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A. Transformer architecture

We adopt a GPT-like multi-layer Transformer in this pa-
per. Each transformer layer consists of a classical multi-
head attention module, a feed-forward network, and nor-
malization layers as shown in Figure 1. We use the original
full attention mechanism but not sparse attention in Trans-
formers. The feed-forward network is a two-layer percep-
tron, while layer normalization is used in the Transformers
for normalization.
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Figure 1. Architecture of the Transformer layer, which contain
a multi-head attention module, a feed-forward network, and two
normalization layers.

B. Dataset details

We split a sub-dataset from Action Genome [3], which is
built upon Charades [6]. To include more complex semantic
variations in the 16-frame video, we sampled 1 frame every
5 frames from the original videos of Charades and resize the
sampled frames to a resolution of 128×128. We only keep
the objects whose bounding boxes with short edges larger
than 16 pixels. In order to avoid overly complex scene
graphs that make the representations difficult to infer, we
reduce the graph fidelity by cutting out redundant nodes in
the scene graph and keep a maximum of 5 object nodes. In
addition, each video contains at least 5 video scene graphs
so that the video scene graph (VSG) encoder has enough
information to infer the graph representations that are not
given. In the split dataset, there are 36 object categories and

17 relationship categories. The distribution of object and
relationship occurrences are illustrated in Figure 2.

C. Metrics details
Fréchet video distance (FVD). FVD [8] is developed
from Fréchett Inception Distance (FID) [2], which is
widely-used to evaluate the performance of image gener-
ation models. FVD takes into account a distribution over
entire videos in order to avoid the disadvantages of frame-
level metrics. A pre-trained Inflated 3D Convnet [1] is used
to capture video feature distributions. The 2-Wasserstein
distance between the ground truth video distribution and the
synthetic video distribution is calculated as the metrics.

Structural similarity index measure (SSIM). SSIM [9]
is a per-frame perceptual metrics that measures the simi-
larity between two images. The statistical measure com-
bines three different factors: luminance, variance and cor-
relation. We first split the ground truth videos and synthetic
videos into single frames. Then we calculate SSIM between
the ground truth frames and synthetic frames. The average
SSIM of all frames is taken as the final result.

D. Technical implementation details
Video scene graph representation learning framework.
In the video scene graph encoder, both the spatial Trans-
former and temporal Transformer have 3 Transformer lay-
ers. We employ 4 attention heads for each attention module,
while the dimension d of the input queries, keys, and values
is set to 256. The encodings are only added to queries and
keys when using the attention modules. For the frame en-
coder, we adopt the CNN-based model used in [10], which
is built upon Inception-v3 model [7]. The input frames
are first resized to a resolution of 299 × 299, while the
size of the feature maps extracted by the CNN backbone
is 768× 17× 17. A 1× 1 convolution layer is exploited to
reduce the dimension of the feature maps to d = 256. Then
we use a global average pooling layer to convert the feature
maps to the frame vectors. We train the video scene graph
encoder and frame encoder using ADAM optimizer [4] with
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Figure 2. Distributions of object (left) and relationship (right) occurrences for the sub-dataset split from the Action Genome dataset.

a learning rate of 1 × 10−4 and a batch size of 12 images.
The training takes about 20 hours on 2 RTX 2080 TI GPUs.
The values of different loss functions in the training are
shown in Figure 3.

Semantic scene graph-to-video synthesis framework.
We adopt the VQ-VAE from [5] and use almost the same
hyperparameters. The encoder of the VQ-VAE converts a
128× 128 frame into a 512× 8× 8 feature map. The 8× 8
sub-vectors of the feature map are then quantified to the dis-
crete latent embeddings. The length of the latent codebook
is set to 1024 to shorten the training time. The 8 × 8 dis-
crete latent embeddings are reconstructed to a video frame
by the decoder of the VQ-VAE. We train the VQ-VAE using
ADAM optimizer [4] with a learning rate of 2× 10−4 and a
batch size of 32 videos on 8 RTX 3090 TI GPUs for about
48 hours.

The auto-regressive Transformer consists of 24 Trans-
former layers with a head number of 16. Due to the com-
plexity of the auto-regression task, the embedding dimen-
sion of the attention module is set to 1024. Therefore, a
linear transformation is utilized to project the dimension of
video scene graph representations from 256 to 1024, while
1024 latent embeddings with dimension 1024d are learned
during the training. We train the auto-regressive Trans-
former using ADAM optimizer [4] with a learning rate of
1 × 10−5 and a batch size of 64 videos on 8 RTX 3090 TI
GPUs for about 48 hours. Furthermore, the video scene

graph encoder is frozen during the training of the auto-
regressive Transformer.

E. Additional qualitative results and limita-
tions

Additional qualitative results. The details such as the
human face are not well presented in qualitative examples
in the main paper. As discussed, the reason is that the mo-
tion in the video is quite large. Another simple example is
shown in Figure 4. In the original video, the girl is holding
and looking at the book (all the video scene graphs are the
simple triplet person-holding-book). Although there
is some change in the position of the girl’s head and book,
it is not significant. In this case, SSGVS can render bet-
ter details and perform well. The original video and some
generated frames are omitted because the synthetic frames
are very close to the original ones and the motion is small.
To visualize the small motion better, we also compute the
optical flows for the shown synthetic frames. More videos
synthesized by SSGVS are attached to the supplementary
material.

In Figure 5, we show the video synthesized by CCVS
[5], which only use the first frame as input, and the video
synthesized by our SSGVS which use the first frame and
also the video scene graphs. With the help of the input video
scene graphs, SSGVS can synthesize higher quality frames,
especially those far from the starting frame. In this example,
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Figure 3. Graphical intra-video contrastive loss, inter-video contrastive loss and fine-grained contrastive loss in the training.
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Figure 4. Qualitative result for simple video synthesize, in which the girl keeps holding the book. The motion in the original video is very
small. Only 4 synthesized frames and their optical flow are shown. In this case, the details such as the face are well rendered.

there are no significant semantic changes in the video scene
graphs. They control SSGVS to generate the frames that
maintain the current drinking action, whereas the distortion
in the frames generated by CCVS is getting worse.

Limitations. Since the resolution of our generated video
is 128×128, this constraint makes some small objects such
as the phone and medicine cannot be presented very clearly.
In addition, for some videos containing the large motion,
the auto-regressive transformer cannot successfully predict
the sequence of the latent embeddings. These videos usu-
ally involve a change of scene or camera pose. An example
is shown in Figure 6. We can increase the size of the syn-
thesis model or adopt a smaller time step to suppress this
issue.

F. Ethics statement
As machine learning methods are increasingly used in

everyday life, it makes sense to consider the potential so-
cial impact of our work. Our work could potentially be
used for deep fake as well as other state-of-the-art gener-
ative models. Since our model can synthesize videos with
specific semantic content, this even makes deep fake more
flexible. Developing better models has the potential to be
used maliciously to violate human likeness rights or create
false information. On the other hand, a good video syn-
thesis model helps the film and video game industries, for
example, by replacing live actors in dangerous scenes. It
can be also very promising in the metaverse.
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Figure 5. Comparison between the videos synthesized by CCVS and SSGVS. The real frames are given in the first row, while the cor-
responding video scene graphs are shown in the second row. The video synthesized by SSGVS has higher fidelity with the help of the
discrete video scene graphs.
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Figure 6. Failure to synthesize a complex video with large motion. The person and the bag cannot be synthesized since they do not appear
in the first frame. In this case, only the silhouettes of a standing person are visible in the frames of T = 13 and T = 15.
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