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Abstract

Audio-visual fusion is a promising approach for identify-
ing multiple events occurring simultaneously at different lo-
cations in the real world. Previous studies on audio-visual
event localization (AVE) have been built on datasets that
only have monaural or stereo channels in the audio; thus, it
was hard to distinguish the direction of audio when differ-
ent sounds are heard from multiple locations. In this paper,
we develop a multi-event localization method using multi-
channel audio and omnidirectional images. To take full ad-
vantage of the spatial correlation between the features in
the two modalities, our method employs early fusion that
can retain audio direction and background information in
images. We also created a new dataset of multi-label events
containing around 660 omnidirectional videos with multi-
channel audio, which was used to showcase the effective-
ness of the proposed method.

1. Introduction

Sight and hearing play important roles in human percep-
tion of real-world events, as integration of vision and audio
is carried out by quite an extensive part of the brain. In
machine learning, ways of obtaining multi-modal represen-
tations for vision and audio have been extensively studied
[2–4].

Among the audio-visual learning, audio-visual event
(AVE) localization is a task to identify temporal segments
with event labels from an audio-visual input. A major ap-
proach of AVE localization computes audio and visual fea-
tures, which are later concatenated to classify event labels
for each segment [19, 22, 29], or minimizes distances be-
tween segment features of the two modalities [13] so that
they share good semantic representations. Most studies use
an audio-guided visual attention mechanism (see [22]) that
can capture rough sound-source location that serves as spa-
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Figure 1. Illustration of our dataset that has visual input from om-
nidirectional camera Theta V (above) and 8-channel audio input
captured by 360◦-covered microphone array TAMAGO-03 (be-
low). Multi-labels are given to each video frame. The camera and
microphones are spatially calibrated.

tial attention for the visual input. However, since they use
late fusion of the two modal features, the spatial informa-
tion is likely partially lost at the time of concatenation of
the two features. Also, strong spatial cues such as those
in visual input are hard to obtain from datasets that con-
tain only stereo or single-channel audio althoguh they are
widely used [6]. The partial loss of spatial resolution can
be problematic, especially when multiple sound sources are
present in the input.

To overcome the aforementioned limitations in the AVE
localization task, we develop an AVE localization method
for datasets that contain multi-channel audio. We also pro-
pose a model based on early multi-modal fusion that can
fully utilize spatial information not only from video but
from multi-channel audio. To evaluate our model, we cre-
ated a new multi-label multi-channel AVE (MLMC-AVE)
dataset1 that contains omnidirectional visual input and 8-

1The dataset is published on https://github.com/zwr17/

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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channel audio input captured by a microphone array as
shown in Fig. 1. Unlike existing AVE datasets, where each
video includes exactly a single event, our dataset contains
multi-label videos, where a single frame can have multiple
event labels. With this newly created dataset, we demon-
strate that our model based on early fusion outperforms
the existing method [22] based on late fusion, which is in
fact contrary to the findings from [22], where single-label
single-channel AVE dataset is used. The contributions of
this study are listed as follows:

• We propose an AVE localization method that early
fuses features from video and multi-channel audio so
that rich spatial information from each modality can be
effectively integrated.

• We present a multi-label multi-channel AVE (MLMC-
AVE) dataset, where videos are captured by an om-
nidirectional camera and audio data are recorded by
a 360◦-covered 8-channel microphone array. The
dataset contains frames, in which multiple event labels
are given.

• We confirmed that our method consistently outper-
forms an off-the-shelf AVE localization method on the
MLMC-AVE dataset.

2. Related Work
Audio-Visual Learning. Audio-visual learning (AVL) has
been studied to overcome the limitations of recognition
tasks based on a single modality by modeling the relation-
ship between visual and audio information [30]. Audio-
visual representation learning aims to find the pattern of
representation of each modality automatically. Since the au-
dio and visual information are synchronized in videos, the
audio can be used for self-supervision. Aytar et al. [4] intro-
duce a deep convolutional architecture to recognize natural
sound by distilling the discriminative knowledge from the
visual teacher network to audio student network. Consider-
ing the relationship between audio and visual information,
some studies [2,3,11] propose networks that can learn better
representation of each modality by recognizing whether or
not the visual input is a counterpart corresponding to the au-
dio input. Owens et al. [17] develop an early-fusion multi-
modal network by leaning a task to recognize whether the
two modalities are synchronized or not. AVL studies are
rather focused on unlabeled videos that are available on the
Internet, and the use of spatial correlation between audio
and visual information has not been extensively explored.

Audio-visual separation and localization. Audio-visual
separation and localization are important tasks of AVL. The
tasks isolate the sound source and specify its location by

MLMC-AVE.

observing the sound and visual pairs in a video. Early work
utilizes audio-visual synchrony [7], and early techniques in
audio-visual separation can be found in a review by Rivet et
al. [20]. Recent approaches mostly focus on unsupervised
learning owing to the large amount of unlabeled videos on
the Internet. Given a video as an input, Zhao et al. [28]
showed that image regions can be identified and connected
to each sound source by introducing a wisely considered
pre-text task. The task is to separate sound sources that
are extracted from two videos and artificially mixed. Seno-
cak et al. presented a two-stream network with an attention
mechanism to process each modality for sound source local-
ization [21]. As the sources on the Internet typically have
monaural or stereo audio, there have not been many stud-
ies on multi-channel audio. Although a few studies tackled
audio-visual localization with multi-channel audio [1, 12],
they did not consider event category estimation. Our focus
is tied to the strength of multi-channel audio that has strong
spatial correlation to the visual information.

Audio-visual event localization. Audio-visual event
(AVE) localization aims to identify audio-visual event la-
bels from an input video where labels are provided along
a time axis. AVE localization methods typically have two
modal streams, and the focus of research has been on
how to attend from one modality to the other to obtain
good representations and to have good synchronization be-
tween modalities [5, 23–27]; therefore, many architectures
and attention mechanisms have been proposed. For in-
stance, Tian et al. [22] proposed an audio-guided visual
attention to incorporate spatial attention. Lin et al. [13]
and Ramaswamy [18] both considered the attention be-
tween global and local features to have inter and intra-
interactions between the modalities. Liu et al. [14] sug-
gested a bi-directional model where both the forward and
backward attention in the two modalities were considered.
Xia and Zhao [24] introduced a multi-modal background-
suppression mechanism to maintain semantically focused
attention. Since the datasets in those methods only include
monaural or stereo audio information, spatial attention in
audio features and its strength have not been extensively
studied.

Apart from event recognition, augmented reality
is an application area where multi-channel-audio and
omnidirectional-video processing is highlighted to support
human perception. In active speaker localization, Jiang et
al. [9] proposed an end-to-end method with images of 360-
degree version and N-channel audio collected by a multi-
channel microphone array. Inspired by it, this work pay
attention to the way of extracting richer spatial information
from audio inputs so that multiple events can be finely lo-
calized with visual cues.
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3. Dataset

3.1. Overview of our dataset

Our capturing device is a combination of 8-channel mi-
crophone array, TAMAGO-03, and an omnidirectional cam-
era, Theta V, as shown in Fig. 1. The TAMAGO is an inex-
pensive hand-held microphone array with 8 microphones. It
can be connected to a computer via USB and be operated as
a USB audio. Its sampling rate is 16 kHz, and its bit depth is
24 bit. Open-sourced robot audition software, HARK [16],
can be used for sound localization, sound source separation,
and speech recognition. Theta V is a camera that can record
360-degree still images or videos with high image quality.
Videos were recorded with 1920 × 960 resolution and the
frame rate was 16 frames per second. The microphones and
the camera were calibrated so that they share the center of
rotation and have aligned coordinate system.

We defined 12 event categories assuming an indoor of-
fice environment with multiple sound sources. The defined
categories are man speaking, woman speaking, walking,
typing, kettle boiling, writing on board, alarming, opening
the door, opening the drawer, coughing, printer working,
and cleaner working. There is also a category nothing for
scenes without any event; thus, the total number of cate-
gories in our dataset is 13. 660 videos were collected, and
the distribution of each category is shown in Fig. 2. Each
video contains at least one AVE. Note the following bias in
the data set due to the fact that the subjects were predom-
inantly male: man speaking samples comprise 29% of the
total while woman speaking samples comprise only 9%.

The comparison of our dataset and several existing
datasets is shown in Table 1. Tian et al. [22] created the
Audio-Visual Event (AVE) dataset, which is widely used for
the AVE localization task. It consists of 4,143 videos col-
lected from YouTube, encompassing 28 event types, tempo-
rally tagged with audio-visual event boundaries. The collec-
tion contains a wide range of audio-visual events from sev-
eral domains, including human activities, animal behaviors,
musical performances, and vehicle sounds (e.g., man speak-
ing, woman speaking, dog barking, etc.). It is a monaural
dataset, and only one audio-visual event is marked in each
video, even when several events occur.

The FAIR-Play [6] and REC-street [15] datasets used
their own recording devices and have multiple audio chan-
nels. The FAIR-Play dataset [6] contains 1,871 10-second
video clips captured with GoPro and a professional binau-
ral microphone in a music room. The authors captured 20
volunteers playing various instruments such as cello, drum,
and piano in solo, duet, and multi-player performances.
However, the dataset is created to generate spatial sound,
and thus the category labels do not exist. The REC-street
dataset [15] utilized a Theta-V 360 camera with a coupled
TA-1 spatial audio microphone to record outdoor scenes. It
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Figure 2. The distribution of each category in MLMC-AVE.

includes 43 videos that are 3.5 hours long in total. They also
collected 360-degree videos with spatial audio using queries
from YouTube which is referred to as YT-ALL. YT-MUSIC
(397 videos) and YT-clean (496 videos) are the subsets
of it that contain musical performances and super-imposed
sources such as people talking in the meeting room, respec-
tively. The dataset is for self-supervised generation of spa-
tial audio; therefore, similar to the FAIR-Play dataset [6],
the category labels are not provided in the dataset.

To summarize, our dataset is unique compared to the ex-
isting ones because the sound is recorded with multiple mi-
crophones and the frames contain multiple events that oc-
cur simultaneously, i.e., each frame can have multiple labels
whereas those in existing ones have no or single label.

3.2. Process for obtaining the data

Collection. To ensure variation in the dataset, we recorded
videos in several different places with different people and
items. The numbers of people, places and items that are
used are presented in Table 2. Each video is 15 seconds in
length. It took about 10 days to record the dataset.

Labeling. The labeling was done by one of the authors.
The events that can be both seen and heard were thoroughly
labeled. There were cases that were difficult to categorize
as the dataset is a collection of real events. We list those
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Table 1. Comparison of our dataset MLMC-AVE and existing audio-visual datasets.

Dataset Video Type #Channels #Videos #Categories Category Example

AVE [22] Normal 1 4,143 28 Man speaking, Dog barking
Fair-PLAY [6] Normal 2 1,871 - Not mentioned

REC-street [15] Omnidirectional 4 43 - Not mentioned
MLMC-AVE (Ours) Omnidirectional 8 660 12 Man speaking, clapping

Table 2. Detailed information of MLMC-AVE.

Item Value
#Label for each sample 1 ∼ 3

Total video duration 660 (videos) × 15 (seconds)
The number of person 10
The number of places 6

Items kettle, cleaner, printer,
white board, laptop

difficult cases in the following.

• There were cases where the events were hard to hear
(e.g., writing, door, etc.). As long as the event was
audible to the labeler in the audio file, it was marked.

• When multiple events occurred simultaneously, there
were cases where one of the sound was covered by the
other and barely audible. In those cases, as long as the
event was visible, it was labeled as an AVE.

• When the subject of the event was completely ob-
scured by other things and was not visible in the video,
it was not labeled as an AVE.

• Each segment is one-second long, but an event may oc-
cur for a short period of time that is less than a second.
Those were still marked as AVEs in the dataset.

3.3. Challenge

Some examples of our dataset are shown in Fig. 3. Esti-
mating multiple AVEs occurring simultaneously is difficult
as shown in the figure, since some events can be only visible
in a small part of the image, yet the difficulty can be miti-
gated by utilizing the audio-visual information. Complex
background, small difference in human motion, noise from
uncontrollable sources, and the randomness of the event oc-
currence make our dataset lively but challenging. For exam-
ple, there may be multiple objects that can produce sounds,
and their sizes may vary from as small as an alarm clock to
as large as a printer. There can also be several people in the
scene, each of whom can be the subject of an event. Many
people wore masks in the scene, and yet the task requires
classification of not speaking, coughing, and talking. The

dataset includes some background sound conducted by air-
conditioning or some machines outside the window that are
not marked as AVEs.

4. Method
The goal of the AVE localization is to predict a label or

possibly multiple labels of each segment in a video clip.
We let T denote the number of segments in a video clip.
The labels for the t-th segment (t = 1, · · · , T ) are given as
yt =

{
ykt |ykt ∈ {0, 1}

}N+1

k=1
where N represents the num-

ber of the defined event categories. We added an extra el-
ement in the label set yt to explicitly indicate that no event
occurs. In our setting, each video segment may have zero,
one, or multiple labels (

∑N+1
k=1 ykt ≥ 1), whereas a segment

in a common benchmark dataset (e.g., [22]) may have either
zero or one label (

∑N
k=1 y

k
t ≤ 1).

The overall architecture of the proposed model is shown
in Fig. 4. Similar to the previous study [22], our architec-
ture consists of three components: feature extraction, audio-
spatial fusion, and classification. The details of each com-
ponent are described below.

4.1. Feature extraction

The visual and audio inputs are individually pre-
processed by pre-trained convolutional neural networks. To
process the audio data, we first take the wav-format audio
data from the video or the microphone(s) and compute the
audio feature through the VGG-like CNN model pre-trained
on the AudioSet dataset [8]. The extracted audio feature is
denoted by A ∈ RT×da , where da refers to the audio feature
dimension.

To process the visual data, each frame image is extracted
from the video and passed through ResNet pre-trained on
ImageNet to obtain the frame-wise feature. The frame-wise
feature vectors are then averaged within one second to yield
the visual feature, which is denoted as V ∈ RT×H×W×dv ,
where H , W , and dv denote the feature-map height, width,
and the feature-channel dimension, respectively.

4.2. Audio-spatial fusion

After individually extracting visual and audio features,
the next process is to extract the spatial correlation between
visual and audio features by devising how to attend to the
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Figure 3. Examples of omni-directional images, 8-channel sound waves, and category labels in our MLMC-AVE dataset.

features. This is especially important when multiple events
occur simultaneously in different locations. As shown in
Fig. 4, we adopt early fusion, where audio features from
8 channels are replicated and concatenated to visual fea-
tures. In contrast, the baseline model [22] adopts late fu-
sion, where explicit spatial information of visual features is

lost at the fusion phase.

In addition to the aforementioned approach that uses a
simple stack of audio features from multiple channels, we
also investigate two alternative strategies to generate audio-
visual attention.
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Figure 4. Overall architecture of the proposed model. To extract the spatial correlation between audio and visual features, we adopt early
fusion, where audio features from 8 channels are replicated and concatenated to visual features.
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Figure 5. Summary of audio-spatial fusion methods: (a) late fu-
sion with audio-guided visual attention [22], (b) late fusion with
HARK, (c) early fusion with attention, and (d) early fusion with
HARK.

Audio-Guided Visual Attention [22]. The first strategy is
to follow a method of previous work [22], where the at-
tention weight vector is generated by the audio-guided vi-
sual attention. The softmax attention weights of the audio-
guided attention is computed from both visual and audio
features. The spatial atetntion is only applied to visual fea-
tures.

Multi-channel audio using an external sound arrival di-
rection estimation method. The second strategy is to uti-
lize a method of sound source separation and sound arrival
direction estimation from multi-channel audio for attention
generation with spatial dimension. In particular, we used an
open-sourced robot audition software HARK [16] for the
sound arrival direction estimation. Since the output from
HARK is the predicted direction θ, we transferred it into
the weight vector that gives a high probability for the range

of [θ− 30◦, θ+30◦] to generate spatial attention map. The
probability is modeled as a Gaussian, simulating a high cen-
ter weight and continuous decrease of weight on the periph-
ery. We set the mean as θ and the standard deviation as
16.0.

Summary of various fusion methods. The summary of
audio-spatial fusion methods is provided in Fig. 5. In addi-
tion to our proposed model shown in Fig.4, which has a sim-
plest architecture, we implemented those variants in Fig. 5
to test the two attention generation strategies combined with
late and early fusion strategies, yielding four variations of
architectures. They will be compared in detail in the exper-
imental section.

4.3. Classification

In our new dataset, multiple events occasionally occur at
the same time; thus, it is a multi-label classification prob-
lem. Here, we transform a conventional multi-label prob-
lem into a set of binary classification problems for different
labels using the binary cross entropy loss:

l(x,y) = −
N+1∑
n=1

yn · log xn+(1− yn) · log (1− xn) . (1)

where x = [x1, . . . , xN+1]
⊤ and y = [y1, . . . , yN+1]

⊤ are
the output of the network and the target labels for a training
sample, respectively. The inference time of multi-label AVE
is about 0.35 seconds per frame.

5. Results
We used the AVE dataset [22] for the single-channel

evaluation and our new MLMC-AVE dataset for the eval-
uation with multi-channel audio. The AVE dataset contains
4,143 10-second videos, each containing at least two sec-
onds of at least one event of 28 different categories. The
4,143 videos include 3,339 training videos, 402 validation
videos, and 402 testing videos. We used the classification
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Figure 6. Attention maps for different methods. Green and red rectangles represent correct/wrong attention, respectively.

accuracy of each one-second segment as the evaluation met-
ric. In order to evaluate the effectiveness of our method on
multi-label classification problem, we also conducted ex-
periments on a subset of our dataset that mostly consists of
single-label samples. The subset contains about 300 videos,
which can be divided into four categories: man speaking,
woman speaking, typing, and nothing. We refere to the
subset as “single-label multi-channel AVE (SLMC-AVE)”
dataset.

The comparison of classification accuracy is shown in
Table 3. When single-channel audio is input, the perfor-
mance of AVE [22] slightly outperforms our model on all
datasets. This result indicates that late fusion on visual
and audio features performs better than early fusion when
single-channel audio is used, which is consistent with the
results of [22]. However, when multi-channel audio is used,
early fusion performs better on all datasets. This result sug-
gests that the early fusion approach, which takes into ac-
count the spatial correlation between audio and visual fea-
tures, is more effective in the case of multi-channel au-
dio because it can distinguish sound information by loca-
tion. Regarding the audio-spatial fusion approach, the use
of HARK was effective on the single-label dataset but per-

Table 3. Classification accuracy comparison. M denotes the num-
ber of audio channels. “Aud. Ops.” shows methods for audio-
spatial fusion described in Sec. 4.2, where “Stack” indicates a sim-
ple multi-channel stack shown in Fig. 4.

Dataset

Method M Aud. Ops. AVE [22] SLMC MLMC

AVE [22]
(late fus.)

1 Attention 0.72 0.56 0.57
8 HARK - 0.64 0.42

Ours
(early fus.)

1 Attention 0.70 0.53 0.56
8 Attention - 0.57 0.59
8 HARK - 0.66 0.48
8 Stack - 0.67 0.65

formed worse than audio-visual attention on the multi-label
dataset. This may be due to the fact that it is difficult to
separate sounds using HARK in situations where different
sounds are coming from different locations at the same time.
In contrast, the proposed method, which has no special pro-
cessing and simply stacks multi-channel audio as shown in
Fig. 4, performed the best. Even with such a simple method,
since our method uses early fusion to concatenate visual and
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Table 4. Comparison of Hamming loss for different categories in MLMC-AVE. M denotes the number of audio channels. “Aud. Ops.”
shows methods for audio-spatial fusion described in Sec. 4.2, where “Stack” indicates a simple multi-channel stack shown in Fig. 4.

Method M Aud. Ops. man speaking woman speaking typing cleaner kettle walking door

AVE [22]
(late fus.)

1 Attention 0.13 0.16 0.67 0.13 0.67 0.33 0.73
8 HARK 0.18 0.19 0.50 0.17 0.57 0.41 0.79

Ours
(early fus.)

1 Attention 0.16 0.19 0.69 0.13 0.67 0.33 0.75
8 HARK 0.18 0.17 0.56 0.15 0.41 0.37 0.75
8 Stack 0.13 0.15 0.35 0.10 0.48 0.28 0.70

audio features that differ from place to place, there is a high
possibility that a large weight is placed on the locations that
are strongly related to AVEs in the CNN at the latter stage.

Figure 6 shows attention maps of different methods in
Table 3. We calculated attention weights for the features
taken from just before LSTM and then obtained the sum
of the absolute values to generate activation-based spatial
attention maps [10]. As shown in the figures, ours (8
ch.+early fus.+stack) generally produces the best visualiza-
tion result. However, we also found that the ceiling, air-
conditioning and other locations outside of the event also
drew attention simultaneously, which may have influenced
classification results.

We also show the Hamming loss in several categories in
Table 4. Hamming loss is calculated as the Hamming dis-
tance between ytrue and ypred, with smaller values indicating
better performance:

Hamming Loss =
1

n

n∑
i=1

1
(
y
(i)
j ̸= ŷ

(i)
j

)
,

where y
(i)
j denotes the jth label of the ith sample. Ham-

ming loss measures a percentage of the number of incor-
rectly predicted labels over the total number of labels in all
samples. In general, we can see that our approach using
multi-channel audio achieves lower losses. As a compari-
son of categories, scores in man speaking, woman speaking
and cleaner are better than in the other categories, while
Door is the most difficult category for all methods.

6. Conclusion
In this paper, we have presented a method for the AVE

localization task when multiple audio-visual events occur
simultaneously at different locations. The proposed method
uses an omnidirectional camera and a microphone array to
acquire different multi-channel audio, each corresponding
to different locations in camera images. To maximize the
spatial correlation between visual and audio information,
we examined several different network architectures based
on early and late fusion. We also created a new multi-label
multi-channel AVE dataset for evaluation. Experimental re-
sults show that, in contrast to the single-label single-channel

AVE dataset where late-fusion-based methods are promis-
ing, the proposed early-fusion-based method outperforms
the existing late-fusion-based method on our dataset. Fur-
thermore, we demonstrated that our method is able to prop-
erly focus attention on the sounding locations in images.
Application of the proposed method to other more base-
line methods, especially the latest vision transformer (ViT)-
based methods, and comparative experiments are important
future tasks.
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