
In this appendix, we present: (1) implementation details;
(2) visualization results of decisions given by the gating net-
work (on NYU Depth V2); (3) an analysis of varying regu-
larization strength � (on CMU-MOSEI); and (4) an ablation
study on proposed training strategies (on NYU Depth V2).

A. Implementation Details

MM-IMDB. E1 is a unimodal text network with 2-layer
MLPs (hidden dimension=512) as the text encoder and the
decoder. E2 is a multimodal late fusion network, where we
use the text and image encoders to extract features, concate-
nate the unimodal features and then pass the concantenated
features to a MLP decoder (hidden dimension=1024). The
text encoder is the same as in E1 and the image encoder is
a 2-layer MLP (hidden dimension=1024). We use AdamW
optimizer with lr=1e-4 and weight decay=1e-2.

CMU-MOSEI. E1 is a text network consisting of a 5-
layer transformer encoder (hidden dimension=120; 5 at-
tention heads) and a 2-layer MLP decoder (hidden dimen-
sion=64). E2 is a multimodal late fusion network with
video, audio, and text encoders being 5-layer transformers
and a 2-layer MLP decoder (hidden dimension=128). We
use AdamW optimizer with lr=1e-4 and weight decay=1e-
4.

NYU Depth V2. The image and depth encoder is a
ResNet-50 and the decoder is the same as in ESANet [35].
We use SGD optimizer with weight decay=1e-4 and mo-
mentum=0.9, also OneCycleLR with max lr=1e-2.

The gating networks are designed to match the E1 and
E2 model architectures. Therefore, we use a MLP gate
for MM-IMDB, a transformer gate for CMU-MOSEI and
a convolution gate for NYU Depth V2.

C(Ei) in Equations (1)-(2) is set as the MACs required
to do one forward pass with Ei. Take MM-IMDB for ex-
ample: the MACs for executing E1 and E2 are 1.25M and
10.87M, respectively. The resource loss of one data sample
is � if the gating network selects E1 and � ⇥ 10.87

1.25 if E2

is selected. The DynMM variants reported in Table 1-2 are
obtained using different values of the regularization param-
eter �.

B. Visualization Results

In our proposed DynMM, the gating network is crucial
as it provides data-dependent decisions on which expert net-
work to adopt. For modality-level DynMM, we have pro-
vided visualization of the gating network decisions for some
test instances on CMU-MOSEI in Figure 5 in the main pa-
per. Similarly, for fusion-level DynMM, we visualize sev-
eral test instances on NYU Depth V2 and the resulting ar-
chitecture in Figure 8 in the Appendix.

From Figure 8, we can see that DynMM adaptively ex-
ecutes the forward path for multimodal inputs. The depth

features are combined with the RGB features to different
degrees, determined by the gating network in DynMM. This
provides a flexible way to control multimodal fusion in a
sample-wise manner. For the RGB-D images in the up-
per figure, DynMM performs one-time fusion for multi-
modal features after the first block and saves computations
of depth blocks 2-4. For the more challenging test samples
in the lower figure, DynMM decides to fuse features in ev-
ery layer to better incorporate multimodal information. Due
to the dynamic architecture, DynMM achieves a good bal-
ance between efficiency and performance.

C. Analysis of Regularization Strength

Recall that we propose a resource-aware loss function
in Equation (1) and (2) in the main paper, where � is a
hyperparameter controlling the relative importance of task
loss and computation cost loss. Similar to Figure 4 in the
main paper (i.e., an analysis of � on MM-IMDB), we vary
� when training DynMM on CMU-MOSEI sentiment anal-
ysis and report its computation cost and performance cor-
responding to each � value. The results are provided in
Figure 9 in this Appendix. From Figure 9 (a), we can see
that DynMM achieves a good balance between inference
efficiency and accuracy. Moreover, DynMM offers a wide
range of choices that can be controlled by �, thus showing
great flexibility. Figure 9 (b) shows the branch selection ra-
tio of DynMM for different �. When � is small, DynMM
focuses more on performance and chooses expert network
2 most of the time. As � increases, more test samples are
routed to the expert network 1 that requires fewer computa-
tions.

D. Ablation Study

To verify the efficacy of our proposed training strategies,
we present an ablation study of RGB-D semantic segmen-
tation on the NYU Depth V2 data. We train DynMM under
three settings: (1) We omit the pre-training stage and train
DynMM in one stage. (2) In the second stage of training, we
freeze the weights of the multimodal architecture and only
fine-tune the gating network. (3) We adopt our proposed
two-stage training with joint optimization of the multimodal

Method Two-stage
Training

Joint
Optimization mIoU (%)

Baseline 50.3

DynMM
X 49.2

X 50.2
X X 51.0

Table 5. Ablation study on RGB-D semantic segmentation. Base-
line refers to a static model (ESANet).



Figure 8. We visualize a few test instances on the NYU Depth
V2 data. x1 and x2 denote RGB and depth images, respectively.
The corresponding network architecture based on the gating net-
work decision is shown. The upper figure shows examples when
the gating network chooses an early fusion architecture. DynMM
skips computations of the depth extraction layers, thus achieving
inference savings. The lower figure shows examples when the gat-
ing network decides to fuse representations at every middle layer.
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Figure 9. Analysis of DynMM with varying resource regulariza-
tion strength (�) on CMU-MOSEI. (a): comparison of DynMM
with static unimodal (UM) and multimodal (MM) baselines. (b):
branch selection ratio in DynMM with respect to �.

network and gating network. The other training parameters
(e.g., learning rate, resource regularization strength �) are
identical. The results are shown in Table 5 below.

Table 5 demonstrates the advantages of our proposed
training strategies. We observe that DynMM with one-stage
training does not have a dynamic architecture, i.e., all test
samples are routed to one particular forward path. Without
a pre-training stage, every forward path is not equally opti-
mized. Biased optimization further leads to suboptimal per-
formance (i.e., an mIoU of 49.2%). Apart from two-stage
training, joint optimization also plays an important role. We
observe a +0.8% mIoU improvement with end-to-end train-
ing. The possible reason is that (static) feature extraction
layers also improve in the joint optimization process; they
provide more informative features as input to the gating net-
work to a better gating network decision. Therefore, the

joint optimization achieves the overall best performance.
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