSs. Various multiview multimodal meth-
ods have been proposed with different emphases. Some pro-
pose novel learning methods (e.g., supervised contrastive
learning [15]), while others [1, 4, 21–23] are focused on
handling the temporal dimension. However, how to com-
bine heterogenous data in DMS has rarely been studied.
Most previous methods [15, 18, 23] adopt a decision-level
fusion by averaging the scores, while Ortega et al. [21] pro-
pose to fuse data at an input level by concatenation. These
strategies cannot handle modality/view interaction well and
hence tend to underperform. The former neglects the ex-
tracted feature maps that can correctly describe the driver’s
actions only when compared and combined, while latter ig-
nores the spatial inconsistency when concatenating all input
videos along the channel dimension. Only Shan et al. [22]
propose a nontrivial multimodal approach, but it has sev-
eral drawbacks: 1) features are pooled before fusion, which
leads to the loss of semantic information; and 2) its fusion
module has the additional task of handling the temporal di-
mension. By contrast, our work is the first to specifically
investigate how to effectively fuse modalities and views at
the feature level in driver monitoring systems.

2.2. Contrastive Learning

Kopuklu et al. [15] propose a supervised contrastive
learning method for NDRA detection on DAD. This method
and the state-of-the-art supervised contrastive learning
method SupContrast [13] are both based on the unsuper-
vised framework SimCLR [6], which requires large batch
sizes to estimate the infoNCE loss [20] accurately. For in-
stance, in [15], each batch comprises 160 clips with a size
each of 16 × 112 × 112. This large input size makes these
CL methods impractical, as they require huge GPU memory
to calculate gradients. By comparison, MoCo [10] contrast
the current extracted embeddings with those previous ones
stored in a queue. to address this issue. Besides, MoCo op-
timizes the key encoder’s weights with a momentum-based
update scheme to guarantee the consistency of embeddings
extracted by it. However, it is based on unsupervised learn-

Figure 3. The structure of our proposed squeeze-and-excitation
feature fusion module SE. Feature maps are first concatenated
along the channel axis. We leverage the squeeze-and-excitation
mechanism [11] to learn the weight for each channel. The weight
matrices are then used to average the input feature maps. Through
this way, our method can model the interaction between different
views and modalities and learn the corresponding relative impor-
tance.

ing and needs to be adapted for the supervised scenario.
We fill this gap by caching both embeddings and labels into
the queue. Specifically, our framework groups embeddings
with the same labels together and separates those with dif-
ferent labels.

3. Method
We propose a multiview multimodal DMS that employs

feature-level fusion (see Fig. 1). Let {X1, · · · XM} be the
input video clips collected at the same time from M differ-
ent sources. Since data from different sources have distinct
statistical distributions, for the video clip Xi, we use a sep-
arate R3D-18 [24] backbone F i to extract the feature map
f i. Specifically, for i = 1, · · · , M , we have

f i = F i (Xi) ∈ RC×T×H×W , (1)

where C is the number of channels in f , T denotes the tem-
poral dimension size, and H and W refer to the height and
width of the spatial dimension.

3.1. Multi-Head Self-Attention Fusion

We propose a novel fusion method MHSA (see Fig. 2),
which is based on the multi-head self-attention. First, we
divide each feature map f i ∈ RC×T×H×W obtained by
Eq. (1) into patches of size C × 1 × 1 × 1, resulting in
N := THW patches per source, denoted by{

p
(j)
i ∈ RC

∣∣∣ j = 1, · · · , N, i = 1, · · · , M
}
.
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Top Front Top + Front
D IR D + IR D IR D + IR D IR D + IRFusion

ROC mAP ROC mAP ROC mAP ROC mAP ROC mAP ROC mAP ROC mAP ROC mAP ROC mAP

Decision [15] 91.3 - 88.0 - 91.7 - 90.0 - 87.0 - 92.0 - 96.1 - 93.1 - 96.6 -

Sum 91.7 94.2 92.7 93.2 94.8 96.8 94.5 96.0 96.3 96.8
Conv 92.2 94.3 92.9 94.1 95.8 97.4 94.6 96.1 96.2 97.5
SE 92.3 94.3 92.9 94.5 95.9 97.4 94.9 96.5 96.4 97.6
AFF 92.5 94.7 93.1 94.7 96.4 97.6 95.0 96.6 96.7 97.4
MHSA (ours)

92.9 94.9 91.3 93.5

92.9 95.2

91.7 94.4 90.2 91.8

93.1 94.9 96.7 97.7 95.7 97.1 97.0 97.8

Table 1. Results for NDRA detection on the DAD dataset. Each samples is classified as either “normal driving” or not. Here, D represents
the depth modality and IR the infrared modality. The highest score for each view and modality are in bold, and those highlighted indicate
improvement brought by introducing an extra modality or view.

Then, we infuse the source embedding mi ∈ RC and the
positional embedding s(j) ∈ RC into each patch p

(j)
i via

addition:
q
(j)
i = p

(j)
i +mi + s(j).

The resulting patches q
(j)
i for j = 1, · · · , N and i =

1, · · · , M thus preserving information about their data
sources and the spatiotemporal positions in the original fea-
ture maps.

During training, we randomly mask n% of the patches
{q(j)

i |j = 1, · · · , N, i = 1, · · · , M} to enhance the
model’s robustness against corrupt modalities or views.
After this step, the multi-head self-attention mechanism
[8, 25] is applied to the remaining patches {q1, · · · , qr},
where r is the number of unmasked patches. This mecha-
nism distributes attention to patches from different sources
and spatiotemporal positions and can thus learn the rela-
tive importance of each patch. Finally, the output patches
{u1, · · · , ur} are combined via addition to obtain a global
representation:

g =

r∑
i=1

ui ∈ RC . (2)

It is worth noting that MHSA is different from the fusion
mechanism of Shan et al. [22] in the following aspects.

1. MHSA focuses on view/modality interaction. We use
3D CNN backbones to extract spatial-temporal fea-
tures. In contrast, [22] leverages 2D CNN, so their
fusion mechanism needs also to handle the temporal
dimension: attention is distributed across modalities
and temporal steps.

2. MHSA preserves input semantics. Features are NOT
pooled to generate patches, and also, the source en-
coding and the positional encoding are introduced to
preserve the data sources and spatiotemporal positions
of patches.

3. MHSA is more efficient. To obtain a good global rep-
resentation, MHSA simply adds the attended features,
while Shan et al. uses a class token and multiple
chained transformer blocks.

3.2. Other Fusion Methods

To compare with our proposed MHSA fusion module,
we propose four alternative feature fusion methods,since
similar approaches have not been explored on DMSs be-
fore.

Sum. This most straightforward method fuses the four fea-
ture maps by directly adding them:

f =

M∑
i=1

f i. (3)

Conv. Features are first concatenated along the channel di-
mension, as follows:

f∗ = [f i ∥ · · · ∥fM ] ∈ RMC×T×H×W . (4)

Then a point-wise convolution is performed to reduce the
channel size to C:

f = Conv (f∗) . (5)

SE. Figure 3 depicts the structure of this module. The 3D
version of squeeze-and-excitation [11] is imposed on the
concatenated feature maps in Eq. (4) to learn the channel
attention matrix:

W ∗ = SE (f∗) ∈ RMC×1×1×1, (6)

which is then split along the channel axis into M chunks
W i ∈ RC×1×1×1, for i = 1, · · · , M . Finally, features are
fused by weighted average:

f =

M∑
i=1

f i ∗W i, (7)

where “∗” represents the element-wise prodcut.

AFF. This module is similar to SE, but instead of using
squeeze-and-excitation, it utilizes the 3D Attentional Fea-
ture Fusion module [7] to learn both spatial-temporal atten-
tion and channel-wise attention. Specifically, the attention
matrix is calculated as follows:

W ∗ = AFF (f∗) ∈ RMC×T×H×W , (8)
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CL Framework Top D Top IR Front D Front IR
Kopuklu et al. [15] 91.3 88.0 90.0 87.0
SuMoCo (w/o new labels) 90.8 89.8 89.9 88.7
SuMoCo (w/ new labels) 92.9 91.3 91.7 90.2

Table 2. Results comparing our contrastive learning framework
SuMoCo with Kopuklu et al. [15] in single-view single-modal
NDRA detection, as measured by the AUC-ROC metric. Initially,
SuMoCo can only perform binary classification without our labels.
However, after manually annotating the test set, it can be trained
for multi-classification, and its results for detection are shown in
the last row.

which is then chunked to average f i like in Eq. (7).
After fusing features by (3), (5) or (7), an average pool-

ing layer and a flatten layer are utilized to transform f ∈
RC×T×H×W into a vector:

g = Flatten (Avg (f)) ∈ R×C . (9)

3.3. SuMoCo: A Novel Supervised Contrastive
Learning Framework

We introduce a novel supervised momentum contrastive
learning framework SuMoCo, based on MoCo [10] and
SupContrast [13]. Like its self-supervised counterpart,
SuMoCo also comprises a query encoder EQ and a query
projection head PQ, which are then copied to initialize the
key encoder EK and the key projection head PK . The en-
coder E is composed of R3D-18 backbones and fusion mod-
ules, and produces an output g ∈ RC (determined by either
(2) or (9)). We use a two-layer perceptron as the projection
head P .

For each mini batch, we first compute the contrastive em-
beddings z = P(E(X)). Subsequently, the embeddings
from the key encoder zK are detached from the gradient
graph and stored in the queue with their corresponding la-
bels y. The weights of the query encoder EQ and projection
head PQ are updated by the infoNCE loss [20], defined by
the following equation:

L = −
B∑
i=1

∑
p∈P (i)

log
exp (z

(i)
Q · z(p)

K /τ)∑
a∈A(i) exp (z

(i)
Q · z(a)

K /τ)
, (10)

where B is the batch size, P (i) is the set of instances in
the queue that has the same label as i’s, A(i) is the set of
instances with opposite labels, and τ is a temperature pa-
rameter controlling the distribution of the embeddings. To
ensure consistent output, the weights of EK and PK are up-
dated with a momentum m :

WK = m ·WK + (1−m) ·WQ. (11)

Next, we detach the query embeddings gQ from the gra-
dient graph and feed them to a two-layer classifier to gener-
ate scores for each class. The focal loss [16] supervises the
training of this prediction head.

Figure 4. The distribution of the fine-grained classses. The la-
bel “normal” refers to normal driving, and the other nine are non-
driving-ralated activities: “radio”: tuning the radio; “backseat”:
reaching the back seat; “talking”: talking with the passenger;
“phone”: talking on the phone. The “L/R” suffix stand for with
the left/right hand, and those NDRAs only in test set are labeled
as “unseen”.

4. Experiments

New Annotations. We evaluate our work based on the
DAD databse [15], which was designed for NDRA detec-
tion. Since the set of all possible actions performed by
drivers is unbounded, its test split contains more types of
NDRA than the training set to better estimate real-world
performances of DMSs. However, all the NDRAs in the
test set are labeled as “anomlaous driving” instead of their
specific types, hindering DMSs from classifying them. On
the other hand, recognizing the specific activities is of cru-
cial importance in practice, as different unrelated activities
require varying amounts of response time for drivers to re-
focus their attention on driving. To bridge this gap, we have
manually annotated each sample in the test set with its cor-
responding label.
Dataset Statistics. The DAD database [15] was collected at
47 FPS from two views (top & front) and two modalities (IR
& depth). Its training set comprises 1,770,000 frames for
each data source, and its test set contains 360,000 frames.
The training set has one class for normal driving and eight
NDRA categories, while the test split has one additional
class for unseen NDRAs. Figure 4 displays the newly an-
notated classes and their distributions. We observe that the
class distributions are severely imbalanced, with 84.7% of
the training set focused on normal driving, and the remain-
ing 15.3% allocated to the eight NDRA classes. For this
reason, we use the mean average precision (mAP) as the
metric for evaluating the models’ performance.
Training. The videos in the DAD dataset have nearly twice
the frame rate of commonly used human action datasets,
so we remove every other frame to reduce computation.
For the temporally downsampled dataset, we construct in-
put clips in the following way. From every 32 frames, 8
of them with equal spacing are randomly selected to in-
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Source Decision Sum Conv SE AFF MHSA (ours)
Top (D) 84.3
Top (IR) 83.7
Top (D+IR) 84.5 85.0 85.4 85.4 85.4 85.7
Front (D) 87.7
Front (IR) 83.7
Front (D+IR) 87.9 87.7 88.1 88.2 88.5 88.7
Top+Front (D) 90.7 90.1 90.4 90.5 90.6 90.9
Top+Front (IR) 88.4 89.9 90.2 90.2 90.4 90.6
Top+Front (D+IR) 90.9 90.8 91.2 91.4 91.5 91.6

Table 3. The mAP scores for multi-classification of drivers’ activ-
ities on DAD. The best scores for each view and modality are in
bold, and scores with the blue background indicate that the corre-
sponding feature-level fusion strategy is better than the decision-
level fusion under the metric of mAP.

troduce temporal scale variation. Then, we leverage the
same techniques (e.g., cropping, flipping) to augment the 8-
frame clip, which is subsequently resized to the spatial size
112 × 112. The R3D-18 backbones [24] are pre-trained on
Kinetics-400 [5], and the fusion modules and the MLP are
randomly initialized. We train each model using the pro-
posed SuMoCo framework with a queue size of 16,384, a
temperature 0.07, and a momentum 0.999 2. An Adam al-
gorithm [14] with the initial learning rate 1e-3 and a cosine
annealing scheduler [17] are employed to optimize the pa-
rameters. Each model is trained with a batch size 32 for 50
epochs.

4.1. Single View/Modality Cases

In this section, we compare the proposed contrastive
learning framework SuMoCo with the CL method in [15]
for single-view single-modal NDRA detection (binary clas-
sification between normal driving and NDRA). We report
the AUC-ROC scores in Table 2, where the second row
shows the results of SuMoCo trained with the same binary
labels as Kopuklu et al. [15]. We observe that SuMoCo out-
performs Kopuklu et al. by non-trivial margins (> 1.5%)
on the depth modality and by smaller margins (≤ 0.5%) on
IR. These results demonstrate the effectiveness of SuMoCo,
which has fewer contrastive pairs in each batch to save GPU
memory.

Our new annotations enable SuMoCo to be trained for
multi-classification, and we report its detection perfor-
mance by comparing the score for normal driving and the
sum of scores for NDRAs (results shown in the last row
of Table 2). Our annotations can further improve the per-
formance of SuMoCo (up to 2.2%), as the more detailed
label information can regularize the contrastive embedding
space. Starting from here, we train our models with the new
labels for multi-class classification and also report their per-
formances in NDRA detection.

2The temperature is τ in (10), and the momentum is m in (11). The
choice of these values follow MoCo [10].

Fusion 1-Step 2-Step

Sum 90.8 91.4
Conv 91.2 91.1
SE 91.4 91.6
AFF 91.5 91.6
MHSA (Ours) 91.6 90.9

Table 4. Comparisons (in mAP) between 1-step fusion (all at
once) and 2-step fusion of the four input sources in DAD on multi-
classification. Results show that fusing all views/modalities at the
same step is beneficial for MHSA.

4.2. Multiview Multimodal Fusion

Table 1 compares our feature-level fusion models with
the decision-level approach proposed in [15] for NDRA
detection. Our multi-source DMS with the MHSA fusion
module consistently outperforms all other methods, demon-
strating the superior performance of this self-attention
mechanism in multi-view/modal fusion. The highest ROC
and mAP scores (97.0% and 97.8%, respectively) are
achieved when all four data sources are combined. Ad-
ditionally, MHSA is the most stable method for this task,
as its performance consistently improves when an extra
view/modality is introduced.

We remove the unseen NDRAs in the test set to evalu-
ate our models’ performance on multi-class classification,
since our work does not focus on open-set recognition. Ta-
ble 3 shows mAP scores. We observe that the MHSA-based
model again outperforms all other fusion methods, with
the highest scores (91.6%) achieved when combining two
views and two modalities. Table 3 also indicates that the
mAP scores of our proposed fusion models can always be
improved as more sources are included, demonstrating their
effectiveness in multi-view multi-modal action recognition.

As for the importance of each modality, we find all mod-
els consistently perform better on the depth modality than
on the IR modality. Furthermore, having two views is more
beneficial than having two modalities, as the models have
larger performance improvements. These findings suggest
that the top depth and front depth data sources are the
most useful in practice, as DMS built on them can achieve
good performance while enjoying relatively low computa-
tion costs.

4.3. One-Step or Two-Step?

In this section, we investigate whether views and modal-
ities should be combined altogether in a single step, or
in separate steps. The previous results are based on the
one-step fusion, where feature maps from all four sources
( fF, D, fF, IR, fT, D, and fT, IR) are simultaneously fused.
In contrast, the two-step strategy fuses features sequen-
tially. We fuse the features from the same views first to
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(a) Mult. Acc. (b) Bin. Acc.

(c) Mult. mAP (d) Bin. mAP

Figure 5. Masked training improves MHSA’s robustness against
corrupt views/modalities. MHSA is trained with all four data
sources in DAD and a varying mask ratios ranging from 0.0 (i.e.,
no masking) to 0.9 (i.e., 90% of the patches are masked). In
testing, it is evaluated with zero to three data sources collapsed.
Thus, small performance degradation indicates stronger robust-
ness against corrupt data sources. The x-axis in the resulting plots
indicates the mask ratio, and the y-axis displays the corresponding
average score.

ensure spatial consistency: fF = fusionF(fF, D, fF, IR) and
fT = fusionT(fT, D, fT, IR). Then fF and fT are further
fused.

Table 4 compares the results of the two fusion types. We
observe that for Sum, SE, and AFF, the two-step fusion out-
performs the one-step fusion, while for Conv, the results are
similar. The two-step fusion method is easier to learn be-
cause the input features have more similar semantics than
those of one-step fusion. However, for MHSA, fusing fea-
tures in two steps leads to a degradation in performance due
to overfitting – the number of transformer encoder blocks is
increased from two to four.

4.4. Patch Masking for Robustness

In this section, we validate that training the MHSA
fusion method with masking can improve its robustness
against modality/view collapses. MHSA is trained on the
four data sources with the mask ratio varying from 0.0 (no
masking) to 0.9 (90% of patches are randomly removed). In
the test time, we collapse one, two, and three data sources
and feed the remaining to the model. For each collapse
scenario, we calculate the scores and average them over
the number of possible collapses. For instance, there are
C2

4 = 6 choices for two corrupt sources, so we calculate
the score for each case and then average them. Figure 5 il-
lustrates these results. With the mask ratio increasing, the

Figure 6. The confusion matrix for acitivity classification on DAD
using the MHSA model. Each element is normalized by its row
sum, so the diagonal entries represent the recall values (in percent)
for class.

performance of MHSA in all collapse scenarios also show
an upward trend. The MHSA with the mask ratio 0.9 is the
most robust as the differences of its test performances are
the slightest. These observations show that random mask-
ing can improve the robustness against missing sources.

Moreover, we find that when there is no collapse, the
scores still exhibits an increasing trend as the mask ratio in-
creases, showing that random masking, as a strong regular-
ization technique, may improve the model’s generalization
capabilities. This finding coincides with the result of two-
step fusion (i.e., MHSA may overfit the training set). Over-
all, our results suggest that training MHSA with random
masking can improve its generalization capabilities and ro-
bustness against modality/view collapses.

4.5. Confusion among Classes

Figure 6 depicts the confusion matrix of our MHSA
model. We find that some NDRAs are misclassified as
normal driving. This issue can be partially attributed to
class imbalance, as each NDRA class only constitutes 1.9%
of the training set while normal driving comprises 84.7%.
This heavy imbalanced distribution makes our model over-
fit to the normal driving data. For “tuning the radio”, our
model can recognize most of this action (87.1%), while for
other NDRA, the recognition rates are not very comparable.
Upon further scrutiny of the test set, we find that this prob-
lem is caused by untrimmed video clips of other classes. For
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Figure 7. Visualizaion of the middle frames of four test samples from DAD. From left to right, the data sources are front IR, front depth, top
IR and top depth, respectively. The text at the upper left corner indicates the predicted class of the driver’s activity and the corresponding
probability. Those in green indicate that the predictions are correct. Our proposed method MHSA makes a fake error for the last case (in
red). It predicts the NDRA to be talking to the passenger, but the actual label is talking on the phone.

example, the action of talking on the phone with the right
hand in val03 rec1 is annotated to start from frame 8467,
but for us this action can only be recognizable from frame
8760 (about 6.2s later). The last row of Fig. 7, which cor-
responds to frame 8516, illustrates this case. These frames,
which are originally labeled as an NDRA by [15] but are ac-
tually normal driving, leads to the fake errors in Fig. 6. In-
terestingly, the model seems very confused between reach-
ing behind and talking to the passenger, probably because
both actions need drivers to turn their heads back. Also, the
DMS sometimes confuses between texting and talking on
the phone, which is not beyond expectation as drivers may
talk on the phone in the hands-free mode while the DAD
dataset has no audio available.

5. Discussions and Conclusions

In this paper, we proposed (i) a novel multiview multi-
modal driver monitoring system (DMS) with an effective
fusion strategy based on multi-head self-attention (MHSA)
and (ii) a GPU-friendly supervised contrastive learning
framework, SuMoCo. In addition, we also labeled the
DAD dataset (which initially had labels for binary classi-

fication) to enable multi-class classification. Extensive ex-
periments on the DAD dataset verified the effectiveness of
our proposed methods. We demonstrated that the MHSA-
based fusion strategy achieves the best results compared
to other competitive fusion methods on both NDRA detec-
tion and action classification. We also showed that training
MHSA with random patch masking can enhance its robust-
ness against missing input channels (modality/view).

Limitations. One drawback of our fusion model is that it
overfits the training set. For future work, we will study the
feasibility of using a single branch to handle all data sources
to restrict the model’s expressivity, thereby reducing overfit-
ting. We will also collect more data for non-driving-related
activities (NDRAs) to resolve the data imbalance issue.

Negative Impacts. Our work is evaluated on a public
dataset that is not balanced regarding ethnicity, religion, and
other demographic factors. We will consider these factors
when we collect data in the future. Also, data about drivers’
faces are required for our DMS, since it needs to detect ac-
tivities like talking. This system may thus be misused to
potentially infer a person’s identity-related information.
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