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Abstract

While huge progress has been made on a variety of vi-
sion and language tasks in recent years, most major ad-
vances have been restricted to the English language due to
the scarcity of relevant training and evaluation datasets in
other languages. A popular approach to address this gap,
has been to utilize machine-translated multi-modal datasets
or multi-lingual text-only datasets for pre-training. This ap-
proach not only fails to exploit existing pre-trained state-of-
the-art English multi-modal models, but also is not a vi-
able solution for low-resource languages where translation
quality is not as reliable. Therefore, we propose XMDETR,
a multi-lingual grounded vision-language model based on
the state-of-the-art model MDETR, by adapting it to new
languages without machine-translated data, while also
keeping most of the pre-trained weights frozen. XMDETR
leverages mono-lingual pre-trained MDETR to achieve re-
sults competitive to state of the art on xGQA, a standard
multilingual VQA benchmark. It is also interpretable, pro-
viding bounding boxes for key phrases in the multi-lingual
questions. Our method utilizes several architectural as well
as data-driven techniques such as training a new embed-
ding space with a Masked Language Modeling (MLM) ob-
jective, code-switching, and adapters for efficient and mod-
ular training. We also explore contrastive losses to enforce
the bridging of multi-modal and multi-lingual representa-
tions on multi-lingual multi-modal data, when available.
We evaluate XMDETR on xGQA in both zero-shot and
few-shot settings, improving results on Portuguese, Indone-
sian and Bengali, while remaining competitive on other lan-
guages.

1. Introduction

Over the past few years, large-scaled pre-trained Vision-
Language Models (VLMs) have emerged as a promising
approach for tackling the challenging task of visual ques-
tion answering (VQA). The dominant approach is to use
transformer-based models pre-trained on large-scale web-

scraped image-text datasets, capable of capturing complex
semantic relationships between visual and textual modal-
ities. Performance on the VQA benchmarks is evaluated
after fine-tuning on large-scale visual question-answering
datasets [1,9,11,30,32]. GQA [11] is a popular visual ques-
tion answering (VQA) dataset consisting of 22M English
questions about real images from the Visual Genome [13]
dataset and has powered the development of state-of-the-art
question answering models [12, 33, 38]. However, this kind
of large-scale VQA dataset is missing in other languages,
hindering the advancement of multi-lingual VQA models.
Previous attempts at building multi-lingual VQA systems
often utilize machine-translated datasets and/or a combi-
nation of textual datasets of multiple languages to train a
transformer-based multi-modal model [20, 28, 37, 39].

While these methods have shown promising results, they
still face significant challenges. One major issue is the qual-
ity of machine translation, which is still heavily reliant on
the availability and quality of resources in the target lan-
guage. As a result, this approach may still be disadvan-
tageous for low-resource languages where such resources
may be scarce or non-existent. Further, training the model
from scratch on the limited datasets available in the tar-
get language does not fully exploit existing large-scale pre-
trained English VQA models and training from scratch can
also be computationally expensive.

To quantify the gap in performance of multi-lingual
VQA systems, an evaluation benchmark called xGQA [22],
based on the GQA dataset [11] was recently proposed. It
extends the original English GQA dataset to 7 typologi-
cally diverse languages and provides few-shot splits to test
the zero-shot and few-shot cross-lingual transfer ability of
multi-lingual VQA models. Crucially, the amount of multi-
lingual training data is very limited, only provided to test
models in few shot settings. In this paper, we propose
an efficient method to transfer a state-of-the art grounded
mono-lingual vision-language model, MDETR [12], to new
languages that are included in xGQA, while holding most
of the parameters frozen. We test four strategies to mini-
mize the gap between new languages and English, includ-
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(a) BN: no (confidence=58.47) (b) DE: no (confidence=92.56) (c) KO: no (confidence=48.89) (d) ID: no (confidence=99.46)

(e) PT: no (confidence=70.35) (f) RU: no (confidence=68.12) (g) ZH: no (confidence=93.34) (h) EN: no (confidence=99.92)

Figure 1. An example taken from the test split of xGQA. The input query is “does the vehicle behind the zebras look black?” and the
ground-truth answer is “no”. xMDETR predicts bounding boxes with predicted spans in the input query and thus is more interpretable than
methods that are only capable of answering prediction. Our method not only generates the correct answer but also successfully detects the
main objects mentioned in the input for nearly all languages (except for the wrong span associated with the bounding box for Bengali).

ing training a new embedding space with Masked Language
Modeling (MLM) objective, code-switched training which
augments the English GQA with code-switched text in tar-
get languages and inserting adapters to the text encoder to
allow for more flexibility without updating all weights. Fi-
nally, we employ contrastive training to further boost the
performance on some relatively high-resource languages for
which we have image-text datasets available.

The effectiveness of our proposed methods is evaluated
in both zero-shot and few-shot settings and compared with
other models on the xGQA benchmark. Our results are
competitive with state of the art approaches, without using
translated data. Since we build upon MDETR, a grounded
VQA model, XMDETR is able to produce bounding boxes
along with the alignment to relevant object words in the
question in target languages. These bounding boxes provide
some insights into the reasoning process of the model, mak-
ing it more interpretable compared to other existing multi-
lingual VQA systems.
Our contributions are as follows:

• We propose a novel method to leverage a state-of-the-
art grounded VQA model, and adapt it to low-resource
languages without relying on translated data.

• We report results on xGQA in both zero-shot and
few-shot settings, while providing interpretable pre-
dictions. On Bengali, Indonesian and Portuguese we
outperform existing approaches and are competitive on
other languages.

2. Related Work

The major challenge in cross-lingual VQA is the scarcity
of resources in target languages. The GQA dataset [11]
for English VQA has 113K images and 22M questions,
powering the training of multi-modal models in this field.
In contrast, many other languages currently lack similar
high-quality image-text datasets at a comparable scale. In
this section, we briefly review previous works proposing
datasets and approaches to evaluate and mitigate this gap.

xGQA [22] is a multi-lingual evaluation benchmark for
the visual question answering (VQA) task, extending the
test-dev set of the English GQA dataset [11] to 7 typolog-
ically diverse languages (German DE, Portuguese PT, Rus-
sian RU, Indonesian ID, Bengali BN, Korean KO, and Chi-
nese ZH) by manually translating English questions. It pro-
vides a few-shot training split of 1, 5, 10, 20, 25 images, a
development set of 50 images and a test set of 300 images.
It is then integrated into a multi-lingual multi-modal bench-
mark called IGLUE [3] that covers more vision-language
tasks. The release of this benchmark encourages research
in this field and provides a valuable metric when comparing
different multi-lingual VQA models.

Multilingual datasets Since xGQA only provides lim-
ited data for evaluation purposes, additional multilingual
datasets are necessary for cross-lingual transfer. Large mul-
tilingual text datasets are usually created by web crawl,
which allows us to leverage the vast amount of information
available on the internet. OSCAR [21], or Open Super-large
Crawled ALMAnaCH coRpus, is one successful example of
this approach. It covers over 200 languages and is obtained
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Language ISO OSCAR size # speakers
Bengali BN 5.8G 230M
Korean KO 12G 77M
Indonesian ID 16G 43M
Portuguese PT 64G 250M
German DE 145G 95M
Chinese ZH 249G 1.2B
Russian RU 568G 150M

Table 1. Languages in xGQA sorted ascendingly by size (in bytes)
of corresponding OSCAR corpus. There is a significant imbalance
of resources for different languages.

by classifying and filtering the Common Crawl dataset by
languages. The statistics for different languages in OSCAR
are shown in Table 1. Compared to unimodal datasets, mul-
tilingual multimodal datasets are much harder to obtain and
are usually created based on existing monolingual multi-
modal datasets. For example, COCO-CN [16] enriches the
original MSCOCO dataset [18] by 27K Chinese captions
through manual annotations; Multi30K [2, 6, 7] translates
the Flickr30K dataset [26] into German, French and Czech,
resulting in around 30K new captions per language.

Machine-translated data has been utilized to create
VQA datasets in target languages. Once the multi-lingual
VQA datasets are available, the model can be trained using
similar objectives as mono-lingual vision-language models.
For example, UC2 [39] translates captions from the Con-
ceptual Captions [31] using Microsoft Azure Translation
API into five different languages (German, French, Czech,
Japanese, and Chinese) and obtains a new dataset consist-
ing of 3.3M images with captions in six languages (includ-
ing English). This machine-translated dataset is also used in
subsequent works such as CCLM [37]. TD-MML [28] fur-
ther translates the captions in Conceptual Captions [31] into
all 19 languages in IGLUE [3] using M2M-100-large model
[8]. However, this approach introduces biases when select-
ing the languages for translation and the resulting model
performs worse on languages not included in the translated
dataset. Furthermore, the effectiveness of the translation re-
mains subject to the availability of resources for the target
language, thereby placing this method at a potential disad-
vantage for languages with limited resources.

Code Switch is a broadly used technique in multi-
lingual language modeling as a cost-efficient strategy to
augment datasets for low-resource languages [27]. Con-
cretely, it replaces a proportion of words in the original En-
glish text with its translation in the target language from
a bilingual dictionary. Compared to machine translation,
word-to-word translation requires fewer computational re-
sources and is feasible for almost all languages in the world.
However, the disadvantage is also apparent: it does not
take into account any syntactical differences between En-
glish and the target language, which can result in lower-

quality translation results, especially for languages having
structures that vary greatly from English. It is first ap-
plied in multi-lingual multi-modal training by M3P [20]
and shows promising results. In M3P, the authors pre-
train a transformer by altering a multi-lingual text stream
from Wikipedia, a mono-lingual multi-modal stream and a
multi-modal code-switched stream from Conceptual Cap-
tions [31], and then fine-tune the model using Multi30K
[2, 6, 7] that includes German, French and Czech, and ex-
tension of MSCOCO that contains more Japanese [36] and
Chinese captions [16]. We include its results on xGQA in
Table 2 for comparison.

Contrastive learning is a type of self-supervised learn-
ing widely adopted in image-text representation learning.
The fundamental idea is to train a model to recognize
whether two input samples are similar or dissimilar, by
comparing them in a learned latent space. InfoNCE loss
[35] is a popular loss function used in contrastive learning.
It aims to maximize the mutual information between a set of
positive pairs while minimizing the mutual information be-
tween positive and negative pairs. This approach has been
widely adopted by mono-lingual VLMs at the image text
level [29], as well as at the object-phrase level [5,12,15]. In
the multi-lingual multi-modal setting, CCLM [37] applies
contrastive learning to maximize the mutual information of
learned embeddings from (i) paired image and caption and
(ii) parallel sentence pairs of English and target languages.

l(x, y) =
1

N

∑
i

−log
exp(xT

i yi/τ)∑
k exp(x

T
i yk/τ)

(1)

where τ is a learnable temperature parameter. By symmetry,
we have

l(y, x) =
1

N

∑
i

−log
exp(yTi xi/τ)∑
k exp(y

T
i xk/τ)

(2)

The contrastive loss is usually defined as the average of the
above two terms.

lc(x, y) =
1

2
(l(x, y) + l(y, x)) (3)

Concretely, this approach tries to learn latents x and y
in a shared embedding space where xi and yi represent ei-
ther paired image and text, or paired English text and non-
English text.

Adapters facilitate transfer learning of large pre-trained
models and have proven to be effective for cross-lingual
transfer [22–24]. During fine-tuning, only weights of bot-
tleneck layers introduced within each layer of the pre-
trained transformer are trained, while the rest of the param-
eters remain frozen. It is more efficient than fine-tuning all
parameters and more flexible than only updating the embed-
ding layer in the pre-trained model. In xGQA [22], adapter-
based methods are proposed to transfer a mono-lingual
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Figure 2. There are two or three streams of data in the proposed cross-lingual transfer. During training, only the embedding layer and
adapters (pink) in the text encoders are updated, while all the rest weights are frozen (grey). The first stream only includes textual data
in the target language and is fed to the text encoder to compute the MLM loss. The second stream consists of images from GQA and
corresponding code-switched questions, fed into pre-trained MDETR for QA loss. For languages with existing image-caption datasets
(such as German and Chinese), we have an additional data stream to compute the contrastive loss.

multi-modal model (OSCAR+ [17]) to a multi-lingual set-
ting and multi-lingual models (mBERT [4]) to a multi-
modal setting. The former model is called OSCAR+ada and
the latter is called mBERTada, compared in Table 2.

3. Method

Inspired by the success of MDETR on English grounded
visual question answering, we extend the model to new lan-
guages by replacing the embedding layer, inserting adapters
in the text encoder, and then training the newly added pa-
rameters with masked language modeling, code-switched
QA and contrastive objectives. In this section, we first
briefly review the details of MDETR framework and then
describe our strategies for cross-lingual transfer.

3.1. Background

MDETR [12] is an end-to-end text-modulated detector
with fine-grained multi-modal understanding capabilities. It
is trained to predict bounding boxes, along with the align-
ment to object phrases in the query text. It uses a pre-trained
convolutional backbone (ResNet-101 [10] or EfficientNet
[34]) to encode image inputs and a pre-trained transformer-
based language model (RoBERTa [19]) to encode text in-
puts, followed by a projection to a shared embedding space.
The concatenation of the two modalities is fed into a trans-
former encoder-decoder frameworkliju. To extend it for vi-
sual question answering, MDETR uses five additional heads
that are specialized for question types defined in GQA an-
notations, which are REL, OBJ, GLOBAL, CAT and ATTR. It
is pre-trained on 1.3M image-text pairs obtained by com-
bining Flickr30k [26], MS COCO [18], and Visual Genome
(VG) [13] datasets, and fine-tuned on the GQA [11] dataset
for visual question answering.

3.2. XMDETR

We first replace the tokenizer of MDETR with that of
XLM-R [14], which is the state-of-the-art multi-lingual lan-
guage model and covers all languages in xGQA. This also
requires that the token embedding layer is also replaced,
because the vocabulary size changes according to the tok-
enizer. We experiment with the following strategies to train
the embedding layer and the adapters, while keeping the rest
of the pre-trained weights frozen.

Masked Language Modeling (MLM). MLM randomly
masks 15% of tokens in the input texts and aims to predict
the masked tokens. It only requires a corpus of text in tar-
get languages and is widely used for pre-training language
models [4, 19]. Since the goal of cross-lingual VQA is to
understand questions in new languages, we adopt the MLM
objective to enable MDETR to acquire knowledge of the
target languages.

Code-Switched Training. Due to the complexity of
VQA, MLM alone is insufficient to transfer the alignment
between images and English to a new language. Given that
VQA data is limited for non-English languages, we train
the question-answering (QA) loss in MDETR with code-
switched data. Specifically, we randomly select a propor-
tion of words in the original queries in the GQA dataset and
replace them with their corresponding translation using a
bilingual dictionary. The model first predicts the question
type given the original image and the code-switched text,
and then predicts an answer from the relevant answer-type
head as in MDETR [12]. The QA loss is the cross-entropy
loss of the ground-truth answer and the predicted answer.

Adapters. Instead of fine-tuning the entire text encoder,
we insert adapters at every transformer layer in the text en-
coder of MDETR and only update these adapters, as well
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as the embedding layers, during training. Compared to up-
dating the embedding layer alone, this approach enables the
model better adapt to the new language with modest com-
putational costs compared to full fine-tuning.

Contrastive Learning. While a high-quality non-
English VQA dataset is currently lacking in the literature,
certain languages have image-caption datasets that could
potentially enhance the model’s multi-modal understand-
ing. To exploit these existing image-description datasets,
we add additional training for German and Chinese using
contrastive loss.

Figure 3. Illustration of proposed contrastive learning. Note that
the Chinese caption means “jet planes on the airport runway are
preparing to take off”, which is different from the English caption.
Since they describe the same image, we assume they convey simi-
lar information and thus should have close embeddings.

For each image Vi, we have an English caption T e
i and

another caption in the target language T t
i (which is not nec-

essarily the translation of the English caption). The images
and corresponding captions are fed into the image encoder
and text encoder respectively and then projected to a shared
embedding space. The resulting embeddings for Vi, T e

i and
T t
i are denoted as vi, ei, ti. We take the average of the In-

foNCE loss of images and English captions lc(v, e) and the
InfoNCE loss of images and non-English captions lc(v, t),
and denote it as the contrastive loss between images and
texts li2t. Namely, we have the following using our defini-
tion of contrastive loss in Equation 3.

li2t =
1

2
(lc(v, e) + lc(v, t)) (4)

We also compute the InfoNCE loss of English and non-
English captions lt2t, where we treat the caption pair de-
scribing the same image as the positive.

lt2t = lc(e, t) (5)

The final contrastive loss is the average of li2t and lt2t.

l =
1

2
(li2t + lt2t) (6)

4. Experimental Setup
4.1. Zero-Shot Cross-Lingual Transfer

We build on MDETR with EfficientNet-B5 as the back-
bone, which was shown to achieve the best results for visual
question answering on GQA. The tokenizer is XLM-R-base
from HuggingFace.1 We train the following configurations
for 100K steps with an effective batch size of 32 and a learn-
ing rate of 1e-4.

a Randomly initialize the embedding layer and fine-tune
the embedding layer with MLM loss using the 2019
release of OSCAR dataset [21] from HuggingFace.2

b Randomly initialize the embedding layer but copy the
embedding for shared tokens (overlapping words in
the vocabularies of RoBERTa-base and XLM-R-base)
from MDETR’s embedding space. Finetune the em-
bedding layer with MLM loss.

c Adopt the same initialization strategy as b. Fine-tune
the embedding layer with both MLM loss and QA loss.
To construct bilingual dictionaries for code-switched
training, we first gather ground-truth bilingual dictio-
naries from MUSE,3 and then use Google Translate to
obtain translations for those words that are not present
in MUSE but are included in the annotations of the
GQA training split, to guarantee comprehensive code
switching during training.

d Insert adapters into the text encoder using Adapter-
Hub [23]. Only the embedding layer and adapters are
updated, while other parameters remain frozen to de-
crease training time. Other settings are the same as c.

e After training d, add extra 10 epochs of contrastive
learning for Chinese (with MSCOCO-CN [16]) and
German (with Multi-30k [7]). A larger batch size of 32
(with gradient accumulation over 2 steps) and a lower
learning rate of 1e-6 show better performance. To pre-
vent the model from forgetting the VQA task, we al-
ternate between contrastive loss and QA loss.

4.2. Few-Shot Cross-Lingual Transfer

We follow the same setup as the xGQA paper [22] for
few-shot cross-lingual transfer. Based on the best config-
uration in 4.1, we continue fine-tuning the active parame-
ters in the previous training while freezing the rest. Since
all models are fine-tuned for 10 epochs in xGQA, we also
perform 10 epochs of few-shot learning with QA loss. We
experiment with different learning rates {1e-5, 1e-4, 2.5e-4,
5e-4,1e-3, 2e-3} and find 1e-3 leads to the highest valida-
tion accuracy.

1https://huggingface.co/xlm-roberta-base
2https://huggingface.co/datasets/oscar
3https://github.com/facebookresearch/MUSE
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(a) BN: truck (confidence=40.19) (b) DE: bus (confidence=66.05) (c) KO: yes (confidence=11.47) (d) ID: bus (confidence=38.11)

(e) PT: bus (confidence=43.44) (f) RU: yes (confidence=70.86) (g) ZH: no (confidence=81.01) (h) EN: van (confidence=96.36)

Figure 4. Failure cases based on the 48-shot prediction example taken from the test split of xGQA. The input query is “which kind of
vehicle is in front of the flag?” and the ground-truth answer is “van”. MDTER shows impressive performance on English input as it
correctly identifies the “van” and “vehicle” mentioned in the text and predicts the correct class “van” with high confidence. Bengali,
German, Indonesian, and Portuguese models also correctly detect major objects, but some of them predict the wrong span of text and their
predictions are not as accurate as in English. Russian model correctly detects both objects but fails to make the correct prediction because
it misclassifies the question type. Korean and Chinese models also misclassify the question type and their detection is less accurate.

5. Results and Discussion

5.1. Quantitative Results

Not surprisingly, the combination of all techniques men-
tioned in Section 4.1 gives the best performance, as shown
in Table 3. Note that the same technique may have differ-
ent effects on different languages due to the syntactic dif-
ference. For example, copying embeddings (b) for shared
tokens from MDETR leads to lower accuracy for Bengali
but improves the performance of all other languages. Since
this technique is proven to be useful in [22,25], we keep ap-
plying this technique for all languages in the following ex-
periments. The code-switch strategies (c) largely improve
the model as it generates synthetic VQA data for target
languages. This approach is especially effective for lan-
guages with similar sentence structures as English. Por-
tuguese and Indonesian follow the same subject-verb-object
sentence format as English, which we believe is the reason
why they achieve much higher accuracy compared to other
languages.

Our zero-shot and few-shot results compared with other
methods in xGQA are summarized in Table 2. Our model
outperforms other models in Bengali, Indonesian, and Por-
tuguese, and achieves comparable performance with the rest
of the languages. However, there is still a performance gap
between MDETR in English and the target languages.

We further analyze the performance on different question
types in GQA, as shown in Figure 5. We see distinct perfor-
mance gaps on different question types. For “object” and
“global” questions, XMDETR achieves high accuracy for

all languages. This is probably due to the fact that these two
questions require less precise comprehension of the ques-
tion. For example, answering whether an object A exists
in the image only requires correctly understanding what A
represents in the target language and detecting it in the given
image. Similarly, answering questions about global proper-
ties, like weather, only requires understanding of some key-
words in the target language. Thus, the code-switched strat-
egy should be effective for these two types of questions. In
contrast, “relation” questions require a deeper understand-
ing of the question, and thus our model performs worse in
this type of question and we see a large gap compared to its
performance in English. Few-shot learning significantly im-
proves the prediction on this type of question because it ex-
poses the model to high-quality data in the target language.
Few-shot learning also greatly improves question-type clas-
sification and minimizes the performance gap between the
target language and English.

5.2. Qualitative Error Analysis

We identify some common sources of error.

1. Multiple acceptable answers & limits introduced due
to the tokenizer’s vocabulary. In xGQA, there is only
one ground-truth label and accuracy is calculated by
examining if the prediction is exactly the same as the
ground truth. However, considering that all synonyms
of the word are also correct, there can be more than
one acceptable answer given the image and the ques-
tion. We find that our model often predicts reason-
able answers, however not matching the exact word
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Language Model # Training Images
0 5 10 20 25 48

M3P 17.59 26.94 31.09 34.58 35.27 37.96
OSCAR+emb 13.35 21.67 26.61 31.94 32.78 36.97

BN OSCAR+ada 13.96 22.35 27.20 31.25 31.81 35.45
mBERTada 13.38 23.10 26.55 31.60 32.26 34.18
XMDETR 24.08 28.32 32.08 36.54 38.10 39.50
M3P 19.70 32.28 35.50 37.72 37.84 38.61
OSCAR+emb 15.11 19.99 24.78 29.48 30.43 35.59

KO OSCAR+ada 12.25 20.73 25.97 31.37 32.20 35.41
mBERTada 19.92 27.83 31.27 34.44 35.03 36.51
XMDETR 19.92 21.52 26.33 31.01 33.01 36.66
M3P 18.74 37.24 38.65 41.07 42.00 43.12
OSCAR+emb 17.89 29.76 33.59 36.69 37.31 40.51

ID OSCAR+ada 18.52 31.45 34.60 37.26 37.97 40.60
mBERTada 19.77 34.49 36.26 39.15 39.81 40.88
XMDETR 30.96 37.10 40.29 42.91 44.91 47.75
M3P 26.73 37.23 39.07 40.92 41.05 43.06
OSCAR+emb 19.36 32.42 36.37 39.01 40.15 43.27

PT OSCAR+ada 24.58 34.73 37.46 38.82 39.70 41.75
mBERTada 31.45 37.31 38.88 40.51 41.03 42.62
XMDETR 39.74 40.19 43.38 45.30 45.90 50.07
M3P 24.78 39.31 41.05 42.22 42.54 43.16
OSCAR+emb 17.49 29.09 34.48 37.35 38.45 41.08

DE OSCAR+ada 17.84 31.26 35.84 37.92 38.46 40.58
mBERTada 32.41 37.44 39.15 40.65 41.63 42.71
XMDETR 20.73 23.55 29.95 34.23 36.03 42.95
XMDETR + 23.46 26.64 32.04 37.77 39.30 42.98
M3P 19.66 36.15 38.21 40.48 40.53 42.55
OSCAR+emb 12.66 19.17 22.13 27.97 29.08 33.24
OSCAR+ada 13.20 19.67 22.74 26.81 28.19 31.69

ZH mBERTada 26.16 32.93 35.82 38.22 37.89 39.57
XMDETR 21.00 23.31 29.30 33.23 35.00 41.38
XMDETR + 23.92 28.43 33.15 38.74 40.68 43.38
M3P 24.29 36.71 38.53 39.94 40.13 41.85
OSCAR+emb 7.98 23.72 28.21 32.15 32.87 36.84

RU OSCAR+ada 16.38 27.42 30.17 33.22 34.21 37.28
mBERTada 25.51 31.69 32.47 34.93 35.53 37.42
XMDETR 23.13 28.36 31.40 36.94 37.61 42.51

Table 2. Test accuracy for zero-shot (the 0 column) and few-shot results on xGQA. Bold numbers are the highest and underlined numbers
are the second highest in each column for each individual language.

Configuration added BN DE ID KO PT RU ZH AVG

a random embedding 16.16 8.01 6.40 8.28 6.50 10.51 4.82 8.67
b lexical embedding 8.60 16.35 11.07 11.62 15.85 12.69 12.59 12.68
c + code switch 18.41 19.91 25.12 17.06 31.74 19.98 19.15 21.62
d + adapter 24.08 20.73 30.96 19.92 39.74 23.13 21.00 25.65
e + contrastive - 23.46 - - - - 23.92 -

Table 3. Test accuracy for different configurations in Section 4.1. “Random embedding” represents MLM training with random initializa-
tion of the embedding; “lexical embedding” represents MLM training with initialization of embedding that reuses English embedding for
shared tokens; “code switch” represents integrating the code-switch strategy; “adapter” represents inserting adapters into the text encoder ;
“contrastive” represents additional multi-modal training with contrastive objectives. Bold numbers are the highest score for each language.
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Figure 5. The accuracy of XMDETR on different question types by languages. The GQA dataset [11] defines five semantic question types:
(1) global: overall properties of the scene; (2) relation (rel): subject or object of described relation; (3) attribute(attr): properties of the
object; (4) object: the existence of the object (yes/no/unknown); (5) category (cat): class of the object. The last entry (“type”) represents
the accuracy of question type classification, which is the first step of MDETR predicting the answer to the given query. Besides the seven
languages in xGQA, we also include English here as a benchmark. Since MDETR is already fine-tuned on English GQA, the English
results on both plots represent the fully fine-tuned results.

(a) Question (DE): Welche Art von
Spielzeug ist weich? (Which kind
of toy is soft?); GT: stuffed toy;
Prediction: teddy bear

(b) Question (ID): Jenis kendaraan
apa yang terbuat dari logam?
(Which kind of vehicle is metal-
lic?); GT: truck; Prediction: car

Figure 6. Examples of XMDETR making reasonable predictions
but not matching the ground-truth labels.

given by the ground truth in the dataset. For example,
“teddy bear” should be a correct prediction because the
“stuffed toy” in Figure 6a is indeed a teddy bear. Sim-
ilarly, both “car” and “truck” are correct in the context
of Figure 6b.

2. Wrong answer type classification. Since the first step
of prediction is a question-type classification, a failure
in this stage will directly cause the failure of the whole
prediction, as illustrated in the Russian (4f), Korean
(4c) and Chinese (4g) examples. Since it is a pure NLP
classification task, providing more question data might
alleviate this issue.

3. Challenge of comprehending the referring expression.
Some questions (especially for the “relation” type) in-
volve complex reasoning that requires a strong seman-
tic understanding of the question. In Figure 4, the
model implicitly performs the following logical steps
(i) detect the flag object A (ii) locate the object B

in front of A (iii) classify the object B. Techniques
such as code-switching, while effective, seem not to
be enough to fully transfer knowledge from English
to the target language, at the level required for such
multi-hop reasoning.

6. Conclusion
In this paper, we extend the state-of-the-art mono-lingual

multi-modal model, MDETR, to a multi-lingual setting.
Our proposed method integrates multi-lingual unimodal
training (MLM objective) and multi-lingual multi-modal
training (QA objective with code-switch GQA data and
contrastive objective with multi-lingual image-caption data)
with adapters for accelerated training. Our approach doesn’t
use any machine-translated datasets and can be easily ex-
tended to more languages. By leveraging MDETR’s pow-
erful text-modulated detection, our model is able to pro-
vide bounding boxes with predicted alignment to key ob-
jects mentioned in the questions in target languages, which
allows for better interpretability. Our model shows com-
petitive results on the xGQA dataset. However, there is
still a large gap between the performance of our model and
human-level performance due to the complex nature of mul-
tilingual visual question-answering. Therefore, it is crucial
to exercise caution and consider the limitations discussed in
Section 5.2 when applying this model in real world.
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math, Ivan Vulić, Sebastian Ruder, Kyunghyun Cho, and
Iryna Gurevych. AdapterHub: A framework for adapting
transformers. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing: System
Demonstrations, pages 46–54, Online, Oct. 2020. Associa-
tion for Computational Linguistics. 3, 5

[24] Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebastian
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